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The AdS/CFT correspondence is remarkable

@ It is a working quantum theory of gravity which is completely
well-defined

@ It is a tool for studying strongly-coupled gauge theories



The AdS/CFT correspondence is remarkable

@ It is a working quantum theory of gravity which is completely
well-defined

@ It is a tool for studying strongly-coupled gauge theories

It has a hidden integrability which emerges on the string world sheet!

@ Existence of an infinite tower of hidden conserved charges on both
sides of the correspondence.

@ Implies exact spectrum of string states/anomalous dimensions.

@ Enables the quantitative investigation of the conjectured duality.







The symmetric space sine-Gordon theories

The SSSG theories

Symmetric space sine-Gordon (SSSG) theories

@ Two-dimensional Integrable relativistic theories.
o Obtained from sigma models via the Pohlmeyer reduction.
@ Relevant for the investigation of the AdS/CFT correspondence.

@ Admit soliton solutions — | Giant Magnons‘




The symmetric space sine-Gordon theories

The SSSG theories

Symmetric space sine-Gordon (SSSG) theories

Two-dimensional Integrable relativistic theories.

Obtained from sigma models via the Pohlmeyer reduction.

Relevant for the investigation of the AdS/CFT correspondence.

@ Admit soliton solutions — | Giant Magnons‘

Quantum S-matrices were never found in the old days except for
sine-Gordon and complex sine-Gordon cases!



The symmetric space sine-Gordon theories

Pohlmeyer reduction of symmetric space sigma models

@ Take a symmetric space F/G

e Involution: 02 =1, o(G)=G
o Lie algebra decomposition:  f=g®p, [g,p]Cp, [p,p]Cyg

@ Define a sigma model with target F/G:

£ =T (9, F0"F )

with F € F and o(F) = F~L.
© Impose the constraints (breaking conformal and relativistic invariance)

Tip =T _=p?| = |0:FF ' =faAL]

where o(A) = —A € p, and fL € F.



The symmetric space sine-Gordon theories
The Reduced Model

@ The constrained model can be re-formulated in terms of

v=Fflf eG

@ There is a H; x Hgr gauge symmetry arising from fL — fLhy giving
v — h~*yhy, for hy € HC G suchthat hiAhZ! =A

@ The equations of the reduced model are zero-curvature conditions

[0r + 770y + 7 T ADy — 28 0 + AP — 21 I = 0

(z =spectral parameter) = Classical integrability.



The symmetric space sine-Gordon theories
The Reduced Model

@ The constrained model can be re-formulated in terms of

v=Fflf eG

@ There is a H; x Hgr gauge symmetry arising from fL — fLhy giving
v — h~*yhy, for hy € HC G suchthat hiAhZ! =A

@ The equations of the reduced model are zero-curvature conditions

[0r + 770y + 7 T ADy — 28 0 + AP — 21 I = 0

(z =spectral parameter) = Classical integrability.

‘* These are relativistic equations!




The symmetric space sine-Gordon theories

The Reduced Model

e Fixing the gauge A(_R) = AELL) = 0, the SSSG equations become the
non-abelian affine Toda equations

Pohlmeyer, Eichenherr, Forger, D’Auria, Regge, ...’79-81

0_(v1047) = [Ny T

Leznov-Saveliev’83
Ferreira-Miramontes-SanchezGuillen’97
Nirov-Razumov’07

associated to the affine Lie algebra

’f‘:@(z2n®g_’_z2n+l®p)
neZ

@ vye Gand A ep.



The symmetric space sine-Gordon theories

Lagrangian formalism

Bakas-Park-Shin’95
A . . . Grigoriev-Tseytlin’08
% Choosing partial gauge fixing conditions ILH08
Hy x Hr — Hyec
the SSSG equations can be derived from a relativistic Lagrangian

& = Lowzw(G/H) + Tr(M\y)

with gauge group v — h™1~h, for h € H.

Some features

@ Degenerate vacuum g € Cartan Torus of H.

@ Solitons carry a topological charge v(x = 4+00)y~!(x = —o0) in the
Cartan Torus of H.

@ No conventional perturbative expansion around the vacuum.

@ Coupling constant is the level of WZW.

o Natural interpretation as perturbed CFT.




The symmetric space sine-Gordon theories

Examples

Pohlmeyer’76

F/G = SO(3)/SO(2) ~ S, H=10

— sine-Gordon theory

Z = %(%gb@”gb + cos ¢

F/G = SO(4)/SO(3) ~ S3, H = SO(2)

— complex sine-Gordon theory

& = 0,00"$ + cot® $9,00"0 + cos 2

v

Zamolodchikov and Zamolodchikov’79
Dorey-TJH’95

@ Both these theories are exactly solved in terms of solitons:
Exact spectrum and S-matrix.



SSSG theories and the AdS/CFT correspondence

Strings on curved space-times are described by worldsheet

sigma models

On the string world sheet gauge fixing leads naturally to the Pohlmeyer
constraints

Tseytlin’03

. . XOZ t
Virasoro constraints on Ry x 9 I B LN Tﬂ = 2

Examples of compact symmetric spaces

S$"=50(n+1)/S0(n) — [R; x §" C AdSs x S°

CP" = SU(n+1)/U(n) — |R; x CP™ C AdS4 x CP3




SSSG theories and the AdS/CFT correspondence

Examples of non-compact symmetric spaces
— different types of Pohlmeyer reductions

AdS, = SO(2,n —1)/SO(1,n — 1)

(i) u?>>0 — AdS, x R;

(i) u?> <0 — |AdS, x S' c AdS, x S® or AdS, x CP?

Alday-Maldacena’09

(i) p>=0 — — gluon scattering amplitudes

(ii) and (iii) relevant for the AdS/CFT correspondence!




SSSG theories and the AdS/CFT correspondence

Giant magnons

Minahan-Zarembo’ 04

@ On the CFT side, integrability is manifested by the appearance of an
integrable spin chain whose Hamiltonian provide the spectrum of
exact scaling/conformal dimensions A.

Hofman-Maldacena’06

@ In the limit where A and a conserved charge J become infinite, with
the difference A — J and the 't Hooft coupling held fixed, the string
dual of the fundamental magnon excitations are lump-like solutions
known as Giant magnons, which propagate in an infinite long string.

e Giant magnons describe the classical motion of (bosonic) strings on
curved space-times of the form R; x 9, with 9t = F/G a symmetric

space — |SSSG theories



SSSG theories and the AdS/CFT correspondence

Staudacher’04

Beisert’05
Arutyunov-Frolov-Zamaklar’06
Ahn-Nepomechie’08

e For AdSs x S° and AdS,s x CP3, the spectrum and S-matrix of giant
magnons is already known.

@ The S-matrix is complicated by the fact that the worldsheet theory is
non-relativistic.

@ The non-relativistic giant magnons map to a relativistic soliton
“avatar” in the SSSG theory via the (complicated) Pohlmeyer map.



SSSG theories and the AdS/CFT correspondence

Staudacher’04

Beisert’05
Arutyunov-Frolov-Zamaklar’06
Ahn-Nepomechie’08

e For AdSs x S° and AdS,s x CP3, the spectrum and S-matrix of giant
magnons is already known.

@ The S-matrix is complicated by the fact that the worldsheet theory is
non-relativistic.

@ The non-relativistic giant magnons map to a relativistic soliton
“avatar” in the SSSG theory via the (complicated) Pohlmeyer map.

% The equivalence between the gauged fixed worldsheet theory and the
SSSG theory is at the classical level but they have different symplectic
structures.

% Quantum equivalence may hold in the full (conformal invariant)
theory with all the fermions included!



SSSG theories and the AdS/CFT correspondence

Generalized Pohlmeyer reduction for AdSs x S°

Grigoriev-Tseytlin’08
Mikhailov-SchaferNakemi’08

Virasoro constraints

5
T, =+

Ty = 750 =0
+t = + TH e TAdS: _ 2

— Lorentz invariant Lagrangian action for AdSs x S° superstring theory

L = Lowzw [SU( )(3523/( 5 X su(zs)px(?u(z) + potential + fermions




SSSG theories and the AdS/CFT correspondence

Generalized Pohlmeyer reduction for AdSs x S°

Grigoriev-Tseytlin’08
Mikhailov-SchaferNakemi’08

Virasoro constraints

5
T, =+

Ty = 750 =0
+t = + TH e TAdS: _ 2

— Lorentz invariant Lagrangian action for AdSs x S° superstring theory

L = Lowzw [SU( )(3523/( 5 X SU(2S)p>E‘.19)U(2) + potential + fermions

Outstanding problem:
Find the exact relativistic S-matrix of the SSSG theories




Giant magnons and their solitonic avatars

An approach to quantization of generic SSSG theories

@ Focus not so much on the Lagrangian and perturbation theory but
rather on the solitons themselves: perturbative fields re-appear.

@ The route to the spectrum and S-matrix is to use semi-classical
methods (novelty: solitons carry non-abelian internal d-o-f):

© Quantize the moduli space dynamics of the solitons yielding the
semi-classical spectrum.

@ Conjecture S-matrix by imposing all the axioms of S-matrix theory
and solve the bootstrap (account for all the bound state poles).

© Check using semi-classical limit

k—o00

lim S(E) ~ exp [i/E dE’At(E’)]




Giant magnons and their solitonic avatars

Giant magnons and solitons

@ Giant magnons and solitons are related via the complicated
Pohlmeyer “map” and we need a method that constructs both at the
same time without actually employing the map:



Giant magnons and their solitonic avatars

Giant magnons and solitons

@ Giant magnons and solitons are related via the complicated
Pohlmeyer “map” and we need a method that constructs both at the
same time without actually employing the map:

Reformulate equations of sigma model as auxiliary linear problem

(0= 225 oo

A = spectral parameter, equations-of-motion

04 FF! 8~Ff_q__0

P+_ I WL

with F = W(0).




Giant magnons and their solitonic avatars

Dressing transformation

Zakharov-Mikhailov’78
Harnad-SaintAubin-Shnider’84




Giant magnons and their solitonic avatars

Dressing transformation

Zakharov-Mikhailov’78
Harnad-SaintAubin-Shnider’84

Dressing data

@ ¢; determine rapidity and the mass.

@ The vectors @; are collective coordinates (position plus internal
d-o-f).




Giant magnons and their solitonic avatars

The key fact

TJH-Miramontes’09

If the “vacuum” satisfies the Pohlmeyer constraints

X X_
Wo(A) = exp (1+—+)\ + 1 A) A

then the dressed solution also satisfies Pohlmeyer constraints




Giant magnons and their solitonic avatars

The key fact

TJH-Miramontes’09

If the “vacuum” satisfies the Pohlmeyer constraints

X X_
\Uo()\):exp(l_:)\—i-l_)\)/\

then the dressed solution also satisfies Pohlmeyer constraints

The dressing determines both the giant magnon and the soliton

]:magnon — X(O)ezm

“Vsoliton = e_tAX(l)_1X(_1)etA

Hence the magnon and soliton are 2 views of the same underlying object.




The CP""* SSSG theories

CP"1 giant magnons and their solitonic avatars

The CP™1! symmetric space

CP™ = F/G = SU(n+2)/U(n+1) H = U(n)

0 -1|0 e“l0 0 e 0
/\ = 1 O 0 G = 0 * * H — 0 eia
0 01O 0 [ = 0 0

Involution o(M) = 6M6 with § = diag(—1,1,...,1).




The CP""* SSSG theories

Simplest case: CP? SSSG

e v € U(2) and we fix the H = U(1) gauge by taking the slice

/2 0 0
v = 0 cosfelrtiv/2  o=it/2ging
0 —e%/25inh coshe iV
o The Lagl’anglan iS Eichenherr-Honerkamp’81

L = 0,000 + 0,p0" ) + cot? 00, (v + )" (v + )
+ 212 cos 0 cos ¢

with moduli space of vacua 6 = ¢ =0, and 0 < ¢ < 47.




The CP""* SSSG theories

Simplest case: CP? SSSG

e v € U(2) and we fix the H = U(1) gauge by taking the slice

/2 0 0
v = 0 cosfelrtiv/2  o=it/2ging
0 —e%/25inh coshe iV
o The Lagl’anglan iS Eichenherr-Honerkamp’81

L = 0,000 + 0,p0" ) + cot? 00, (v + )" (v + )
+ 212 cos 0 cos ¢

with moduli space of vacua 6 = ¢ =0, and 0 < ¢ < 47.

| N\

General CP"™*! case

Integrable perturbation of the U(n+ 1)x/U(n)x gauged WZW model.




The CP""* SSSG theories

The elementary (non relativistic) CP™"! giant magnons

TJH-Miramontes’09
Abbott-Aniceto-Sax’09

o Constructed using the dressing method with two poles:
G=reP? & =1/&4, 0<p<2r, r>0
@ @y = 0w and use shifts in x and t to fix
w1 =(1,,92) |Q=1

where the complex n vector Q ~ e/®8, so internal moduli space is
QecCpt.
e Magnon has SU(n + 2) Noether charges:

AQ = /dt@of}—_l —vac = AN+ Jyhg

=gl = 2 lsngl ha= (A0




The CP""* SSSG theories

Non-relativistic dispersion relation

1 A 1 A , :
A — EJ = —\/; I, EQ = \/QJH’ A ="t Hooft coupling

1 1
= |a—>J= \/4QQ+2>\sin2p

2

Beisert’05
Chen-Dorey-Okamura’06

o Consequence of centrally extended SU(2|2) symmetry.

@ Bound state of @ elementary giant magnons of charge @ = 1.




The CP""* SSSG theories

The CP"*! (relativistic) soliton avatars

TJH-Miramontes’09

o |(6=reP? Q)| — tang = 25 sin 5

Mass: m = 2&] sin g

— 4 Topological charge: v~ 1(—0c0)y(+00) = exp (—2qhq)

Rapidity: tanhd = 13er2 cos &

@ Solitons carry an internal collective coordinate Q € CP"~1 hidden in
the algebra element hq.



Quantizing the solitons
How do we deal with €27

e Under H

‘eat — veaty!

so moduli space is a (co-)adjoint orbit of an element of the Lie
algebra b

QQf = diag(1,0,...,0) ~&; - H

e The orbit is SU(n)/U(n —1) = CP" L.
e But H = U(n) is gauged: is the orbit physical?

e Moduli space dynamics: allow U — U(t) and substitute into action
to get effective quantum mechanics on the orbit.



Quantizing the solitons

Because soliton is a kink there is a boundary term [ dt L coming from

the WZ term

L= @ Tr (U‘thQ>

Balachandran et al’01
@ Leads to quantization of the co-adjoint orbit (fuzzy geometry).

o Coordinates U = e*? and conjugate momenta give constraints

90 T 00’
e Using U~dU = —i)\,-E,-jdé?f, define for a € b
A, = —Wj(E_l)j,' Tr(a)\,-)



Quantizing the solitons

Because soliton is a kink there is a boundary term [ dt L coming from

the WZ term

L= @ Tr (U‘thQ>

Balachandran et al’01
Leads to quantization of the co-adjoint orbit (fuzzy geometry).
ixo'

Coordinates U = e and conjugate momenta give constraints

mj= o T (U aeih")

Using U~tdU = —i)\,-E,-jdé?f, define for a € b
A, = —Wj(E_l)j,' Tr(a)\,-)

@ Poisson brackets

{/\a, U} = —ilUa y {/\a,/\b} = /\[a,b]




Quantizing the solitons

e Hyp = U(n — 1) stability group of hg, so ho = {a} such that
[ha, a] = 0 then

h=ho®t bho=ho®ho

and the Lie algebra has the structure

[h07 bO] = 60 3 [hOvt] =, [t7 t] = hﬂ 2] 60 3

@ Constraints

2k
Ny~ 0 except Ap, = K9
T

@ So constraints for A, a € hg are first class and for a € v are second
class.



Quantizing the solitons

o Quantize: set of £2 functions on H are (Peter-Weyl Theorem)

(U) = (pilUlpr)

constraints: A,y(U) = (pi|Ua|p,)

% For first class a € ho = {H, Ez}, with @-&; =0,

o 2kq _,
Eslpr) =0, Hip2) = 7w1\pr>

% Second class a € v = {Ez}, with & - &1 # 0: split a = ELg then
impose

Esign(q)d"pr> =0

So |p,) is the highest (lowest) weight state with weight ad; for a € Z

There is a quantization




Quantizing the solitons

The Hilbert space consists of modules with highest (lowest) weight

+aw; fora=1,2,... and

N =2k (N = n+ 2k exactly).

@ So solitons have kink charges which are weights of the symmetric
representations of H = U(n — 1) (this is not a Noether symmetry)!



Quantizing the solitons

The Hilbert space consists of modules with highest (lowest) weight

+aw; fora=1,2,... and

N =2k (N = n+ 2k exactly).

@ So solitons have kink charges which are weights of the symmetric
representations of H = U(n — 1) (this is not a Noether symmetry)!

Note: a must be fixed as kK — oco. But what happens beyond the
semi-classical limit; how does the tower of states truncate?



The S matrix

Back in the 20th century...

Ahn-Bernard-LeClair’90
TJH’90
deVega-Fateev’91

@ S-matrices associated to trigonometric solution to Yang-Baxter
equations, involving the affine quantum group Uy(SU(n)()

iw

@ R-matrix for vector-vector scattering g = —e

R(¥) ~ sin(w + iA0)Psymm + sin(w — iAY)Panti-symm

old choice w/\ > 0 and bound-state pole at ¥ = iw/\ corresponds to
anti-symmetric rep

In the present context, take instead w/A < 0 and have
bound-state pole at ¥ = —iw/\ corresponds to symmetric rep




Spectrum naturally truncates if g =root of unity

o Kinks a=1,..., k in completely symmetric rank-a representations of
SU(n) and their conjugates, S-matrix has Ug(SU(n)()) symmetry

with
It
= —ex
9 P n—+ k

) ma
m, = Msin <n+2k>

and




Spectrum naturally truncates if g =root of unity

o Kinks a=1,..., k in completely symmetric rank-a representations of
SU(n) and their conjugates, S-matrix has Ug(SU(n)()) symmetry

with
It
= —ex
9 P n—+ k

) ma
m, = Msin (n+2k>

% Quantum group at g2("tk) = 1 ensures that tower of states truncates
g

and

v

For TBAers: kinks associated to blobs on A, 2,1 Dynkin
diagram except for a gap between k+1,...,n+ k: each blob is
a symm-a rep (or conjugate) of SU(n)



@ Involves the trigonometric solution of the Yang-Baxter equations

associated to U, (SU(n)(l)) with g = —e¥, w = kin

B sin(w + iAY)
511(19) = Y11(19) (Psymm A Sin(w_l.Aﬂ)]Pantl—symm)

Y11(?) infinite product of gamma functions.

o Crossing: Spp(im — V) = Sp,(9) = A= F53E

o Fusing rules:

_Jla+b] a+b<k o Tpr-1] — [a — b] a>b
[a]o[b]_{o atb>k’ Ael ]_{[(b—a)”l] a<b’

subset of A,.12k_1 fusing rules.




The S matrix

Semiclassical limit

@ The scattering amplitudes for the special (coherent) states
|12, a)) = (Q,-|e,->)®a matches the classical time-delays

lim S(E) ~ exp [i /E dE’ At(E’)]

In the semi-classical limit k — oo solitons with a/k fixed.

% The symmetric representations of SU(n) can be thought of as fuzzy
CP"1s. In the semi-classical limit, the fuzzy CP"! becomes a
closer approximation of CP"~! itself, which matches the fact that
classical solitons exhibit a CP"~1 moduli space of solutions.



The end...

Generalizations to other symmetric spaces

e S™1 =50(n+2)/SO(n+ 1) with H = SO(n). Co-adjoint orbit in
this case is a real Grassmannian SO(n)/SO(2) x SO(n — 2) and
states transform in the symmetric rank-a representations of SO(n),
a=12 ...,k

. mTa
my = M sin <n—2—'—2k>

e SU(2m + n)/S(U(m) x U(m + n)) in which case H = U(n).

0 [A|O *101]0 el 0 |0
A= —-A|l0]|O G = 0| * | * H= 0 |e*]|0
0 |0]O0 0% | * 0 0 | *

in (m+ m+ n)? block-form where A = diag(ay,...,am).

% This case is like the homogeneous SG theories with masses that
“float”. TBA system should involve 3 algebras: A,_1, Am—1 and
Ant2k-1




/QCﬁis><.55

Grigoriev-Tseytlin’08
@ In this case F = PSU(2,2]4) and the involution o is replaced by a Z4
automorphism with G = Sp(2,2) x Sp(4).
@ However the SSSG can be formulated in terms of a Lax pair in the
graded affine algebra

3 3

=Py, =P
nez

Jj=0 Jj=0

where fo 2 are bosonic and f; 3 are fermionic, fo = sp(2,2) & sp(4).
e Fields v € G and fermions with gauge group H = SU(2)*.
@ It seems that the dressing transformation extends in a nice way.
@ The solitons now have bosonic and Grassmann collective coordinates.
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Grigoriev-Tseytlin’08
@ In this case F = PSU(2,2]4) and the involution o is replaced by a Z4
automorphism with G = Sp(2,2) x Sp(4).
@ However the SSSG can be formulated in terms of a Lax pair in the
graded affine algebra

3 3

=Py, =P
nez

Jj=0 Jj=0

where fo 2 are bosonic and f; 3 are fermionic, fo = sp(2,2) & sp(4).
e Fields v € G and fermions with gauge group H = SU(2)*.
@ It seems that the dressing transformation extends in a nice way.
@ The solitons now have bosonic and Grassmann collective coordinates.

Quantization? I




The end...

Are magnons and solitons quantum equivalent?

@ It is not obvious: magnons come in an infinite tower of symmetric
representations whereas the soliton tower is truncated.

@ Even if the quantum magnons and solitons come in the same
representations how can a relativistic S-matrix be equivalent to a
non-relativistic one?



The end...

Are magnons and solitons quantum equivalent?

@ It is not obvious: magnons come in an infinite tower of symmetric
representations whereas the soliton tower is truncated.

@ Even if the quantum magnons and solitons come in the same
representations how can a relativistic S-matrix be equivalent to a
non-relativistic one?

Other open problems
@ Solve all the other classes of symmetric space sine-Gordon theories.

@ Further checks of the conjectured S-matrix: TBA, etc.




The end...

Muchas Gracias




