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The O(n) lattice model
Definition of the O(n) model

• We consider a lattice Γ, to each point r ∈ Γ we associate an O(n)

spin Sa(r) with a = 1 · · · n and normalized such that

tr Sa(r)Sb(r ′) = δabδrr ′ .

• The ‘geometric’ partition function reads

ZΓ(T ) = tr
∏
<rr ′>

(
1 +

1

T

n∑
a=1

Sa(r)Sa(r ′)

)
.
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The O(n) lattice model
Reformulation as a loop gas model

• The O(n) model can be reformulated as a sum over configurations

of self-avoiding, mutually avoiding loops of weight n,

ZΓ(T ) =
∑
loops

T−lengthn# loops.

• This formulation makes sense for arbitrary n. It exhibits a critical

behavior when | n |≤ 2.

• The phase diagram has two fixed points:

Tdense Tdilute

Dilute

Phase

Dense Phase Massive Phase

T
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The O(n) lattice model
Boundary conditions

Ordinary boundary conditions:

Free spins, bulk behavior.

Loops avoid the boundary.

JS boundary conditions:

Loops with weight k on the boundary.

n
1

n
1

Ord DJS

n
2

Dilute JS boundary conditions:

Split the spin components in two orthogonal sets
−→
S =

−→
S 1 +

−→
S 2. Leads

to two kinds of loops, with weights n1 and n2 (n = n1 + n2), and coupling

constants λ1 and λ2.
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Flat lattice results from DJS
DJS BC in the dilute phase

AS

AS

Ord

∆

1

2

2

1
λ

λ

λ

Sp

• Ord: Loops avoid the boundary.

• AS1: Loops of weight n1 critically

enhanced.

• AS2: Loops of weight n2 critically

enhanced.

• Sp: Both loops touch the boundary.

Perturbation : Boundary thermal operator B1,3

Boundary anisotropic operator B3,3
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Study of the DJS BC using the matrix model
In collaboration with K. Hosomichi and I. Kostov

1. Ord/JS bcc op. in the dense phase [JHEP 0901 (2009) 009]

• Conformal weight of Ord/JS operators.

• Relation JS / Alt b.c. in the RSOS matrix model.

2. JS/JS bcc op. in the dense phase [JHEP 0909 (2009) 020]

• Conformal weight of JS/JS bcc operators.

• Fusion rules for Ord/JS bcc operators.

JSJSk
1 2

k

k
12

3. Ord/DJS bcc op. in the dilute phase [arXiv:0910.1581]

• Phase diagram of DJS boundary conditions (∆, λ).

• Conformal weight of Ord/Sp and Ord/AS bcc operators.

• Conformal weight of operators generating the flows.

• Bulk thermal flow of conformal b.c. δr ,s → δs−1,r
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The O(n) model on a dynamical lattice
Introduction of the matrix model I

• The partition function on the dynamical lattice is obtained as a sum

over random lattices

Zdyn(κ,T ) =
∑

Γ

κ−A(Γ)ZΓ(T )

• It can be generated as an expansion of the O(n) matrix model

Z =

∫
dX

n∏
a=1

dYae
βtr

(
− 1

2
X 2+ 1

3
X 3−T

2

∑n
a=1 Y

2
a +

∑n
a=1 XY

2
a

)
.

where X and Ya are N × N Hermitian matrices.

• Propagators and vertices:

1

T
X

X

X

Ya

Y
a

Y
a

X 1

X
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The O(n) model on a dynamical lattice
Introduction of the matrix model II

• A loop configuration:

• Planar limit (disc corr): (β,N)→∞, β/N = κ2.
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The O(n) model on a dynamical lattice
The disc partition function

• The partition function on the disc is

Zdyn(κ, x ,T ) =
∑

Γ: disc

1

L(Γ)
κ−A(Γ)x−L(Γ)ZΓ(T ),

• It is generated by correlators of the matrix model

Ord : W (x) =
1

β

〈
tr

1

x − X

〉
JS : W̃ (y) =

1

β

〈
tr

1

y − Y 2
k

〉
, Y 2

k =
k∑

a=1

Y 2
a

DJS : H(y |λ1, λ2) =
1

β

〈
tr

1

y − X − λ1Y 2
n1
− λ2Y 2

n2

〉

y −1

n
1

n 2

y −1
y −1

1 2
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Construction of the correlators
Disc with two boundaries

We consider a disc with mixed Ord-DJS boundary conditions,

D
(i)
L (x , y) =

1

β

〈
tr
( 1

x − X
S(i)
L

1

y − X − λ1Y 2
n1
− λ2Y 2

n2

S(i)†
L

)〉
between both boundaries L open lines are inserted by the operators

S(1)
L =

∑
{a1,··· ,aL}⊂{1,··· ,n1}

Ya1 · · ·YaL

S(2)
L =

∑
{a1,··· ,aL}⊂{n1+1,··· ,n}

Ya1 · · ·YaL DJSOrd
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Derivation of the loop equations I

• The loop equations are obtained using the invariance of the matrix

measure.

• They describe the removing of loops.

• Correlators satisfy a recursion relation DL+1 = W ∗ DL

~
~ D

L
L+1

D

*

DJSOrd

W

DJSOrd Ord Ord

Ord Ord

• This ‘cutting’ of correlators involve the star product

(F ∗ G ) (x) =

∮
dx ′

2iπ

F (x ′)− F (x)

x − x ′
G (−x ′)

where the countour circles the branch cut of the Ord boundary

cosmological constant.
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Derivation of the loop equations II

All the physics is contained in the 0th order equation which couples D0

and D
(i)
1 :

1
D

(i)

W

Ord DJS

D01
D

(i)

1
D

(i)

D0

D0

=

Ord DJS

+

Ord DJS

(i)

Ord DJS

=
(i)

Ord DJS

+

Ord DJS

W

W

A(i)(x)B(i)(−x) = C(i)(x)

with

A(i)(x) = λiD0(x)− 1

B(i)(x) ∝ D
(i)
1 (x) + n.u.

C(i)(x) ∝W (x) + niW (−x) + poly

=⇒ This equation will be studied in the continuum limit.
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Take the continuum limit
Reminder

• Taking the continuum limit leads to:

Statistical model at the critical

point on a flat lattice.

Statistical model at the critical

point on a dynamical lattice.

−→

−→

CFT, operators Vr ,s , Br ,s ,

conformal dimension δr ,s

CFT⊗Liouville⊗ghost,

dressed operators e2αr,sφVr ,s ,

gravitational dimension ∆r ,s

• The KPZ formulas relate the central charges and the dimensions δr ,s

and ∆r ,s .
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Take the continuum limit
Continuum limit in matrix models I

• We adjust the parameters to their critical values where the mean

length and area of loops diverge.

ε2µ = κ− κ∗, ε1/gξ = x − x∗, · · ·

• The phase diagram is obtained from criticality conditions.

• Critical correlators correspond to boundary 2pt functions of

d
(i)
L (ξ, ζ) → (Ord |S (i)

L |AS(1)), ∆ > 0

d
(i)
L (ξ, ζ) → (Ord |S (i)

L |AS(2)), ∆ < 0

d
(i)
L (ξ, ζ) → (Ord |S (i)

L |Sp), ∆ = 0, λ = λ∗

• The dimension of the perturbations gives the operators that

generate the flows (e.g. εθ/g tB = λ− λc).
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Take the continuum limit
Continuum limit in matrix models II

Loop equations are shift equations on boundary parameters ξ(τ), µB(σ),

e.g. on the AS(1) branch (for any ξ, µB , t, tB):

d
(2)
0 (τ, σ)d

(1)
1 (τ ± iπ, σ) + w(τ) + n1w(τ ± iπ) = µB − tBξ

w(τ) = cosh (1 + θ)τ + t cosh (1− θ)τ , n = 2 cosπθ

• Perturbed FZZ equation for the Liouville boundary 2pt function.

• Depends on bulk t and boundary tB temperature.

⇒ The evolution of b.c. under thermal flows can be tracked down.
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Results
Results in the Liouville context

• Dense phase, Ord/JS bcc operators:

I. The solution of the loop equation is the Liouville boundary 2pt

function.

• Dense phase, JS/JS bcc operators :

I. The loop equations can be mapped on shift relations for the Liouville

boundary 3pt functions.

• Dilute phase, Ord/DJS bcc operators :

I. Loop equation for QFT coupled to 2D gravity (t, tB).

II. Solution on the critical curves AS (Liouville boundary 2pt functions).

III. Solution at µ = µB = 0, perturbed Liouville gravity

δS = t

∫
bulk

O1,3 + ξ

∫
Ord.

OB
1,1 + tB

∫
DJS

OB
1,3
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Perspectives and open problems
Work in progress...

1. Open problems:

• Calculation of the DJS disc partition function H(y).

⇒ Explicit expression for the AS curve.

⇒ Dimension of the DJS boundary.

2. Perspectives:

• Bulk anisotropy

S[X ,Ya] = tr
(
− 1

2
X 2 +

1

3
X 3 − T1

2
Y 2
n1
− T2

2
Y 2
n2

+ XY 2
n

)
• Other models with boundaries.

• SLE, Liouville gravity and Matrix Models...
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ADE models

Two different realisations of unitary minimal models:

• O(n) matrix model with n = 2 cosπ/h, h ∈ Z.

• ADE matrix model.

Both models can be mapped on a loop gas =⇒ Similar loop equations

Interest ???

• Unitary minimal models (h, h ± 1)

• Different interpretation (ex: ni parametrisation)

• Operators mixing,...

!!! Concentrate here on RSOS !!!
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RSOS model

• The RSOS model assign an integer height a ∈ [1, h− 1] at each sites

of the lattice, requiring |a− b| = 1 for two adjacent heights a and b.

• The lattice is made of two types of triangles,

a a

a

a a

b

1
−1

bT   (S  /S )a
1/6

Sa =

√
2

h
sin
(πa
h

)

• Heights can be seen as taking values on a Dynkin graph of the A

series,

C C CCCCC

1 2 3 4 5 6 7 8

12 23 45 56 67 7843

X X X X X X X X
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Formulation as a loop gas

• The model can be reformulated as a loop gas, loops being domain

wall surrounding domains of constant height, n = 2 coshπ/h.

• It exhibits the same phase behavior than the O(n) model with a

dense and a dilute phase,

Tdense Tdilute

Dilute

Phase

Dense Phase Massive Phase

T

• The continuum limit is described by a unitary minimal model,

respectively (h, h − 1) and (h + 1, h) in the dense and dilute phase.
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Boundary conditions

In the dense phase: [JEB, K. Hosomichi ’08]

• Fixa: Fixed heights on the boundary.

• Alt<ab>: Alternating heights between two adjacent values

ababab · · · [M. Bauer, H. Saleur ’89]

In the dilute phase:

• Alta: Give a fugacity λb to nodes b ∼ a on the second row,
b
2

a a a a a

a
1b b

2

λ 2
λ 1
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Results

Strategy

• Define the disc correlators of the ADE matrix model.

• Derive the loop equations.

• Map them to the O(n) model loop equations.

• Re-interpret the results in this context.

Fix a

ma

AS

AS <aa+1>

Spa

a

<aa−1>

λ

a−1

a+1

λ

λ

Critical Alta boundary

Dilute Bound. State Dense Bound. State

Fixa |a, 1 > Fixa |1, a >
AS<aa+1> |1, a + 1 > Alt<aa+1> |a, 1 >

AS<aa−1> |1, a > Alt<aa−1> |a− 1, 1 >

Spa |a, 2 > Fixa |1, a >
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Ising Tricritical
[P. Dorey, C. Rim, R. Tateo ’09]

Boundary flows for the (4, 5) minimal model,

Sp 0

Fix0 AS 0+AS 0− Sp+Sp −Fix−

Fix−Fix+

Fix+

/

==

δ1,3

δ3,3
δ1,2
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One matrix model
(advertisement)

• 1MM realises (2, 2h + 1) minimal models coupled to gravity.

• Recently, the boundary operators have been identified.

[G. Ishiki, C. Rim ’10]

To do:

• Perturbation ? Boundary phase diagram ? Flows ?

• 2MM which gives (p, q) minimal models.
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Thank you !
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FZZ equation for the boundary 2pt function

In the dilute phase, the resolvant is given by (b−2 = g = 1 + θ)

ω(τ) = cosh (b−2τ), ξ = cosh τ, µB = cosh (b−2σ)

The boundary 2pt function obeys

D(P + 1/b|τ, σ) =
1

2

[
cosh (b−2τ ∓ iπP) + cosh (b−2σ)

]
D(P|τ ± iπ, σ)

with

D(P|τ, σ) = exp

(
−
∫ ∞
−∞

dt

t

[
sinh (πPtb2) cos (τ t) cos (σt)

sinh (πt) sinh (πtb2)
− P

πt

])



Dimension of boundary operators

Central charges (n = 2 cosπθ with 0 ≤ θ ≤ 1),

cdense = 1− 6
θ2

1− θ
, cdilute = 1− 6

θ2

1 + θ

Parameterisation (g = 1 + θ),

n1 =
sinπ(r − 1)θ

sinπrθ
, n2 =

sinπ(r + 1)θ

sinπrθ
, δr ,s =

(rg − s)2 − (g − 1)2

4g

We found

(Ord |S (2)

L |AS(2)) → δr+L,r , (Ord |S (1)

L |AS(2)) → δr−L,r ,

(Ord |S (2)

L |AS(1)) → δr−L,r+1, (Ord |S (1)

L |AS(1)) → δr+L,r+1 .



Solution with µ = µB = 0

Parameterisation (ω(x) = x1+θ + tx1−θ):

x = eτ , t = −e2γθ, tB = −2ω0e
γθ sinh γ̃θ, ω0 =

sin (πθ)

sin (πrθ)
.

Solution on AS1:

d
(2)
0 (τ) = 1

ω0
e−

τ
2
−γ(rθ− 1

2
)+ γ̃

2 V−r (τ − γ + γ̃)V 1
θ
−r (τ − γ − γ̃),

d
(2)
1 (τ) = −e

τ
2

+γ( 1
2

+θ−rθ)+ γ̃
2 V1−r (τ − γ + γ̃)V1+ 1

θ
−r (τ − γ − γ̃),

with the function

logVr (τ) = − 1

2

∫ ∞
−∞

dω

ω

[
e−iωτ sinh(πrω)

sinh(πω) sinh πω
θ

− rθ

πω

]



SLEκ,ρ

dgt(z)

dt
=

2

gt(z)−Wt

dWt =
√
κdBt − ρ

dt

Xt

dXt =
2dt

Xt
− dWt

with the conformal map gt(z) ∼ z + 2t/z + O(z−2) at infinity, Wt is the

image of the tip of the growing curve (Brownian motion), Bt is the

standard Brownian motion, κ the diffusion constant. Xt = gt(X0) are

auxiliary variables.


	Appendix



