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Outline of the talk

One dimensional open quantum many body systems far from equilibrium:

Quasi-free (linear) systems:
XY spin 1/2 chain - fermionic case: transition to long range order due to
local boundary opening (TP, NJP 2008, TP and I. Pižorn PRL 2008)
Translationally invariant fermionic/bosonic chains /w bulk noise/opening
(/w J. Eisert, preprint)

Strongly interacting (non-linear) systems
NESS via tDMRG: long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and negative differential
conductance (/w K. Saito, preprint)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Exact ansatz for "diffusive-like" NESS in 1D Hubbard chain /w magnetic
boundary driving (TP, preprint/draft)
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Many-body Lindblad equation

The central equation we address is the Lindblad equation for the many-body
density operator ρ(t):

dρ

dt
= L̂ρ := −i[H, ρ] +

X

µ

“

2LµρL
†
µ − {L†

µLµ, ρ}
”

where H is a many-body (Hamiltonian) with k−local couplings,

H =

n−k+1
X

j=1

h[j,j+k−1]

and Lµ are Lindblad operators which act locally (i.e. within some
[j , j + k − 1]), either near the ends of the chain (e.g. representing the baths),
or in the bulk (e.g. representing dephasing noise).

.
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density operator ρ(t):

dρ

dt
= L̂ρ := −i[H, ρ] +

X

µ

“

2LµρL
†
µ − {L†

µLµ, ρ}
”

where H is a many-body (Hamiltonian) with k−local couplings,

H =

n−k+1
X

j=1

h[j,j+k−1]

and Lµ are Lindblad operators which act locally (i.e. within some
[j , j + k − 1]), either near the ends of the chain (e.g. representing the baths),
or in the bulk (e.g. representing dephasing noise).

In the context of 1D quantum transport, the Lindblad model has been carefully
derived and discussed in: Wichterich, Herich, Breuer and Gemmer, PRE 2007.
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Analytical solution for quasi-free fermionic systems

TP, New J. Phys. 10, 043026 (2008)

Consider a general solution of the Lindblad equation:

dρ

dt
= L̂ρ := −i[H, ρ] +

X

µ

“

2LµρL
†
µ − {L†

µLµ, ρ}
”

for a general quadratic system of n fermions, or n qubits (spins 1/2)

H =

2n
X

j,k=1

wjHjkwk = w · Hw Lµ =

2n
X

j=1

lµ,jwj = lµ · w

where wj , j = 1, 2, . . . , 2n, are abstract Hermitian Majorana operators

{wj , wk} = 2δj,k j , k = 1, 2, . . . , 2n
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lµ,jwj = lµ · w

where wj , j = 1, 2, . . . , 2n, are abstract Hermitian Majorana operators

{wj , wk} = 2δj,k j , k = 1, 2, . . . , 2n

Two physical realizations:

canonical fermions cm, w2m−1 = cm + c†
m, w2m = i(cm − c†

m), m = 1, . . . , n.

spins 1/2 with canonical Pauli operators ~σm, m = 1, . . . , n,

w2m−1 = σx
j

Y

m′<m

σz
m′ w2m = σy

m

Y

m′<m

σz
m′
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Fock space of operators

Let us associate a Hilbert space structure x → |x〉 to a linear 22n = 4n

dimensional space K of operators, with basis

Pα1,α2,...,α2n := w
α1
1 w

α2
2 · · ·wα2n

2n αj ∈ {0, 1}
orthogonal with respect to an inner product 〈x |y〉 = tr x†y
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2 · · ·wα2n

2n αj ∈ {0, 1}
orthogonal with respect to an inner product 〈x |y〉 = tr x†y

K is just a usual Fock space with an unusual physical interpretation.

Define a set of 2n adjoint annihilation linear maps ĉj over K

ĉj |Pα〉 = δαj ,1|wjPα〉

and derive the actions of their Hermitian adjoints - the creation linear maps ĉ†,
〈Pα′ |ĉ†

j |Pα〉 = 〈Pα|ĉj |Pα′〉∗ = δα′

j
,1〈Pα|wjPα′〉∗ = δαj ,0〈Pα′ |wjPα〉:

ĉ
†
j |Pα〉 = δαj ,0|wjPα〉
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Define a set of 2n adjoint annihilation linear maps ĉj over K

ĉj |Pα〉 = δαj ,1|wjPα〉

and derive the actions of their Hermitian adjoints - the creation linear maps ĉ†,
〈Pα′ |ĉ†

j |Pα〉 = 〈Pα|ĉj |Pα′〉∗ = δα′

j
,1〈Pα|wjPα′〉∗ = δαj ,0〈Pα′ |wjPα〉:

ĉ
†
j |Pα〉 = δαj ,0|wjPα〉

Clearly, ĉj , ĉ
†
j satisfy canonical anti-commutation relations

{ĉj , ĉk} = 0 {ĉj , ĉ
†
k} = δj,k j , k = 1, 2, . . . , 2n
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Normal form of a quadratic Liouvillean

The generator of quantum Liouville equation can be expressed as:

L̂ = â · Aâ − A01̂
in terms of 4n Hermitian Majorana fermionic maps
â1,j := (ĉj + ĉ

†
j )/

√
2, â2,j := i(ĉj − ĉ

†
j )/

√
2 satisfying CAR

{âν,j , âµ,k} = δν,µδj,k , ν, µ = 1, 2, j , k = 1, . . . , 2n.

where A is a 4n × 4n complex structure matrix

A = −2i12 ⊗ H − 2σy ⊗ Mr − 2(σx − iσz) ⊗ Mi

Mr :=
1
2
(M + M̄) = M

T
r ,

Mi :=
1
2i

(M − M̄) = −M
T
i

where M :=
P

µ lµ ⊗ l̄µ is a positive semidefinite M ≥ 0 bath matrix, and
A0 = 2 trM.
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Normal form: decomposition

The key element is a 2n × 2n real matrix X := −2iH + Mr with Jordan
canonical form

X = P∆P
−1 (1)

where P is a non-singular matrix, and ∆ =
L

j,k ∆ℓj,k
(βj) is a direct sum of

∆ℓ(β) :=

0

B

B

B

B

@

β 1

β
. . .
. . . 1

β

1

C

C

C

C

A

. (2)
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B

B

B

@

β 1

β
. . .
. . . 1

β

1

C

C

C

C

A

. (2)

Then, the Liouvillean structure matrix A allows the decomposition:

A = V
T

„

0 ∆

−∆T 0

«

V

where the eigenvector matrix

V =
1√
2

„

PT (12n − 4iZ) −iPT (12n − 4iZ)
P−1 iP−1

«

satisfies the canonical normalization VVT = σx ⊗ 12n, and the 2n × 2n
antisymmetric matrix Z is a solution to the Lyapunov equation

X
T
Z + ZX = Mi.
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Normal form: normal master modes

Let us name the first 2n rows of V as v j,k,l , and the last 2n rows as v ′
j,k,l ,

which are exactly the generalized eigenvectors pertaining to k-th Jordan block
of the eigenvalue βj , and −βj respectively, and l = 1, . . . , ℓj,k (l = 1 designates
the proper eigenvector) where ℓj,k is the size of the Jordan block (j , k).
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Let us name the first 2n rows of V as v j,k,l , and the last 2n rows as v ′
j,k,l ,

which are exactly the generalized eigenvectors pertaining to k-th Jordan block
of the eigenvalue βj , and −βj respectively, and l = 1, . . . , ℓj,k (l = 1 designates
the proper eigenvector) where ℓj,k is the size of the Jordan block (j , k).
Then we introduce the normal master mode (NMM) maps as

b̂j,k,l := v j,k,l · â, b̂
′
j,k,l := v

′
j,k,l · â,

satisfying the almost-CAR

{b̂j,k,l , b̂j′,k′,l′} = 0, {b̂j,k,l , b̂
′
j′,k′,l′} = δj,j′δk,k′δl,l′ , {b̂′

j,k,l , b̂
′
j′,k′,l′} = 0.

so the Liouvillean acquires almost-diagonal normal form

L̂ = −2
X

j,k

8

<

:

βj

ℓj,k
X

l=1

b̂
′
j,k,l b̂j,k,l +

ℓj,k−1
X

l=1

b̂
′
j,k,l+1b̂j,k,l

9

=

;

.
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X

l=1
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′
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9

=

;

.

There exist two vacua of such a Liouvillean:

The trivial left vacuum (identity operator), 〈1|b̂′
j,k,l = 0,

And the non-trivial right-vacuum (NESS), b̂j,k,l |NESS〉 = 0.
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Spectral theorem (J. Stat. Mech. (2010) P07020)

1 The complete spectrum of Liouvillean L̂ is given by the following integer
linear combinations

λm = −2
X

j,k

mj,kβj , mj,k ∈ {0, 1, . . . , ℓj,k}.

2 The 4n dimensional operator space, and its dual (the bra-space), admit the
following decomposition K =

L

m Km,K′ =
L

m K′
m in terms of

dimKm =
Q

j,k

“

ℓj,k
mj,k

”

dimensional invariant subspaces

L̂Km ⊆ Km,K′
mL̂ ⊆ K′

m spanned by

Km = L

8

<

:

Y

j,k

mj,k
Y

η=1

b̂
′
j,k,lη |NESS〉; 1 ≤ l1 < . . . < lmj,k

≤ ℓj,k

9

=

;

,

K′
m = L

8

<

:

〈1|
Y

j,k

mj,k
Y

η=1

b̂j,k,lη ; 1 ≤ l1 < . . . < lmj,k
≤ ℓj,k

9

=

;

.

3 However, the dimension of the eigenspace (the number of proper
eigenvectors corresponding to λm) is smaller than dimKm in the nontrivial
case when at least one ℓj,k > 1. The size of the largest Jordan block
corresponding to λm is 1 +

P

j,k(ℓj,k − mj,k)mj,k .
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linear combinations

λm = −2
X

j,k

mj,kβj , mj,k ∈ {0, 1, . . . , ℓj,k}.

2 The 4n dimensional operator space, and its dual (the bra-space), admit the
following decomposition K =

L

m Km,K′ =
L

m K′
m in terms of

dimKm =
Q

j,k

“

ℓj,k
mj,k

”

dimensional invariant subspaces

L̂Km ⊆ Km,K′
mL̂ ⊆ K′

m spanned by

Km = L

8

<

:

Y

j,k

mj,k
Y

η=1

b̂
′
j,k,lη |NESS〉; 1 ≤ l1 < . . . < lmj,k

≤ ℓj,k

9

=

;

,

K′
m = L

8

<

:

〈1|
Y

j,k

mj,k
Y

η=1

b̂j,k,lη ; 1 ≤ l1 < . . . < lmj,k
≤ ℓj,k

9

=

;

.

3 However, the dimension of the eigenspace (the number of proper
eigenvectors corresponding to λm) is smaller than dimKm in the nontrivial
case when at least one ℓj,k > 1. The size of the largest Jordan block
corresponding to λm is 1 +

P

j,k(ℓj,k − mj,k)mj,k .
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corresponding to λm is 1 +
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Uniqueness of NESS

|NESS〉 is a unique stationary state of open quantum dynamics if and only if all
eigenvalues βj of X lie away from the imaginary line Reβj > 0.

If this is not the case, then:
1 For each zero rapidity βj = 0,

|NESS; j , k〉 := b̂
′
j,k,1|NESS〉

we also have the stationarity L̂|NESS; j , k〉 = 0.
2 For each imaginary rapidity βj = ib, b ∈ R \ {0}, we have a corresponding

negative rapidity βj′ = −ib, and

|NESS; j , j ′, k , k ′〉 := b̂
′
j,k,1b̂

′
j′,k′,1|NESS〉,

which satisfies stationarity L̂|NESS; j , j ′, k , k ′〉 = 0.
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NESS expectation values of physical observables

Assume that all the rapidities are strictly away from the real line Reβj > 0.

Then the expectation value of any quadratic observable wjwk in a (unique)
NESS can be explicitly computed as

〈wjwk〉NESS = δj,k + 〈1|ĉj ĉk |NESS〉 = δj,k + 4iZj,k

where Z is the unique solution of the Lyapunov equation

X
T
Z + ZX = Mi.
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NESS expectation values of physical observables

Assume that all the rapidities are strictly away from the real line Reβj > 0.

Then the expectation value of any quadratic observable wjwk in a (unique)
NESS can be explicitly computed as

〈wjwk〉NESS = δj,k + 〈1|ĉj ĉk |NESS〉 = δj,k + 4iZj,k

where Z is the unique solution of the Lyapunov equation

X
T
Z + ZX = Mi.

Note an alternative representation of the observables

〈wjwk〉NESS
= δj,k − 1

π

Z ∞

−∞

dω G2j−1,2k−1(ω)

in terms of the resolvent (“non-equilibrium Green’s function”)

G(ω) = (A − iω1)−1.
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Solvable example: open XY quantum spin chains

Consider magnetic and heat transport of a Heisenberg XY spin 1/2 chain, with
arbitrary – either homogeneous or positionally dependent (e.g. disordered) –
nearest neighbour interaction

H =
n−1
X

m=1

`

J
x
mσx

mσx
m+1 + J

y
mσy

mσy
m+1

´

+
n

X

m=1

hmσz
m (3)

which is coupled to two thermal/magnetic baths at the ends of the chain,
generated by two pairs of canonical Lindblad operators

L1 =
1
2

q

ΓL
1 σ−

1 L3 =
1
2

q

ΓR
1 σ−

n

L2 =
1
2

q

ΓL
2 σ+

1 L4 =
1
2

q

ΓR
2 σ+

n (4)

where σ±
m = σx

m ± iσy
m and ΓL,R

1,2 are positive coupling constants related to bath
temperatures/magnetizations. e.g. if spins were non-interacting the bath
temperatures TL,R would be given with ΓL,R

2 /ΓL,R
1 = exp(−2h1,n/TL,R).
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Solvable example: open XY quantum spin chains

Consider magnetic and heat transport of a Heisenberg XY spin 1/2 chain, with
arbitrary – either homogeneous or positionally dependent (e.g. disordered) –
nearest neighbour interaction

H =
n−1
X

m=1

`

J
x
mσx

mσx
m+1 + J

y
mσy

mσy
m+1

´

+
n

X

m=1

hmσz
m (3)

which is coupled to two thermal/magnetic baths at the ends of the chain,
generated by two pairs of canonical Lindblad operators

L1 =
1
2

q

ΓL
1 σ−

1 L3 =
1
2

q

ΓR
1 σ−

n

L2 =
1
2

q

ΓL
2 σ+

1 L4 =
1
2

q

ΓR
2 σ+

n (4)

where σ±
m = σx

m ± iσy
m and ΓL,R

1,2 are positive coupling constants related to bath
temperatures/magnetizations. e.g. if spins were non-interacting the bath
temperatures TL,R would be given with ΓL,R

2 /ΓL,R
1 = exp(−2h1,n/TL,R).

Similar models were recently considered e.g. in Karevski and Platini PRL 2009,
and Clark, Prior, Hartmann, Jaksch and Plenio, PRL2009 & 0907.5582
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An example: XY spin 1/2 chain in a transverse field

A =

0

B

B

B

B

B

B

B

B

@

BL − h1R R1 0 · · · 0

−RT
1 −h2R R2

. . . 0

0 −RT
2 −h3R

...
...

. . .
. . . Rn−1

0 0 · · · −RT
n−1 BR − hnR

1

C

C

C

C

C

C

C

C

A

, A0 = ΓL
+ + ΓR

+ ,

where BL := BΓL
+,ΓL

−

, BR := BΓR
+ ,ΓR

−

, ΓL,R
± := ΓL,R

2 ± ΓL,R
1 , and

Rm :=

0

B

B

@

0 0 Jy
m 0

0 0 0 Jy
m

−Jx
m 0 0 0

0 −Jx
m 0 0

1

C

C

A

, R :=

0

B

B

@

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

1

C

C

A

,

BΓ+,Γ− :=

0

B

B

@

0 i
2
Γ+ − i

2
Γ−

1
2
Γ−

− i
2
Γ+ 0 1

2
Γ−

i
2
Γ−

i
2
Γ− − 1

2
Γ− 0 i

2
Γ+

− 1
2
Γ− − i

2
Γ− − i

2
Γ+ 0

1

C

C

A
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Quantum phase transition far from equilibrium in XY chain

TP & I. Pižorn, PRL 101, 105701 (2008)

J
x
m = (1 + γ)/2

J
y
m = (1 − γ)/2,

hm = h

C (j , k) = 〈σz
j σ

z
k〉 − 〈σz

j 〉〈σz
k〉

0 Γ 1
0

h

1

10-9

10-8

10-7

10-6

10-5

10-4

-Cres

00.0010.002
0

0.5

1.

1.5

Re Β

Im
Β

h=0.9 > hc

-Π -2 -1 0 1 2 Π

Φ

0 0.001 0.002

Re Β

h=0.3 < hc

hc = 1 − γ2
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Spectral gap of Liouvillean

The rate of relaxation to NESS is given by the spectral gap ∆ of L̂.

Tomaž Prosen Many-body dynamical semigroups



Spectral gap of Liouvillean

The rate of relaxation to NESS is given by the spectral gap ∆ of L̂.
We find explicit analytical result:

∆ = K(γ, h, ΓL,R
1,2 ) × n

−3.

When h = hc = 1 − γ2 we find K = 0 and then ∆ = O(n−5)
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Spectral gap of Liouvillean

The rate of relaxation to NESS is given by the spectral gap ∆ of L̂.
We find explicit analytical result:

∆ = K(γ, h, ΓL,R
1,2 ) × n

−3.

When h = hc = 1 − γ2 we find K = 0 and then ∆ = O(n−5)
Comparing to numerics:
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Spin-spin correlations in NESS (XY chain)

Saturation vs. exponential decay & power law critical scaling at the critical
point.
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Fluctuation of spin-spin correlation in NESS and "wave resonators"

Near QPT: Scaling variable z = (hc − h)n2
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Fluctuation of spin-spin correlation in NESS and "wave resonators"

Near QPT: Scaling variable z = (hc − h)n2

Scaling ansatz: C2j+α,2k+β = Ψα,β(x = j/n, y = k/n, z)
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Fluctuation of spin-spin correlation in NESS and "wave resonators"

Near QPT: Scaling variable z = (hc − h)n2

Scaling ansatz: C2j+α,2k+β = Ψα,β(x = j/n, y = k/n, z)
Certain combination Ψ(x , y) = (∂/∂x + ∂/∂y )(Ψ0,0(x , y) + Ψ1,1(x , y)) obeys
Helmoltz equation!!!

„

∂2

∂x2
+

∂2

∂y2
+ 4z

«

Ψ = ”octopole antenna sources”

Tomaž Prosen Many-body dynamical semigroups



Operator space entanglement entropy of NESS (XY chain)

Von Neumann entropy of a bipartition of NESS as an element of a Fock space

Drastically different behaviour than for entanglement entropy of ground states
of 1D critical/non-critical models!
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Translationally invariant quasi-free fermionic semi-groups

Now we discuss the situation where the Hamiltonian and the set of Lindblad
operators are translationally invariant (periodic), i.e.

H2j−1+ν,2j′−1+ν′ =: hν,ν′(j − j
′), j , j ′ = 1, . . . , n, ν, ν′ = 0, 1

l(λ,k),2j−1+ν =: ω(λ,ν),j−k , k = 1, . . . , n.
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Translationally invariant quasi-free fermionic semi-groups

Now we discuss the situation where the Hamiltonian and the set of Lindblad
operators are translationally invariant (periodic), i.e.

H2j−1+ν,2j′−1+ν′ =: hν,ν′(j − j
′), j , j ′ = 1, . . . , n, ν, ν′ = 0, 1

l(λ,k),2j−1+ν =: ω(λ,ν),j−k , k = 1, . . . , n.

The Hermitian bath matrix M =
P

µ lµ ⊗ lµ is, similarly to Hamiltonian, block
(2 × 2) circulant, M2j−1+ν,2j′−1+ν′ = mν,ν′(j − j ′). Denoting 2-vectors

ωλ,k =

„

ω(λ,0),k

ω(λ,1),k

«

we write its 2× 2 blocks compactly in terms of a convolution

m(j) =
X

λ

X

k

ωλ,j+k ⊗ ωλ,k .
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Translationally invariant quasi-free fermionic semi-groups

Now we discuss the situation where the Hamiltonian and the set of Lindblad
operators are translationally invariant (periodic), i.e.

H2j−1+ν,2j′−1+ν′ =: hν,ν′(j − j
′), j , j ′ = 1, . . . , n, ν, ν′ = 0, 1

l(λ,k),2j−1+ν =: ω(λ,ν),j−k , k = 1, . . . , n.

The Hermitian bath matrix M =
P

µ lµ ⊗ lµ is, similarly to Hamiltonian, block
(2 × 2) circulant, M2j−1+ν,2j′−1+ν′ = mν,ν′(j − j ′). Denoting 2-vectors

ωλ,k =

„

ω(λ,0),k

ω(λ,1),k

«

we write its 2× 2 blocks compactly in terms of a convolution

m(j) =
X

λ

X

k

ωλ,j+k ⊗ ωλ,k .

Let us now define the symbols, the Fourier transformations of 2 × 2 blocks and
a 2−vector

~h(ϕ) :=
X

j∈Z

h(j) exp(−iϕj), ϕ ∈ [−π, π)

ω̃λ(ϕ) :=
X

j∈Z

ωλ,j exp(−iϕj),

~m(ϕ) :=
X

j∈Z

m(j) exp(−iϕj) =
X

λ

ω̃λ(ϕ) ⊗ ω̃λ(ϕ).
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Now, for a translationally invariant system, the spectrum of X is given by the
two Bloch bands βτ (ϕ), determined by the two eigenvalues of the 2 × 2 matrix
valued symbol of X, ~x(ϕ) = −2i~h(ϕ) + 2~mr(ϕ). Since the correlation matrix is
circulant as well

tr ρNESSw2j−1+νwj′−1+ν′ = δj,j′δν,ν′ + 4izν,ν′ (j − j
′),

the solution can be encoded in the symbol of the correlator

~z(ϕ) =
X

j∈Z

z(j) exp(−iϕj).
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Now, for a translationally invariant system, the spectrum of X is given by the
two Bloch bands βτ (ϕ), determined by the two eigenvalues of the 2 × 2 matrix
valued symbol of X, ~x(ϕ) = −2i~h(ϕ) + 2~mr(ϕ). Since the correlation matrix is
circulant as well

tr ρNESSw2j−1+νwj′−1+ν′ = δj,j′δν,ν′ + 4izν,ν′ (j − j
′),

the solution can be encoded in the symbol of the correlator

~z(ϕ) =
X

j∈Z

z(j) exp(−iϕj).

The later satisfies a 2 × 2 matrix equation, obtained by block Fourier
transforming the Lyapunov equation

~x
T (−ϕ)~z(ϕ) +~z(ϕ)~x(ϕ) = ~mi(ϕ)

which is in fact a 4 × 4 linear system for elements of ~z(ϕ) (at fixed ϕ) which is
solved explicitly.

Correlations decay exponentially z(j) = O(exp(−|j |/ξ)) if~z(ϕ) is analytic around
the strip |Imϕ| < ξ. Note that that ξ is always finite, but may not be bounded!
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Example 1: Spatially incoherent noise

Let H be fermionized XY spin chain with anysotropy γ and magnetic field, and
take the most general translationally invariant local noise with one Lindblad
operator per site,

Lj = ǫ1(cj + c
†
j ) + ǫ2e

iθ
i(cj − c

†
j ) = ǫ1w2j−1 + ǫ2e

iθ
w2j

parametrized with a triple of real parameters ǫ1 > 0, ǫ2 > 0, θ ∈ [0, π].

Tomaž Prosen Many-body dynamical semigroups



Example 1: Spatially incoherent noise

Let H be fermionized XY spin chain with anysotropy γ and magnetic field, and
take the most general translationally invariant local noise with one Lindblad
operator per site,

Lj = ǫ1(cj + c
†
j ) + ǫ2e

iθ
i(cj − c

†
j ) = ǫ1w2j−1 + ǫ2e

iθ
w2j

parametrized with a triple of real parameters ǫ1 > 0, ǫ2 > 0, θ ∈ [0, π].
Then, the procedure above results in

~z(ϕ) =
1
d

„

a b

−b̄ c

«

where a, b, c, d are some trigonometric polynomials of ϕ, and in particular

d
∗ = minϕd(ϕ) = 2(ǫ2

1 + ǫ2
2)

2((|h| − 1)2 + ǫ2
1ǫ

2
2 sin2 θ)

meaning that the correlation length ξ can diverge, only if the non-noisy model
is critical |h| = 1 and if the noise satisfies the condition ǫ1 = ǫ2, θ ∈ {0, π}.
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Example 2: Spatially coherent noise

As a second example we consider a special case of “coherent noise”, namely
Lindblad operators which couple two neighboring sites. Again, we take XY
hamiltonian H and a single Linbdlad operator per site of the form

Lj = ǫ1(cj + c
†
j ) + ǫ2e

iθ(cj+1 + c
†
j+1) = ǫ1w2j−1 + ǫ2e

iθ
w2j+1
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Example 2: Spatially coherent noise

As a second example we consider a special case of “coherent noise”, namely
Lindblad operators which couple two neighboring sites. Again, we take XY
hamiltonian H and a single Linbdlad operator per site of the form

Lj = ǫ1(cj + c
†
j ) + ǫ2e

iθ(cj+1 + c
†
j+1) = ǫ1w2j−1 + ǫ2e

iθ
w2j+1

The symbol of the correlator has now a simple general form

~z(ϕ) =
iǫ1ǫ2 sin θ sin ϕ

ǫ2
1 + ǫ2

2 + 2ǫ1ǫ2 cos θ cos ϕ
12.
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Example 2: Spatially coherent noise

As a second example we consider a special case of “coherent noise”, namely
Lindblad operators which couple two neighboring sites. Again, we take XY
hamiltonian H and a single Linbdlad operator per site of the form

Lj = ǫ1(cj + c
†
j ) + ǫ2e

iθ(cj+1 + c
†
j+1) = ǫ1w2j−1 + ǫ2e

iθ
w2j+1

The symbol of the correlator has now a simple general form

~z(ϕ) =
iǫ1ǫ2 sin θ sin ϕ

ǫ2
1 + ǫ2

2 + 2ǫ1ǫ2 cos θ cos ϕ
12.

The correlation exponent ξ can be estimated from the location of the
singularity as

ξ = Im arccos
ǫ2
1 + ǫ2

2

2ǫ1ǫ2 cos θ
= arcosh

ǫ2
1 + ǫ2

2

2ǫ1ǫ2 cos θ
.

Correlation length diverges ξ → ∞ when ǫ1 = ǫ2 and θ → 0, π, and does not

depend on hamiltonian parameters at all!
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Translationally invariant quasi-free bosonic semi-groups

Very similar development can be done for quasi-free bosonic case...
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Interacting many-body semigroups: long range order in NESS

First, some numerics to get the flavor of what is going on:

tDMRG simulations of NESS for locally interacting boundary driven spin chains
(method as described in TP & M. Žnidarič, JSTAT 2009).
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Interacting many-body semigroups: long range order in NESS

First, some numerics to get the flavor of what is going on:

tDMRG simulations of NESS for locally interacting boundary driven spin chains
(method as described in TP & M. Žnidarič, JSTAT 2009).
Example, toy model: Locally boundary driven XXZ spin 1/2 chain:

H =

n−1
X

j=1

h[j,j+1], h[j,j+1] = (σx
j σx

j+1+σy

j σy

j+1+∆σz
j σ

z
j+1)+

1
2
B(−1)j (σz

j +σz
j+1)

and symmetric magnetic-Lindblad boundary driving:

L
L
1 =

r

1
2
(1 − µ)Γσ+

1 , L
R
1 =

r

1
2
(1 + µ)Γσ+

n ,

L
L
2 =

r

1
2
(1 + µ)Γσ−

1 , L
R
2 =

r

1
2
(1 − µ)Γσ−

n .
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(method as described in TP & M. Žnidarič, JSTAT 2009).
Example, toy model: Locally boundary driven XXZ spin 1/2 chain:

H =
n−1
X

j=1

h[j,j+1], h[j,j+1] = (σx
j σx

j+1+σy

j σy

j+1+∆σz
j σ

z
j+1)+

1
2
B(−1)j (σz

j +σz
j+1)

and symmetric magnetic-Lindblad boundary driving:

L
L
1 =

r

1
2
(1 − µ)Γσ+

1 , L
R
1 =

r

1
2
(1 + µ)Γσ+

n ,

L
L
2 =

r

1
2
(1 + µ)Γσ−

1 , L
R
2 =

r

1
2
(1 − µ)Γσ−

n .

H integrable if B = 0 and non-integrable if B 6= 0.
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If ∆ > 1 (arbitrary B) the model exhibits diffusive transport for small driving,
and negative differential conductance for large driving µ.
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Transition to long-range order in NESS (PRL 105, 060603 (2010))
C (r) = 〈σz

(n+r)/2σ
z

(n−r)/2〉 − 〈σz

(n+r)/2〉〈σ
z

(n−r)/2〉
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Critical anisotropy appears to be ∆c ≈ 0.91 (!?)
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We conclude by giving some exact results on NESS, as results of ’wild’ guessing...
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XXZ spin 1/2 chain for weak coupling (small Γ) and strong driving µ = 1

ρNESS = 1+ Γ(Z ′ − Z
′′) +

1
2
Γ2(Z ′2 − 2Z ′

Z
′′ + Z

′′2) + O(Γ3)

Z
′ =

X

s1,s2,...,sn∈{−,0,+}

(eL · As1As2 · · ·AsneR)
n

Y

j=1

σ
sj
j

Z
′′ =

X

s1,s2,...,sn∈{−,0,+}

(eL · A−s1A−s2 · · ·A−sneR)

n
Y

j=1

σ
sj
j

are Matrix Product Operators, w.r.t. auxiliary space basis {eL, eR, e1, e2, . . .}

A0 = eL ⊗ eL + eR ⊗ eR +
∞

X

k=1

Tk(∆)ek ⊗ ek ,

A+ = eL ⊗ e1 +
p

2∆(∆2 − 1)
∞

X

k=1

U
(0)

⌊(k−1)/2⌋
(2∆2−1) ek ⊗ ek+1,

A− = e1 ⊗ eR +
p

2∆(∆2 − 1)
∞

X

k=1

U
(1)

⌊k/2⌋(2∆
2−1) ek+1 ⊗ ek ,

T0(x) = 1, T1(x) = x , Tj (x) = 2xTj−1(x) − Tj−2(x),

U
(m)
0 (x) = 1, U

(m)
1 (x) = 2x + m, U

(m)
j (x) = 2xU(m)

j−1(x) − U
(m)
j−2(x).
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XX spin 1/2 chain with bulk dephasing: exact diffusive NESS

Take boundary driven XX spin chain (∆ = 0) and in addition put local bulk
dephasing with Lindblads Lj = γσz

j . [M. Žnidarič, JSTAT, L05002 (2010)]

ρNESS = 1+
n

X

j=1

ajσ
z + b

n−1
X

j=1

Jj + O(µ2)

where Jj = σx
j σy

j+1 − σy

j σx
j+1 is the spin current and

a1 = −b/Γ−µ, aj = −b(1/Γ+Γ+2γ(j−1))−µ, an = −b(1/Γ+2Γ+2(n−1)γ)−µ,

b = − µ

Γ + 1/Γ + (n − 1)γ
.
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XX spin 1/2 chain with bulk dephasing: exact diffusive NESS

Take boundary driven XX spin chain (∆ = 0) and in addition put local bulk
dephasing with Lindblads Lj = γσz

j . [M. Žnidarič, JSTAT, L05002 (2010)]

ρNESS = 1+
n

X

j=1

ajσ
z + b

n−1
X

j=1

Jj + O(µ2)

where Jj = σx
j σy

j+1 − σy

j σx
j+1 is the spin current and

a1 = −b/Γ−µ, aj = −b(1/Γ+Γ+2γ(j−1))−µ, an = −b(1/Γ+2Γ+2(n−1)γ)−µ,

b = − µ

Γ + 1/Γ + (n − 1)γ
.

The solution yields the spin Fick’s law (spin diffusion),
〈(σz

j − σz
k)〉 ∝ µ(j−k)

n
, 〈Jj〉 ∝ µ

n
.
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XX spin 1/2 chain with bulk dephasing: exact diffusive NESS

Take boundary driven XX spin chain (∆ = 0) and in addition put local bulk
dephasing with Lindblads Lj = γσz

j . [M. Žnidarič, JSTAT, L05002 (2010)]

ρNESS = 1+
n

X

j=1

ajσ
z + b

n−1
X

j=1

Jj + O(µ2)

where Jj = σx
j σy

j+1 − σy

j σx
j+1 is the spin current and

a1 = −b/Γ−µ, aj = −b(1/Γ+Γ+2γ(j−1))−µ, an = −b(1/Γ+2Γ+2(n−1)γ)−µ,

b = − µ

Γ + 1/Γ + (n − 1)γ
.

The solution yields the spin Fick’s law (spin diffusion),
〈(σz

j − σz
k)〉 ∝ µ(j−k)

n
, 〈Jj〉 ∝ µ

n
.

The higher orders, say O(µ2) have also been calculated analytically and predict
‘hydrodynamic long range order’ [observed in nonequilibrium classical
exclussion processes (see e.g. Derrida JSTAT 2007)]

Cj=xn,k=yn =
(2µ)2

n
x(1 − y)
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Conclusion, perspective

Long range order seems to be abundant in quasi-free and interacting one
dimensional quantum systems far from equilibrium

Perhaps a systematic theory of integrable (interacting) many-body
dynamical semigroups can be developed

Tomaž Prosen Many-body dynamical semigroups


