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Figure 4. Trajectories on Σ and µ plane of BD type MG models (solid curve), clumping dark energy
(dotted curve) and interacting dark energy (dash curve).

These examples suggest that if we can measure Σ and µ from observations, the path on
the (Σ, µ) plane enables us to identify the underlying physics of the cosmic acceleration.

7 Conclusions

In this paper, we proposed to parameterise the relation between the lensing potential and
the matter over-densities, Σ, and the dynamic relation between the Newtonian potential and
the matter over-densities, µ, which enable us to characterise theoretical models and constrain
them with observations. If dark energy is described by a perfect fluid that is homogeneous
(smooth) on sub-horizon scales these parameters are trivial, i.e. Σ = 1 and µ = 1. We showed
that Σ and µ can depart from unity in some theoretical models; such as modified gravity mod-
els, interacting dark energy models and clustering dark energy models. Interestingly, both
parameters are related to each other in an unique way depending on the underlying theory:

• With the assumption of the scale-independent evolution of perturbations, Σ and µ in
Brans-Dicke type MG models are described by a single variable, ωBD, which leads to
a specific trajectory with Σ = 1. This comes from the fact that there is no coupling
between photons and the BD scalar field.

• In clustering dark energy the scale-independence of Σ and µ and the simple assumption
that δPde ∝ δρde lead to a constraint equation between the pressure perturbation and
anisotropy stress. Therefore, both Σ and µ are determined by a single variable, and
consequently there is a unique trajectory in the (Σ, µ) plane.

• For interacting dark energy models, as there is no anisotropic stress induced by inter-
actions, we have a simple relation, Σ = µ. Nevertheless, a non-trivial Σ is induced by
the non-adiabatic scaling of the background dark matter density.
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Predictions in quasistatic-
approximation for:
- Brans-Dicke (MG)
- interacting Dark Energy (IDE)
- clustering Dark Energy with 
anisotropic stress (cDE)

Σ ∼ Φ−Ψ : WL, ISW

µ ∼ Ψ : peculiar velocities, clustering
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Anisotropic stress in dark energy:
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dark matter and energy. Here we consider a general dark energy fluid with a time-varying
barotropic equation of state parameter, wde ≡ Pde/ρde, and some scalar anisotropic stress
σde. However, in this section we restrict the dark energy to be minimally coupled to gravity
and (dark and baryonic) matter, which means that here ρi = ρs

i for i = m, de; and we can
treat the baryons and the dark matter as a single pressureless perfect fluid.

Given the different physical behaviour of matter and dark energy the total density
fluctuation will not be a simple linear function of δm but acquires a contribution from the
dark energy. The Poisson equation in cDE models is then given by

k2Φ = 4πGNa2(ρmδm + ρdeδde) (4.1)

The dark energy anisotropic stress, σde, enters the second Einstein constraint equation as

k2(Φ + Ψ) = −12πGNa2(1 + wde)ρdeσde . (4.2)

Because the evolution of the background energy densities in cDE is not modified with respect
to the sDE reference, we have ρs

m = ρm. So the definition of Q in eq. (2.5) directly implies

Q(a, k) = 1 +
ρdeδde

ρmδm
, (4.3)

for cDE models. By combining the two constraints we find that the η parameter here is

η =
ρmδm + ρdeδde

ρmδm + ρdeδde + 3(1 + wde)ρdeσde
. (4.4)

As we want to get a feeling for the time- and scale-dependence of Q and η we take a
look at the evolution equations of δm and δde without specifying the dark energy pressure
and anisotropic stress perturbations. Later we will consider a simple model for the pressure
perturbation and a specific model for the anisotropic stress of dark energy motivated by the
possibility of having scale-invariant growth of dark energy perturbations.

From the energy-momentum conservation of the matter and the dark energy we can de-
rive second-order differential equations for δm and δde in the quasi-static approximation where
time derivatives of the gravitational potentials are neglected. For the matter component we
find the well-known growth equation

δ̈m + 2H δ̇m = −
k2

a2
Ψ , (4.5)

with the source term as found from the two Einstein constraint equations above:

−
k2

a2
Ψ =

3

2
H2 {Ωmδm + Ωdeδde + 3(1 + wde)Ωdeσde} . (4.6)

Here Ωi = Ωi(t) are the fractional energy densities as functions of time. For the general
barotropic dark energy fluid perturbations we find the evolution equation

δ̈de + (2 − 6wde)H δ̇de + 3H

(

δPde

ρde

)

.

=

= 3Hẇdeδde + 3
[

(2 − 3wde)H
2 + Ḣ

]

[

wdeδde −
δPde

ρde

]

−(1 + wde)
k2

a2

[

δPde

(1 + wde)ρde
− σde + Ψ

]

. (4.7)
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where

σde = fσ
δPde

(1 + w)ρde
� fσ c2s

1 + w
δde

fσ = 1 ⇒scale invariant 
growth of DE perts
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Growth index vs. effective Newton constant

wCDM, w=const.
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Effects of DE anisotropic stress

Another ad-hoc model for anisotropic dark energy:

σde ∝ α∆m + βΨ

reaction to matter

reaction to metric
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PRELIMINARY!!
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Constraining Modified Gravity
with current cosmological data
Tommaso Giannantonio
Excellence Cluster Universe, Garching by Munich

In collaboration with:
G.B. Zhao, Y.S. Song, L. Pogosian, A.Silvestri, A. Melchiorri, M. Martinelli, 
K. Koyama, R. Nichol, D. Bacon, A. Cooray

Rμν - ½ gμν R ≈ -8πG Tμν
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Outline

• Why Modified Gravity

• MG theories

• DGP, f(R), Yukawa, ...

• Constraints

• CMB, ISW, lensing, ...

• Principal component analysis

• Conclusions

2

2Monday, 9 August 2010



Dark Energy or 
Modified Gravity?

• Cosmic acceleration: from either side 
of Einstein’s equation

• Equivalent, MG can be better 
motivated (Lagrangian)

• A gravity theory: must pass all tests 
GR does!

• GR limit in Solar System, no 
ghosts, simple (Occam), 
Lagrangian

• Background expansion

• Structure formation

Rμν - ½ gμν R = -8πG Tμν

(Song & Dore 08)

Gravity: testable 
relationships between 
geometry and energy

3
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Which Modified Gravity?

• Phenomenological models for 
cosmology: Cardassian

• Variations of the 4D GR action: 
f(R), Gauss-Bonnet, ...

• Extra Dimensions: braneworlds, 
DGP models, degravitation, 
cascading gravity, ...

4
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The DGP model     
(Dvali, Gabadadze & Porrati 00)

• 4D brane in Minkowski 5D bulk

• Background: new Friedmann equation

• minus: self-accelerating branch, acceleration 
today if rc ~ H0-1

• plus: normal branch: still needs Λ (brane tension)

5

H
2∓ 1

rc

�
H2 +

K

a2
=

κ
2

3
ρ+

Λ

3
− K

a2

Background already rules out self-acc. (Majerotto & Maartens 06)
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Constraints on the 
DGP model(s)

• From background: sDGP is 
ruled out (Majerotto & Maartens 06)

• + CMB + ISW: ruled out at 4σ! 
(Fang et al. 08)

• nDGP: extra dof, from bg still 
viable (TG, Song, Koyama 08)

• ruled out by full CMB + 
structure formation tests such 
as ISW!  (TG, Song, Koyama 08, 
Lombriser et al 09)

6
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f(R) theories

• Extended gravity action:

• New scalar dof, scalaron

• Effective fluid with eq. of state (family 
of models)

• From expansion history, we solve fR

• Fifth force, of wawelength, mass

• Growth of structure can distinguish!

• Poisson:

• Anisotropy (Zhao et al 08):

7
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Constraints on f(R) 
(TG, Martinelli, Silvestri, Melchiorri 09)

8

• Background identical to LCDM

• Structure formation different!

• MCMC with CMB + SN + ISW

• One parameter wavelength today in 
H units:

• In GR: B0 = 0

• CMB only: B0 < 1 (Song, Peiris, Hu)

• With ISW: B0 < 0.4 @ 95%

• Adding non-linear scales (clusters) 
even tighter (Vihlinkin, Hu et al 09, 
Lombriser et al 10)
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Parametrising Modified Gravity 
(Zhao et al 08, Cooray et al, Daniel et al 10)

• Poisson equation (sub-horizon):

• Anisotropy equation:

9

• Scalar-tensor theories:

• f(R) theories: s=4, 

Lenghtscales
Couplings

• So many MG theories,

• So few theoretical motivations!

Test of general departures from 
GR and PCA! (Zhao, TG et al. et al 10)
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1. single high-z 
transition to MG

• From GR to MG with (η0, μ0), or (Σ0, μ0)

• Σ better for WL, ISW

• transition: tanh, Δz at z=1 or z=2

• MCMC with CMB, ISW, WL, SN

10Consistent with GR
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2. 2x2 Pixellation + 
PCA

• Scale dependence IS expected

• 2 pixels in redshift AND scale!

• (Σi, μi), i = 1, ..., 4

• MCMC again with all data

• PCA: de-correlating the variables

• Caused by CFHTLS “bump”

• Known systematic (field of view 
size) (CFHTLS private communication)

11

Here a hint of deviation (2σ)!
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Conclusions

• Combined tests of structure formation crucial in distinguishing MG

• So far NO evidence for MG

• In the absence of well-motivated theories, PCA can detect departures from 
GR

• Future data will enable MUCH better PCA tests (number of constrained 
modes)

12
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Pitfalls in Dark Parameterization
Chaz Shapiro (Portsmouth, ICG)

arXiv:1004.4810

With Scott Dodelson, Ben Hoyle, Lado Samushia and Brenna Flaugher

What are the 
consequences of 
choosing a wrong 
model?



• Claimed detection of GR violation by Bean (false) – at the time, looked large enough to be 
easily confirmed by Dark Energy Survey.

• What is the simplest GR check we can do?

• Premise: Suppose the Universe is described by modified gravity but we mistakenly 
analyze data assuming General Relativity plus a typical dark energy model, w=w0+(1-a)wa

Baryon Acoustic Oscillations
Supernovae Type Ia

Cluster Counts
Cosmic Shear

Dark Energy Survey forecast (1s) Modified gravity not accounted for

w0

wa

w0

growth index
g = 0.68



Drawbacks to this simple check:

 “Do the constraints overlap?” is not quantitative

 CMB data used multiple times  vague interpretation

 Parameter space is 8-dimensional – there could be inconsistency in  w0 , wa , 
Wm , Wk , Wb , H0 , ns , s8 

w0

wa

Wm



 Method: Treat the best-fit parameter set from each experiment as a 
“data point” with an “error bar” (confidence region).  Find the 
parameter set la most consistent with all data by minimizing

la
(i) = ath parameter obtained from ith probe

C(i) = covariance matrix for parameters from ith probe

 We find that

 M = #parameters , N = #probes , S = #degeneracies , B = “tension”

 B is a function of Fisher matrices and prediction errors for all probes 
(see Fig 1).  B=0 when we expect the same parameter set from all 
probes.

 Large B indicates non-overlapping parameter constraints. We’d 
interpret this as inconsistency with a goodness-of-fit given by the c2

probability distribution for n degrees of freedom:

3



Results: In our scenario, using a GR+dark energy model instead of the (true) 
modified gravity model yields non-overlapping 8D parameter constraints 
from the 4 DES probes + Planck. 

 Combining all probes gives 99% 
inconsistency.  For 2s inconsistency, 
we need at least CMB, clusters and 
lensing.

 CMB is crucial, indicating that 
tension occurs in parameters that are 
well-measured by Planck. 

 Tension exists despite degeneracies 
(infinite error bars) in each probe.

 If we generally expect tension from  
MG but do not see it, we can cite this 
as evidence for GR. 4

CMB and WL Fisher matrices have 3 
degeneracies.  SN, BAO, CL have 4.



What if we just guess the wrong function?    Simpson & Bridle (2006)

Worst case scenario

w(z)



If we guess the wrong function, different weighting functions among 
several probes could lead to non-overlapping constraints on various 
parameters

SNAP-like SNe SNAP-like Cosmic Shear WFMOS-like BAO
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