Measuring BAO using photometric redshift surveys.

Aurelio Carnero Rosell.

E. Sanchez Alvaro, Juan Garcia-Bellido, E. Gaztanaga, F. de Simoni, M. Crocce, A. Cabre, P. Fosalba, D. Alonso.

10-08-10

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Punchline of the talk.

- 1. We propose a new method to extract the BAO scale from the 2-pt angular correlation function $\omega(\theta)$.
- 2. The goal is to use this information in order to constrain cosmological parameters using BAO as a standard ruler.
- 3. Method tested in many different cosmologies and in N-body simulation with photo-z effects.

4. Also a systematic errors' study.

Introduction.

BAO detection.

- BAO confirmed in the galaxy power spectrum & correlation function.
- Mainly with spectroscopical data.
- New surveys aiming at the study of Dark Energy.
- Two ways of improvement:

Current status

イロト 不得 トイヨト イヨト

- 1. more spectra. Spectroscopic surveys.
- 2. more volume and statistic. Photometric surveys.

Upcoming galaxy surveys.

Spectrocopic surveys

- BOSS, BigBOSS
- WiggleZ
- Hetdex
- WFMOS...

Photometric surveys

- DES
- Pan-Starrs
- HSC
- PAU...

Check other talks in Benasque for more information about these or other surveys

- ► T.Davis in Wigglez.
- ▶ N.Kaiser in Pan-STARRS.

- ▶ P.Norberg in Gama.
- ► J.Frieman in DES.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In photometric surveys.

- Higher accuracy by a larger volume and larger number of observed galaxies even if photo-z have lower precision compared to their spectroscopic counterparts.
- Impossible to infer the true 3-dimensional clustering pattern. The analysis of angular statistics, like the 2-pt angular correlation function $\omega(\theta)$ and the angular power spectrum C_l is required.

Photo-z error depends mostly on the range of wavelengths covered by the filters and number of them.

We propose a new method.

- GOAL: To recover the BAO scale as a function of redshift and obtain the properties of the dark energy from its evolution.
- Generic to any photometric surveys but tuned with DES expectations.
- Use only as a standard ruler. We do not try to use the whole shape of the correlation function or power spectrum.

• Less sensitive to systematic errors.

Most of results are in Arxiv preprint *arxiv:1006.3226* (submitted to MNRAS).

Angular clustering.

Relation between $\xi(r)$ and $\omega(\theta)$:.

$$\omega(\theta) = \int_0^\infty dz_1 \phi(z_1) \int_0^\infty dz_2 \phi(z_2) \xi(r; \bar{z})$$

- No small angle approximation (Limber's approximation).
- P(k) from CAMB. Galaxy bias b=1.

Nonlinearities.

We introduce non-linear matter clustering with RPT (gaussian smoothing):

 $P_{NL} = P_L e^{-k^2 \sigma_v^2(z)/2} \qquad \sigma_v(z) = \left[\frac{1}{6\pi^2} \int_0^\infty dk P_L(k;z)\right]^{-1/2}$ We discard the contribution of the additive mode-coupling term to P(k). \rightarrow For aclarations ask Gaztanaga & Crocce.

Angular clustering.

Covariance matrix of $\omega(\theta)$

Is defined as: $Cov_{\theta\theta'} \equiv <\omega(\theta)\omega(\theta') >$. For a given survey can be estimated by:

$$Cov_{\theta\theta'} = \sum_{l\geq 0} \frac{2(2l+1)P_l(\cos(\theta))P_l(\cos(\theta'))}{(4\pi)^2 f_{sky}} [C(l) + \frac{1}{N/\Delta\Omega}]^2$$

Where f_{sky} is the fraction of the sky covered by the survey and the ratio $N/\Delta\Omega$ is the number of galaxies per unit of solid angle.

Errors in $\omega(\theta)$ obtained from the covariance matrix.

Reference: Crocce, Cabre, Gaztanaga. Arxiv:: 1004.4640

BAO as a standard ruler.

- The standard ruler method lays in the potential to relate the acoustic peak position in the correlation function of galaxies to the sound horizon scale at decoupling.
- We have to distinguish between $\theta_{BAO} \equiv r_S/\chi(z)$ and θ_{FIT} .

5

θ (degrees)

3

 $\mathcal{O} \land \mathcal{O}$

Method to recover θ_{BAO} .

- 1. Divide the full sample in redshift bins.
- 2. Compute the angular two-point correlation function in each redshift bin.
- 3. Parametrize the correlation function using the expression:

$$\omega(\theta) = A + B\theta^{\gamma} + Ce^{-(\theta - \theta_{FIT})^2/2\sigma^2}$$

and perform a fit to $\omega(\theta)$ with free parameters A,B,C, γ , θ_{FIT} , σ .

- 4. The BAO scale is estimated using the parameter θ_{FIT} and correcting it for the projection effect: $\theta_{BAO}(z) = \alpha(z, \Delta z)\theta_{FIT}(z)$
- 5. Fit cosmological parameters to the evolution of the corrected θ_{BAO} with z.

We have tested the method in two steps

- 1. In theoretical $\omega(\theta)$ in many different cosmologies.
- 2. In a N-Body Simulation including observational effects.

Calibration on theoretical $\omega(\theta)$

We tested the goodness of this parametrization in various redshifts, ranging from 0.2 to 1.4 for a wide range of widths of the redshift bins and for 14 cosmological models.

- ► errors in each point of ω(θ) is ~ 1%. Less than in any real survey.
- ► Fits to our parametrization are always \u03c0²/ndof << 1. Excelent fit!

Calibration on theoretical $\omega(\theta)$

We tested the goodness of this parametrization in various redshifts, ranging from 0.2 to 1.4 for a wide range of widths of the redshift bins and for 14 cosmological models.

- ► errors in each point of ω(θ) is ~ 1%. Less than in any real survey.
- ► Fits to our parametrization are always \u03c8²/ndof << 1. Excelent fit!

h	Ω_M	Ω_b	Ω_k	w_0	w_a	n_s
0.70	0.25	0.044	0.00	-1.00	0.0	0.95
0.68						
0.72						
	0.20					
	0.30					
		0.040				
		0.048				
			+0.01			
			-0.01			
				-0.90		
				-1.10		
					-0.1	
					+0.1	
						1.00
					· · ·	2

KEY POINT!

Projection effect can be corrected independently of cosmology.

Correcting for projection effects.

- 1. Applying parametrization to all 770 $\omega(\theta)$:
- 2. We can correct θ_{FIT} to obtain θ_{BAO} independent of cosmology.
- 3. In each band there are 14 cosmological models. Half width of band is the error in the correction.
- 4. Observe this is relative offset. In absolute, θ_{BAO} is different for each model.

KEY POINT!

Projection effect can be corrected independently of cosmology.

Correcting for projection effects.

- 1. In a infinitesimal bin width, we recover the exact theoretical value of θ_{BAO} for all cosmologies with an error of the order of 10^{-3} .
- 2. The correction is greater for low redshifts and for wider bins.

Caveat: Only tested in FRW Cosmologies

Redshift-space distortions.

Redshift Space Distortions in photometric surveys.

- Redshift-space distortions are important in redshift bins analysis and need to be considered.
 Percival's talk.
- The main effect is an increase in overall amplitude.
- Nonetheless, doesn't move θ_{FIT} with our parametrization to the level of 10⁻³. The other parameters absorb RSD.
- True-z vs Photo-z

Galaxy bias

We have also studied the effect of galaxy bias in our results:

- Scale independent bias: ω(θ)_b = b(z)²ω(θ). errors are rescaled correspondingly. Results in θ_{FIT} do not change.
- Scale dependent bias: We produce a toy model, i.e.:
 ω(θ)_b = b(z, θ)²ω(θ). The new values of θ_{FIT} are within 1% variation of the values without any bias
- Bigger effect at low redshift.
- Bias is important at low θ, but model is robust against variations of bias within 20%.

We can neglect the effects of bias in our analysis. In the sense θ_{FIT} doesn't change.

Summary of the method.

We propose a new method to extract the BAO scale from ω(θ):

$$\omega(\theta) = A + B\theta^{\gamma} + Ce^{-(\theta - \theta_{FIT})^2/2\sigma^2}$$

- We can correct θ_{FIT} to obtain θ_{BAO} independent of Cosmology in FRW ones.
- The statistical error in θ_{BAO} comes from the fit to θ_{FIT} .
- effects of redshift-space distortions and bias are crucial if we want a fit to the full shape of ω(θ), but not in our parametrization. They are only a small source of uncertainty.

Summary of the method.

We propose a new method to extract the BAO scale from ω(θ):

$$\omega(\theta) = A + B\theta^{\gamma} + Ce^{-(\theta - \theta_{FIT})^2/2\sigma^2}$$

- We can correct θ_{FIT} to obtain θ_{BAO} independent of Cosmology in FRW ones.
- The statistical error in θ_{BAO} comes from the fit to θ_{FIT} .
- effects of redshift-space distortions and bias are crucial if we want a fit to the full shape of ω(θ), but not in our parametrization. They are only a small source of uncertainty.

What happens if we include observational effects?: We have studied our parametrization over a large N-body simulation.

MICE Simulation.

http://segre.ieec.uab.es/fosalba/MICE/

Dark Energy Survey Simulation Challenge.

- Publicly available.
- Same volume and σ_z than expected in DES survey.
- 5000sq degrees. 5e7 particles.

Fiducial Cosmology.

MICE Simulation Common Parameters

Baryon density, $\Omega_b = 0.044$ Matter density, $\Omega_m = 0.25$ Dark-energy density, $\Omega_{\Lambda} = 0.75$ Scalar spectral index, $n_s = 0.95$ Rms matter fluctuation amplitude, $\sigma_8 = 0.8$ Hubble paramter (in units of 100 km/sec/Mpc), h = 0.7

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Photo-z in MICE

- We introduce photo-z in MICE by smearing each galaxy redshift by the expected σ(z) distribution.
- All results include this photo-z distribution.
- Following σ(z) distribution we construct 14 bins of redshift, from z = 0.2 to z = 1.5.

MICE MAPS

- 14 bins: In each one construct galaxy map.
- x-axis is φ and y-axis is cos(θ) so all pixels have same area in a square grid.
- ► 636x636 pixels. (equivalent to a healpix $N_{side} = 512$: $\Delta \theta \approx 0.1^{\circ}$).

Building the angular correlation function $\omega(\theta)$.

From maps, compute $\omega(\theta)$ using the Landy & Szalay estimator:

$$\omega(\theta) = \frac{DD(\theta) - 2DR(\theta) + RR(\theta)}{RR(\theta)}$$

 We build random maps with same number of galaxies (no limited by shot-noise).

BAO "extraction"

- In each ω(θ) we apply fit to the parametrization around the peak.
- We correct $\theta_{BAO} = \alpha(z, \Delta z)\theta_{FIT}$, where $\Delta z_{true} = \sqrt{2\pi}\Delta z_{phot}$. Where Δz_{true} is the true redshift width such as the amplitude of $\omega(\theta)$ in z_{true} is the same as in z_{phot} .

(日) (同) (三) (三) (三) (○) (○)

Statistical error in ω(θ) is given by Cov_{θθ'} and including correlations between redshift bins.

Covariance matrix

- Due to photo-z uncertainty there is galaxy migration between bins.
- Using the mixing matrix (by counting galaxies in bins of true-z and photo-z) and correlations between θ's, we obtain correlation matrix for θ_{BAO}.
- We calculate the covariance matrix, including correlated and uncorrelated errors in θ_{BAO}.

$$C_{ij} = \langle w_i^O(\theta) w_j^O(\theta') \rangle = \sum_{k=1}^{N_{bins}} (r_{ik}^2 r_{jk}^2) \frac{(N_k^T)^4}{(N_i^O)^2 (N_j^O)^2} \operatorname{Cov}_{\theta\theta'}$$

Where r_{ij} are the mixing matrix elements, N_i^T are the number of galaxies with true-z in bin *i* and N_i^O are the number of galaxies with photo-z in bin *i*.

Results for MICE Simulation

 $\chi^2/dof = 0.5$ Prob = 0.8 $\chi^2/dof = 0.87$ Prob = 0.5 $\chi^2/dof = 1.6$ Prob = 0.13

Main systematics errors.

- Photo-z.
- Redshift space distortions.
- Parametrization
- ► Theory (non-linearities) and projection correction error.

Not considered.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Selection of galaxies.
- Sample contamination.
- Masking.
- These are small effects (In progress).

Photo-z error

- By redoing the analysis with true redshift, for same bins, we can compare to photo-z. Look at the difference in θ_{FIT} for true-z and photo-z.
- Its dispersion associated to σ_{photoz} . For our set of bins and $\sigma(z)$: $\sigma_{photoz} = 5\%$
- To study z dependence we would need many mock catalogues.

 In progress.
- It's the greatest source of error in θ_{BAO} .
- Correlated between redshift bins.

(日)、

Parametrization

error: Error coming from the decision of the region where we perform the fit in $\omega(\theta)$.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Uncorrelated systematics

 Theory: Uncertainties in the theory coming from the implementation of non-linearities.

Uncorrelated systematics

- Projection effect: Uncertainty coming from the error in the parameter α:
- Redshift Space Distortions: Difference in θ_{FIT} by including RSD.
- ► All these four effects are subdominant. We have set them to 1% CONSERVATIVE.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Errors

Systematic error	$\Delta \theta_{BAO}$	Correlated between bins
Parametrization	1.0%	No
Photometric redshift	5.0%	Yes
Redshift space distortions	1.0%	Yes
Theory	1.0%	No
Projection effect	1.0%	No
Statistical error	5-10%	Yes

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの

 θ_{BAO} vs z

- Total error is $\sigma(\theta_{BAO})^2 = \sigma_{stats}^2 + \sigma_{sys}^2$
- Also shown, results obtained without photo-z (*true-z*).

• Minimize
$$\chi^2$$
 w.r.t.
 $\Omega_M \& w$:

 $\chi^2 = (\theta_{BAO} - \frac{r_S}{\chi(z)})_i C_{ij}^{-1} (\theta_{BAO} - \frac{r_S}{\chi(z)})_j$

Cosmological constrains

- Other parameters fixed to their true values.
- Include correlations between bins.
- In good agreement with DES expectations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

if $\Omega_M = 0.25 \ w = -1.05 \pm 0.14$ and if $w = -1 \ \Omega_M = 0.23 \pm 0.05$

Conclusions.

- 1. We have propose a new method to use BAO's as a standard ruler in photo-z surveys. The shift due to projection is cosmology independent to 0.75%.
- 2. Method tested in many different cosmologies and in N-body simulation with photo-z effects.
- 3. We recover the input cosmology.
- 4. The dominant systematic error comes from photo-z precision. We have also studied bias, RSD effects.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5. Next step: Test method with real survey data.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

True-z results.

Figure: Contours for true-z, covariance is diagonal.