Generalized Clausius inequality for nonequilibrium quantum processes

Sebastian Deffner and **Eric Lutz**Department of Physics
University of Augsburg

Outline

- Nonequilibrium entropy production
 - Microscopic expression
 - Geometric distance in Hilbert space
 - Generalized Clausius inequality
- Nonequilibrium entropy production rate
 - Quantum speed limit
 - Maximal entropy production rate
 - Bremermann-Bekenstein bound

Introduction

Observation:

Thermodynamics describes equilibrium transformations

Challenge:

Generalization to arbitrary nonequilibrium processes

Motivation:

Far from equilibrium regime accessible in recent cold-atom experiments

Thermodynamics: a short reminder

Equilibrium (reversible) processes:

Entropy: $\Delta S_{rev} = Q/T$

Work: $W_{rev} = \Delta F$ (F = U - TS = free energy)

Nonequilibrium (irreversible) processes:

Entropy: $\Delta S = Q/T + \Delta S_{irr}$

Work: $W = \Delta F + W_{irr}$

with $\Delta S_{irr} \geq 0$ and $W_{irr} \geq 0$ (Second law)

Thermodynamics does not allow computation of ΔS_{irr} , W_{irr}

Thermodynamics: a short reminder

Clausius inequality:

Clausius 1865

$$\Delta S_{irr} \geq 0$$

"Nonequilibrium entropy production always positive"

- lower bound "zero" is transformation independent
 - not useful for far from equilibrium processes
- sharper, transformation dependent lower bound necessary
 - → use geometric distance from equilibrium

Macroscopic expression for ΔS_{irr}

Definition:

$$\Delta S_{irr} = \Delta S - Q/T$$

First law and free energy difference:

$$\Delta U = W + Q$$
 and $\Delta F = \Delta U - T \Delta S$
 $\longrightarrow Q = \Delta F - W + T \Delta S$

Nonequilibrium entropy production:

$$\Delta S_{irr} = \beta (W - \Delta F) = \beta W_{irr}$$
 $\beta = 1/T$

difference between total work and equilibrium work

Microscopic expression for ΔS_{irr}

Isolated, thermal quantum system with driven Hamiltonian H_{τ}

Work distribution:

Talkner, Lutz, Hänggi PRE (2007)(R)

$$\mathcal{P}\left(W\right) = \sum_{m,n} \delta\left(W - \left(E_{m}^{\tau} - E_{n}^{0}\right)\right) p_{m,n}^{\tau} p_{n}^{0}$$

thermal and quantum fluctuations

Nonequilibrium entropy production: $\Delta S_{irr} = \beta(\langle W \rangle - \Delta F)$

$$\Delta \mathcal{S}_{\mathsf{irr}} = \mathcal{S}\left(\rho_{\tau}||\rho_{\tau}^{\mathsf{eq}}\right) = \mathsf{tr}\left\{\rho_{\tau} \ln\left(\rho_{\tau}\right) - \rho_{\tau} \ln\left(\rho_{\tau}^{\mathsf{eq}}\right)\right\}$$

Fluctuation theorem:

Jarzynski PRL 1997

$$\langle \exp(-\beta W_{irr}) \rangle = 1$$

Quantum entropy production

$$\Delta \mathcal{S}_{\mathsf{irr}} = \mathcal{S}\left(
ho_{ au}||
ho_{ au}^{\mathsf{eq}}
ight)$$

 ho_0 initial, thermal density operator

- ullet $ho_{ au}$ nonequilibrium density operator
- $ho_{ au}^{ ext{eq}}$ equilibrium density operator, $ho_{ au}^{ ext{eq}} = \exp(-eta H_{ au})/Z$
- exact expression for ΔS_{irr}

but relative entropy not a true metric (asymmetric and no triangle inequality)

Distances: a reminder

Distance between two (unit) vectors:

Angle:
$$\theta = \arccos \mathbf{a}.\mathbf{b} = \arccos \sum_{i} a_{i}b_{i}$$

 \longrightarrow maximal distance $\theta = \pi/2$ (maximally distinguishable)

Distance between two pdfs (pure states in Hilbert space):

$$\ell = \arccos \int dx \, \sqrt{p_0(x)p_\tau(x)}$$

 \longrightarrow also number of distinguishable states between p_0 and p_{τ}

'Angle' in Hilbert space

 only Riemannian metric invariant under all unitary transformations

Wootters PRD 1981

Distances: a reminder

Distance between two density operators (mixed states): Bures 1969

Bures length:
$$\mathcal{L}(\rho_1, \rho_2) = \arccos\left(\sqrt{F(\rho_1, \rho_2)}\right)$$

generalization of Wootters' distance to mixed states

Braunstein and Caves PRL 1994

Fidelity:
$$F(\rho_1, \rho_2) = \left[\operatorname{tr} \left\{ \sqrt{\sqrt{\rho_1} \rho_2 \sqrt{\rho_1}} \right\} \right]^2$$

For pure states = overlap
$$F(\rho_1, \rho_2) = \operatorname{tr} \{\rho_1, \rho_2\}$$

F = 1 for identical states and F = 0 for orthogonal states

Lower bound for the relative entropy

Theorem:

Audenaert and Eisert, J. Math Phys. (2005)

For any unitarily invariant norm $d(\rho_1, \rho_2)$ and $e^{i,j} = |i\rangle\langle j|$

$$S(
ho_1 ||
ho_2) \geq 2 \, rac{d^2\left(
ho_1,
ho_2
ight)}{d^2\left(e^{1,1}, e^{2,2}
ight)}$$

For the Bures length \mathcal{L} , $F(e^{1,1}, e^{2,2}) = 0$

$$\Delta \mathsf{S}_{\mathsf{irr}} \geq rac{\mathsf{8}}{\pi^2} \, \mathcal{L}^2 \left(
ho_{ au},
ho_{ au}^{\mathsf{eq}}
ight)$$

- generalized Clausius inequality (beyond linear response)
- valid for arbitrary nonequilibrium quantum processes
- → for classical, near equilibrium processes:

$$S\left(
ho^{ ext{eq}} + d
ho||
ho^{ ext{eq}}
ight) \simeq 2\mathcal{L}^2\left(
ho^{ ext{eq}} + d
ho,
ho^{ ext{eq}}
ight) \simeq d\ell^2\left(
ho^{ ext{eq}} + d
ho,
ho^{ ext{eq}}
ight)/2$$

Time-dependent harmonic oscillator

Illustration:

Time-dependent frequency:
$$H = \frac{p^2}{2m} + \frac{m}{2} \omega^2(t) x^2$$

Initially thermalized, but otherwise isolated

describes modulated ion traps

Generalized Clausius inequality

Harmonic oscillator:

Red: entropy production

Blue: squared Bures length

 $\omega_t^2 = \omega_0^2 + \left(\omega_1^2 - \omega_0^2\right) \, t/\tau$

Outline

- Nonequilibrium entropy production
 - Microscopic expression
 - Geometric distance in Hilbert space
 - Generalized Clausius inequality
- Nonequilibrium entropy production rate
 - Quantum speed limit
 - Maximal entropy production rate
 - Bremermann-Bekenstein bound

Entropy production rate

Definition:

$$\sigma = \frac{\Delta S_{\mathsf{irr}}}{\tau}$$

- fundamental quantity of nonequilibrium physics
- gives information about the speed of a process

In quantum nonequilibrium physics, there is a maximum entropy production rate

Quantum speed limit

Observation:

Hamiltonian (energy) is the generator of time evolution

energy sets limits on speed of quantum evolution

Uncertainty principle: $\tau \Delta E \geq \hbar$

minimal time to reach orthogonal state given by initial energy spread

Minimal time for nonorthogonal states: Giovannetti, Lloyd, Maccone PRA (2003)

$$au_{\mathsf{min}} \simeq \mathsf{max} \left\{ rac{2\hbar \, \mathcal{L}^2 \left(
ho_0,
ho_ au
ight)}{\pi \, \mathcal{E}_0}, \, rac{\hbar \, \mathcal{L} \left(
ho_0,
ho_ au
ight)}{\Delta \mathcal{E}_0}
ight\}$$

Slow process (time-independent Hamiltonian)

Maximum entropy production rate:

$$\sigma_{\text{max}} = \frac{\Delta \textit{S}_{\text{irr}}}{\tau_{\text{min}}} \leq 2\beta \langle \textit{H}_{\tau} \rangle \min \left\{ \frac{\pi \textit{E}_{0}}{\hbar \, \mathcal{L}^{2} \left(\rho_{0}, \rho_{\tau} \right)}, \frac{\Delta \textit{E}_{0}}{\hbar \, \mathcal{L} \left(\rho_{0}, \rho_{\tau} \right)} \right\}$$

determined by initial energy and geometric distance to equilibrium

$$\Delta \mathcal{S}_{irr} = \beta |\langle \mathcal{H}_{ au} \rangle - \langle \mathcal{H}_{0} \rangle - \Delta \mathcal{F}| \leq 2 \beta \langle \mathcal{H}_{ au}
angle$$

Bremermann-Bekenstein bound

Limit of far from equilibrium processes:

 \longrightarrow initial and maximum state orthogonal $\mathcal{L}(\rho_0, \rho_\tau) \simeq \pi/2$

Limit of high temperatures:

$$igoplus E_0 \simeq 1/eta$$
 and $\Delta E_0 \simeq E_0/\sqrt{N} \ll E_0$

$$\sigma \leq \frac{4}{\hbar\pi} \langle H_{\tau} \rangle$$

maximum communication rate (capacity) through noiseless channel with signals of finite duration Bremermann 1967, Bekenstein 1981

Fast process (time-dependent Hamiltonian)

Quantum speed limit time:

$$\tau_{\text{min}} = \max \left\{ \frac{\hbar \, \mathcal{L} \left(\rho_{\tau}, \rho_{0} \right)}{E_{\tau}}, \frac{\hbar \, \mathcal{L} \left(\rho_{\tau}, \rho_{0} \right)}{\Delta E_{\tau}} \right\}$$

with
$$E_{ au}=(1/ au)\int_0^ au dt \langle H_t
angle$$
 and $\Delta E_{ au}=(1/ au)\int_0^ au dt (\langle H_t^2
angle - \langle H_t
angle^2)^{1/2}$

time averaged quantities (and not initial values)

Minimum energy change for a give entropy variation:

$$\frac{\left\langle \mathcal{H}_{\tau} \right\rangle}{\Delta \mathcal{S}_{\mathsf{irr}}} \geq \frac{2\beta}{\tau} \min \left\{ \frac{\mathcal{E}_{\tau}}{\hbar \, \mathcal{L} \left(\rho_{\tau}, \rho_{\mathbf{0}} \right)}, \frac{\Delta \mathcal{E}_{\tau}}{\hbar \, \mathcal{L} \left(\rho_{\tau}, \rho_{\mathbf{0}} \right)} \right\}$$

Generalized Bremermann-Bekenstein bound, valid for

- arbitrary distance between initial and final states
- → arbitrary initial temperature
- arbitrary nonequilibium processes

Quantum speed limit time

Zero-temperature harmonic oscillator:

Red: quantum speed limit time

Blue: actual process duration

 $\omega_t^2 = \omega_0^2 + \left(\omega_1^2 - \omega_0^2\right) \, t/\tau$

Summary

- generalization of the Clausius inequality for the entropy production to arbitrary nonequilibrium quantum processes
 - → lower bound in terms of the geometric distance to equilibrium (Bures length)
- generalization of the Bremermann-Bekenstein bound for the entropy production rate to arbitrary quantum processes
 - upper bound in terms of the geometric distance to equilibrium and averaged energy