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How is quantum information unusual?

* More general than classical information

 Classical information: always possible to combine two logical
statements to make a new logical statement

“Spain won the Euro-Cup AND Spain won the World Cup.”

“The z-component of an electron spin is +1/2 AND its x-component is -1/2.”
NONSENSE

x and z are incompatible types of information

Challenge: finding relations between incompatible types of information

Strong tradeoff in transmitting incompatible (i.e. quantum) information
- through a channel and its complementary channel
- to distinct parties of a multipartite state



Types and location of information

Type of information

Technically: Decomposition of the identity

I, = E Pa.j where {P,} is set of orthogonal projectors
J

we also consider more general
decompositions (POVMS)

Are the conditional density operators on b, associated
with the P, information, distinguishable?

pipy; = Tro(Pajpas) p; = Pr(F,;)

.... we aim to quantify this

Information of some type about a can be
located inside b (in that some property of b is
correlated to this property of a)




Quantum Channel Problem

Introduce reference system

Input Output
Hy a > > (1)
Ha
@)
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ViV =1, — C /
complementary channels ‘(I)> is maximally entangled
* Dword Q) = ([, @ V)|D)
* Cryptography

Pa = Trp(|2)(Q2]) =1,/d,

Or start from the tripartite pure state,
use map-state duality to construct isometry
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Three-party problem

Tripartite problem

problem Ha,bc _ Ha, R Hb R HC
de., dp, d.

Io=Y Puj, Iy=>» Qu. I.=)» Ry
J ke l

What can we say
about the probability Pr(Pajv Qbkv Rcl) — Tr(Pankaclpabc)

distribution?

Quantum channel

All-or-nothing theorems
e.g. all information about g in b, then none inc

Goal: generalize all-or-nothing results to case of partial information



Information measures

General form

Xk ({pjpi}) = Sk Z])],O] Zp Sk(p;)

YK (P, b) = Zp SA (Pb;)

Particular entropy functions

Sv(p) = —Tr(plog p),

, 1
SR@%=1_qb§H@%,

1
St(p) = g

So(p) =1 — Tr(p?).

0<g< 1,

Tr(p?) — 1], 0<g< oo



Basis invariance
of information difference

Definitions “

Entropy bias AS% — SK(Pb) — SK([)C)
Information bias A%(Pa) — XK(Pa_a b) — XK(Paa C)

Theorem
Consider orthonormal bases u and w for system a

Pabec = |Q><Q‘ (pure state)

A% (w) = i (w,b) — yx (w, c)
= Sk (pp) = Sk (pc) = ASK



Basis invariance
of information difference

HOME PERIOD GUEST a b
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Difference between
Bob’s and Charlie’s
PERID A LJEST scores is the same
every game!




Example

Xy (2,0) = X (z2,¢) = %, (x,0) = ), (x,¢) .
XV (Z?b) _ XV (xab) = XV (Z,C) — XV (X,C) a
C
omation about Aice Dube = | (9]
Xy, (z,b) =logd,
XV(X,I?) = O

Then it follows that: . . .
So classical information

Xv (Z,C) = lOg da always gets copied
X, (x,¢) =0



Shannon and von Neumann measures

Classical entropy: H(P) = H({pj}) = — ij log Pj
J
Classical mutual information: H(P:Q)= H(P)+ H(Q)— H(P,Q)

A relation between classical and quantum entropies:

xv({pj,pi}) =Sv(>_pipi) — > _piSv(p;) < H({p;})

J J

XV({_])ja /)j}) = H({pj}) iff all p, are orthogonal

9<Pa‘, b) = H(Pa) — XV (Pa, b) is a positive quantity

“missing information”




Uncertainty Principle

Robertson. Phys. Rev. (1929)

| ight-hand-side
AAAB = s|(V|[A, Bl[yr)| G e

depends on the state.

Canb ,
AX = SR = (IX ) o AsZ BX.

| P> = z-eigenstate.

Entropy: alternative measure of spread

Maassen, Uffink. PRL (1988) H(u) -+ H(w) Z — 109;(7’2>

(ujwr))

r = max
7.k

Mutually unbiased bases (MUBs)

r=1/~/d H(x)+ H(z) =log d



The main result
ArXiv: 1006.4859

Theorem
O ) - () (0
o {._aj} “missing information”
Pa — {Pak}

O(P,.b) + O(P,, c) = — log max Tr[P,; P,;]

7.k

Very general, Very strong
uncertainty relation

Presence of [P, information in b

EXCLUDES Pa information from c




Appreciating this result

Orthonormal bases

w={Ju;) gy |70 19(“ ¢) = —logy

w = {|we) (w|} r = max |(uj|wg)|
Mutually unbiased bases (MUBs) ,T\

O(u,b) + 0(w, c) = logd,
Both an entropic uncertainty relation AND information exclusion relation \
H(u) + H(w) = xv(u,b) + xv(w, c) 4+ logd,
Suppose 6(u,b)=0.... then H(w)=log d, AND yx,(w,c)=0

v (-u as b) =S vV (u a ‘b) Equivalent to “strong
; ; ’ complementary information
Sv (u |b) =Sy [M (pab)] — Sy (/)b) tradeoff” conjectured by Renes,

Boileau (PRL 2009), proven by
Uy, ( E P P ’
(Pab) ajPablaj Berta et al. (Nature Physics 2010)

J




Corollaries

Strengthened uncertainty relations for mixed states

Maassen, Uffink (1988) H(u)+ H(w) = —log(r )
Corollary of our result H(u) - H( ) log 7’ + SV (/)a,)

da = 2| For qubits, x, y, and z form a complete set of MUBs
Sanchez-Ruiz (1995) H(:I?) —+ H(y) -+ H(z) = 2 log 2

Corollary of our result H(z)+ H(y)+ H(z) = 2log2+ Sv(pa)




The dynamic uncertainty principle

Input Output

H ,
H. ° & : channel to b

”

He  F :channel to c

Output density operators
* Feed in w basis states Phi = g(|u:j> <u.?j |)
* Input probabilities {p; } — Ty (V i > <u‘-
« J J

v

Quantify distinquishability at the output

Xk ({p;},w, &) = SA”(ZP]'/)bj) - Z]-"jsl{(/)bj)




The dynamic uncertainty principle
Quantify distinquishability at the output

X ({pj},w, &) = Sk (Z PjiPbi) — ZPJSK(ij)

Corollary of our result

Arbitrary basesuandw, 1 = m.&ll;x |<u.j |u*k>|
.k

complementary quantum channels € and F

xv({1/da},u, &) + xv({1/da}, w, F) < 2log(d,.r)

“Thanks for the z+
state!” -Bob

“Which x state was
that??” -Chuck

\_/

Can’t build a machine that can send z-info to Bob and x-info to Charlie




No copying or No splitting or Monogamy

Monogamy of entanglement

Gradual approach to monogamy

f  f(w,b) < a  every orthonormal basis w of H,

then Yv (w,c) < « every orthonormal basis w of H,

Proof: Every basis has at least one MUB

But do we really have to know that Bob has every type w of
information about Alice to ensure Charlie has none?



Two-type presence

Alice & Bob

Charlie (no Alice)

Alice & Bob Alice & Bob
Date #1 Date #2

(provided dates are sufficiently different)

Quantum mutual information

I(d:b) = Sv(pa)+ Sv(pb)_ Sv(pab)

[(a:b)=2logd, -2[0(x,b)+ 0(z,b)]
[(a:c)=0(x,b)+ 6(z,b)

More general form, for
arbitrary bases, on ArXiv



One-type presence/absence

Alice & Bob Alice & Charlie Charlie (no Alice)
Date #1: Drinks Date #1: Drinks

Charlie completely decoupled from Alice!



One-type presence/absence

Quantitative version
I(a:c) = x,(z,c)+0(z,b)

Suppose the z type of information about a is perfectly

present in b: 0(z,b) =0

... ahd absent from c:

Xy (z,¢)=0
Then a and ¢ are completely uncorrelated:

Pac = Pa X Pe.

All-or-nothing theorem not previously known?



Results for Tripartite states

* All-or-nothing theorems j> * Partial information theorems
* Theorems for MUBs * More general types of information

e Basis invariance of information bias A (w)=AS,

e Uncertainty principle 0(x,b) + 0(z,c) =logd,

* Monogamy (No copying)  I(a:b)=2logd, —2[0(x,b) + O(z,b)]
* Two type presence I(a:c) < 0(x.,b)+ 0(z,b)

* One type presence / absence Ia:c) =y, (z,c)+ 0(z,b)

All of these results apply to complementary quantum channels!

One would have never stumbled upon our
results using a global measure of entanglement,
it is crucial to look at individual types of
information to study these phenomena

Patrick Coles
Carnegie Mellon
Postdoc in Quantum
Information & Foundations




