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Given a master equation dyp = Lp

a set of projectors { P;(t)} may be called pointer states of L
provided there is a decoherence time scale tgec

such that for all po
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Pointer states

Given a master equation 0;p = Lp

a set of projectors {P;(t)} may be called pointer states of L
provided there is a decoherence time scale tgec

such that for all po

eFlpy = Z Tr[P;(0) po] P;(?) for ¢ > tec
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plan of the talk:

« Monitoring approach
- deriving microscopically realistic master equations -
 Hund's paradox

- super-selecting chiral molecular configuration states -

« Pointer states of motion
- the pointer basis induced by collisional decoherence -



How to derive Markovian master equations with
microscopically realistic, non-perturbative interactions?

Idea:

Don't start with the Schrodinger equation for the total system,
but put the Markov assumption (“memory-free environment”)
as the central premise!
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I': rate operator (positive)

PI'(CQHP X pem) = I‘I’(F[p X Pe:mr]) At + O(At2)

probability for single event

S : scattering operator (unitary)

Pl = Tren(S[P® Penv]ST)

effect of a single event



Monitoring master equation

combine time-dependent scattering theory
with the formalism of generalized,
continuous measurements

v manifestly markovian
v hon-perturbative description
v rate and scattering operator
can be defined microscopically

1 .
—p = E[H, p] + 1 TI'EHV( [Fl/?Re( T)Fl/Q, P 24 p;anv] )

+ Treny( TT?[p @ peny T2 TT)

= %TrmV(Fl/QTTTFl/Q[p ® Penv] )

o Tran([0® pe] TV THTT72)

(S=1+iT)

K.H., Europhys. Lett. (2007) 9



microscopically realistic choice A \/

[' = (gas current density) x (cross section)

S = (multi-channel S-Matrix)

N




Master equation for ro-vibrational dynamics in background gas

L J
microscopically realistic choice A \/

[' = (gas current density) x (cross section)

S = (multi-channel S-Matrix)

yields: P
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Hund's paradox of molecular chirality

Friedrich Hund (1927)

Why are many molecules found
in a chiral configuration?

—iIn spite of the parity invariance

of their hamiltonian?
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Friedrich Hund (1927)

Why are many molecules found

in a chiral configuration?

—In spite of the parity invariance

of their hamiltonian?

\_/.
Effect of an achiral gas environment
on the configuration & orientation state?
.) "
P

realistic master equation required !




Effect of an achiral gas

environment
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Effect of an achiral gas

environment
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« only the chiral states |L) and |R) exhibit a quantum-Zeno-like
stabilization ~w?/~y against tunneling and decay if v >w

Harris, Stodolsky (1978)



Hund's paradox of molecular chirality

L)

. =
scattering e

Cross section <

decoherence
Cross section

2
Ntot(ARonhr)

J. Trost, K.H., PRL (2009)

D.S, tunnels with 28 Hz in vacuum

The stabilization effect is dominated by

a higher order contribution to the

van der Waals interaction described by

the EQED tensor A; xe(iw)

D,S,-He scattering
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Hund's paradox of molecular chirality

D.S, tunnels with 28 Hz in vacuum

The stabilization effect is dominated by
a higher order contribution to the

van der Waals interaction described by
the EQED tensor A; xe(iw)

critical pressure in 300K
He atmosphere:

p.=1.6x10"mbar

... allows one to observe 2.2
the chiral stabilization in an
optical Stern-Gerlach type setup
[e.q. Li, Bruder, Sun: PRL 2007] |R)

J. Trost, K.H., PRL (2009)
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reminder: definition of Pointer states

Given a master equation 0;p = Lp

a set of projectors P,(t) may be called pointer states of L
provided there is a decoherence time scale tgec

such that for all po

eFlpy = Z Tr[P;(0) po] P;(?) for ¢ > tec

Continuous variable version

Lt
€7 Po

112

/ da prob(a|po)Pa(t) for > tgec

Withf da prob(a|pg) =

1
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Nonlinear equation for candidate pointer states

among all e.o.m. propagating P
within the manifold of pure states,
choose the one minimizing

|P — L

(Rigo&Gisin 1995,
[P’ [P’ EP]] Strunz 2002)

corresponds to the deterministic part

In vector representation P = |1)(¥ / of a particular unraveling of L
1 ( 1
) = G —(H9I) + 3 Dol () (Lt~ (Lita)s) o)

(Diosi 1986)
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Orthogonal unraveling p=E[|y){¥]]

piecewise deterministic evolution

0wy = S5 (H= () + 3 {(Lhhult L) - 3(Lita (Litady) o)

interrupted by orthogonal jumps

1
|1/)> — \/E(Lk_<Lk>¢)|w> with rate r, = <L£Lk>¢—<L£>¢<Lk>¢
total jump rate ) ", = — Tr(pLp) - entropy

production
rate!

k

If there are “points of attraction” with vanishing jump rate,
an ensemble of (candidate) pointer states is naturally generated
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Orthogonal unraveling - sample trajectory
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If there are “points of attraction” with vanishing jump rate,
an ensemble of (candidate) pointer states is naturally generated

M. Busse & K.H., JPA (2010) 23



normailized visibility

Collisional decoherence master equation

... describes particle “localization” by gas collisions
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Lp = m[H,pH’Yf dgG(q)(e™?pe=7— p)

G(q) : momentum exchange distribution

... limiting form of the quantum
linear Boltzmann equation (Vacchini & KH, Phys Rep 2009)

... confirmed in fullerene buckyball
decoherence experiments  (KH,..,& Zeilinger, PRL 2003)
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pressure (x 10~ mbar)
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Nonlinear e.o.m. for collisional decoherence

dub(a) = = gor02v(@)+ (@) I8+ Gw)~ [anlwl(1vF ¢ )w )

2m 1

...exhibits soliton-like solutions, our candidate pointer states
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M. Busse & K.H., JPA (2010)



Properties of the (candidate) pointer states

exponentially localized increasing coupling
(but not gaussian) decreases their width
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provide an move on the classical
overcomplete basis Newtonian trajectories
...in the limit of strong coupling
[arimype = i the Imizotstron
IR - see
(follows with covariance properties LM - hext
of master the master equation) oL ] W N N slide..

M. Busse & K.H., JPA (2010)



Properties of the (candidate) pointer states

phase space dynamics

; ) . _ 4 2
in a quartic potential V(iz)=ax"+bux
p, Weakcoupling, vy=0 p, strong coupling, 7 large
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classical trajectory
M. Busse & K.H., JPA (2010)



Superposing N spatially non-overlapping wave packtes,

N
o) = ) cil¢n) i) &% 1i() =0
i=1
the stochastic process can be mapped to the coefficients ¢y, ....,CxN

deterministic evolution:

d N N
2 2 2
;6 = —(;ﬂﬂcﬂ = > Fileler | )C«a

J Jk=1

with localization rates F;; = 7{1 — é( (X) g — (x)¢j)}



The statistical weights

Superposing N spatially non-overlapping wave packtes,
N

|P0) = Z ci| Pi) ¢i(7) PjLi(r) =0
i=1
the stochastic process can be mapped to the coefficients ¢y, ....,cxN

deterministic evolution:

d N N
2 2 2
e OIS S AP
j=1

j, k=1

jumps: , o N 2 0)a. [
C}g) _ -qu ezq{x)ﬁjﬁ_ Z |ij ‘26’.qu b ¢;

j=1
with localization rates F;; = ’}'{1 é (X) s — (X) g )}
A i ((x)oy=(x); ) /1
and jump rates 79 = yG (¢ ( Z |Q| | 3|2 A )

M. Busse & K.H., JPA (2010)



deterministic evolution
1

0.8 C2(t)
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stochastic process analytically tractable
1
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Prob(c;(00) =1) = Prob( odd jumps) = ( /dt/dq ‘-"tq)) e1(0)]” /
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numerical analysis confirms Prob(c;(co) =1)
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Summary A i \
¢
« Monitoring approach \ A,

- a method to derive microscopically

realistic master equations -
L)}‘ ‘
|R)

 Hund's paradox

- super-selecting chiral molecular
configuration states -

e Pointer states of motion

- the pointer basis induced by
collisional decoherence -

papers, references: www.klaus-hornberger.de



