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The AdS/CFT correspondence is remarkable

It is a working quantum theory of gravity which is completely
well-defined

It is a tool for studying strongly-coupled gauge theories

It has a hidden integrability which emerges on the string world sheet!

Existence of an infinite tower of hidden conserved charges on both
sides of the correspondence.

Implies exact spectrum of string states/anomalous dimensions.

Enables the quantitative investigation of the conjectured duality.
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The symmetric space sine-Gordon theories

The SSSG theories

Symmetric space sine-Gordon (SSSG) theories

Two-dimensional Integrable relativistic theories.

Obtained from sigma models via the Pohlmeyer reduction.

Relevant for the investigation of the AdS/CFT correspondence.

Admit soliton solutions −→ Giant Magnons

Quantum S-matrices were never found in the old days except for
sine-Gordon and complex sine-Gordon cases!



The symmetric space sine-Gordon theories

The SSSG theories

Symmetric space sine-Gordon (SSSG) theories

Two-dimensional Integrable relativistic theories.

Obtained from sigma models via the Pohlmeyer reduction.

Relevant for the investigation of the AdS/CFT correspondence.

Admit soliton solutions −→ Giant Magnons

Quantum S-matrices were never found in the old days except for
sine-Gordon and complex sine-Gordon cases!



The symmetric space sine-Gordon theories

Pohlmeyer reduction of symmetric space sigma models

1 Take a symmetric space F/G

Involution: σ2 = 1, σ(G ) = G
Lie algebra decomposition: f = g⊕ p, [g, p] ⊂ p, [p, p] ⊂ g

2 Define a sigma model with target F/G :

L = Tr
(
∂µF∂µF−1

)
with F ∈ F and σ(F) = F−1.

3 Impose the constraints (breaking conformal and relativistic invariance)

T++ = T−− = µ2 ⇒ ∂±FF−1 = f±Λf −1
±

where σ(Λ) = −Λ ∈ p, and f± ∈ F .



The symmetric space sine-Gordon theories

The Reduced Model

The constrained model can be re-formulated in terms of

γ = f −1
− f+ ∈ G

There is a HL × HR gauge symmetry arising from f± → f±h± giving

γ → h−1
− γh+, for h± ∈ H ⊂ G such that h±Λh−1

± = Λ

The equations of the reduced model are zero-curvature conditions[
∂+ + γ−1∂+γ + γ−1A

(L)
+ γ − zΛ , ∂− + A

(R)
− − z−1γ−1Λγ

]
= 0

(z =spectral parameter) ⇒ Classical integrability.

F These are relativistic equations!
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The symmetric space sine-Gordon theories

The Reduced Model

Fixing the gauge A
(R)
− = A

(L)
+ = 0, the SSSG equations become the

non-abelian affine Toda equations
Pohlmeyer, Eichenherr, Forger, D’Auria, Regge, . . .’79-81

∂−(γ−1∂+γ) = [Λ, γ−1Λγ]

Leznov-Saveliev’83

Ferreira-Miramontes-SanchezGuillen’97

Nirov-Razumov’07

· · · · · · · · · · · · · · · · · ·

associated to the affine Lie algebra

f̂ =
⊕
n∈Z

(
z2n ⊗ g + z2n+1 ⊗ p

)
γ ∈ G and Λ ∈ p.



The symmetric space sine-Gordon theories

Lagrangian formalism

Bakas-Park-Shin’95

Grigoriev-Tseytlin’08

JLM’08F Choosing partial gauge fixing conditions

HL × HR → Hvec

the SSSG equations can be derived from a relativistic Lagrangian

L = LgWZW(G/H) + Tr(Λγ−1Λγ)

with gauge group γ → h−1γh, for h ∈ H.

Some features

Degenerate vacuum γ0 ∈ Cartan Torus of H.

Solitons carry a topological charge γ(x = +∞)γ−1(x = −∞) in the
Cartan Torus of H.

No conventional perturbative expansion around the vacuum.

Coupling constant is the level of WZW.

Natural interpretation as perturbed CFT.



The symmetric space sine-Gordon theories

Examples

Pohlmeyer’76

F/G = SO(3)/SO(2) ' S2, H = ∅
−→ sine-Gordon theory

L = 1
2∂µφ∂

µφ+ cosφ

F/G = SO(4)/SO(3) ' S3, H = SO(2)

−→ complex sine-Gordon theory

L = ∂µφ∂
µφ+ cot2 φ∂µθ∂

µθ + cos 2φ

Zamolodchikov and Zamolodchikov’79

Dorey-TJH’95

Both these theories are exactly solved in terms of solitons:
Exact spectrum and S-matrix.



SSSG theories and the AdS/CFT correspondence

Strings on curved space-times are described by worldsheet
sigma models

On the string world sheet gauge fixing leads naturally to the Pohlmeyer
constraints

Tseytlin’03

Virasoro constraints on Rt ×M
X 0=µt−−−−−−−−−→ TM

±± = µ2

Examples of compact symmetric spaces

Sn = SO(n + 1)/SO(n) −→ Rt × Sn ⊂ AdS5 × S5

CPn = SU(n + 1)/U(n) −→ Rt × CPn ⊂ AdS4 × CP3



SSSG theories and the AdS/CFT correspondence

Examples of non-compact symmetric spaces
−→ different types of Pohlmeyer reductions

AdSn = SO(2, n − 1)/SO(1, n − 1)

(i) µ2 > 0 → AdSn × Rt

(ii) µ2 < 0 → AdSn × S1 ⊂ AdSn × S5 or AdSn × CP3

Alday-Maldacena’09

(iii) µ2 = 0 → AdSn −→ gluon scattering amplitudes

(ii) and (iii) relevant for the AdS/CFT correspondence!



SSSG theories and the AdS/CFT correspondence

Giant magnons

Minahan-Zarembo’04

· · · · · · · · · · · · · · · · · ·

On the CFT side, integrability is manifested by the appearance of an
integrable spin chain whose Hamiltonian provide the spectrum of
exact scaling/conformal dimensions ∆.

Hofman-Maldacena’06

In the limit where ∆ and a conserved charge J become infinite, with
the difference ∆− J and the ’t Hooft coupling held fixed, the string
dual of the fundamental magnon excitations are lump-like solutions
known as Giant magnons, which propagate in an infinite long string.

Giant magnons describe the classical motion of (bosonic) strings on
curved space-times of the form Rt ×M, with M = F/G a symmetric

space −→ SSSG theories



SSSG theories and the AdS/CFT correspondence

Staudacher’04

Beisert’05

Arutyunov-Frolov-Zamaklar’06

Ahn-Nepomechie’08

· · · · · · · · · · · · · · · · · ·

For AdS5 × S5 and AdS4 × CP3, the spectrum and S-matrix of giant
magnons is already known.

The S-matrix is complicated by the fact that the worldsheet theory is
non-relativistic.

The non-relativistic giant magnons map to a relativistic soliton
“avatar” in the SSSG theory via the (complicated) Pohlmeyer map.

F The equivalence between the gauged fixed worldsheet theory and the
SSSG theory is at the classical level but they have different symplectic
structures.

F Quantum equivalence may hold in the full (conformal invariant)
theory with all the fermions included!
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SSSG theories and the AdS/CFT correspondence

Generalized Pohlmeyer reduction for AdS5 × S5

Grigoriev-Tseytlin’08

Mikhailov-SchaferNakemi’08

Virasoro constraints

T±± = TAdS5
±± + T S5

±± = 0  
T S5

±± = +µ2

TAdS5
±± = −µ2 ←

−→ Lorentz invariant Lagrangian action for AdS5 × S5 superstring theory

L = LgWZW

[
Sp(2,2)

SU(2)×SU(2) ×
Sp(4)

SU(2)×SU(2)

]
+ potential + fermions

Outstanding problem:

Find the exact relativistic S-matrix of the SSSG theories
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Giant magnons and their solitonic avatars

An approach to quantization of generic SSSG theories

Focus not so much on the Lagrangian and perturbation theory but
rather on the solitons themselves: perturbative fields re-appear.

The route to the spectrum and S-matrix is to use semi-classical
methods (novelty: solitons carry non-abelian internal d-o-f):

1 Quantize the moduli space dynamics of the solitons yielding the
semi-classical spectrum.

2 Conjecture S-matrix by imposing all the axioms of S-matrix theory
and solve the bootstrap (account for all the bound state poles).

3 Check using semi-classical limit

lim
k→∞

S(E ) ∼ exp

[
i

∫ E

dE ′∆t(E ′)

]



Giant magnons and their solitonic avatars

Giant magnons and solitons

Giant magnons and solitons are related via the complicated
Pohlmeyer “map” and we need a method that constructs both at the
same time without actually employing the map:

Reformulate equations of sigma model as auxiliary linear problem

(
∂± −

∂±FF−1

1± λ

)
Ψ(λ) = 0

λ = spectral parameter, equations-of-motion[
∂+ −

∂+FF−1

1 + λ
, ∂− −

∂−FF−1

1− λ

]
= 0

with F = Ψ(0).
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Giant magnons and their solitonic avatars

Dressing transformation

Zakharov-Mikhailov’78

Harnad-SaintAubin-Shnider’84

Ψ(λ) = χ(λ)Ψ0(λ)

χ(λ) = 1 +
~FkΓ−1

kj
~F †j

λ− ξj
~Fj = Ψ0(ξ∗j )~$j , Γjk = ~F †j · ~Fk/(ξj − ξ∗k)

Dressing data

ξj determine rapidity and the mass.

The vectors ~$j are collective coordinates (position plus internal
d-o-f).
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Giant magnons and their solitonic avatars

The key fact
TJH-Miramontes’09

If the “vacuum” satisfies the Pohlmeyer constraints

Ψ0(λ) = exp

(
x+

1 + λ
+

x−
1− λ

)
Λ

then the dressed solution also satisfies Pohlmeyer constraints

The dressing determines both the giant magnon and the soliton

Fmagnon = χ(0)e2tΛ

γsoliton = e−tΛχ(1)−1χ(−1)etΛ

Hence the magnon and soliton are 2 views of the same underlying object.
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The CPn+1 SSSG theories

CPn+1 giant magnons and their solitonic avatars

The CPn+1 symmetric space

CPn+1 = F/G = SU(n + 2)/U(n + 1) H = U(n)

Λ =

 0 −1 0
1 0 0
0 0 0

 G =

 e iα 0 0
0 ∗ ∗
0 ∗ ∗

 H =

 e iα 0 0
0 e iα 0
0 0 ∗



Involution σ(M) = θMθ with θ = diag(−1, 1, . . . , 1).



The CPn+1 SSSG theories

Simplest case: CP2 SSSG

γ ∈ U(2) and we fix the H = U(1) gauge by taking the slice

γ =

e iψ/2 0 0

0 cos θe iϕ+iψ/2 e−iψ/2 sin θ

0 −e iψ/2 sin θ cos θe−iϕ−iψ


The Lagrangian is Eichenherr-Honerkamp’81

L = ∂µθ∂
µθ + 1

4∂µψ∂
µψ + cot2 θ∂µ(ψ + ϕ)∂µ(ψ + ϕ)

+ 2µ2 cos θ cosϕ

with moduli space of vacua θ = ϕ = 0, and 0 ≤ ψ < 4π.

General CPn+1 case

Integrable perturbation of the U(n + 1)k/U(n)k gauged WZW model.
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The CPn+1 SSSG theories

The elementary (non relativistic) CPn+1 giant magnons

TJH-Miramontes’09

Abbott-Aniceto-Sax’09

Constructed using the dressing method with two poles:

ξ1 = r e ip/2, ξ2 = 1/ξ1, 0 ≤ p ≤ 2π, r > 0

~$2 = θ~$1 and use shifts in x and t to fix

~$1 = (1, i ,Ω) |Ω| = 1

where the complex n vector Ω ∼ e iαΩ, so internal moduli space is
Ω ∈ CPn−1.

Magnon has SU(n + 2) Noether charges:

∆Q =

∫
dt ∂0FF−1 − vac = JΛΛ + JHhΩ

JΛ = −1+r2

r

∣∣ sin p
2

∣∣, JH = −1−r2

r

∣∣ sin p
2

∣∣, hΩ = i

(
1 0

0 −2ΩΩ†

)



The CPn+1 SSSG theories

Non-relativistic dispersion relation

∆− 1

2
J = −

√
λ

2
JΛ,

1

2
Q =

√
λ

2
JH , λ = ’t Hooft coupling

⇒ ∆− 1

2
J =

√
1

4
Q2 + 2λ sin2 p

2

Beisert’05

Chen-Dorey-Okamura’06

Consequence of centrally extended SU(2|2) symmetry.

Bound state of Q elementary giant magnons of charge Q = 1.



The CPn+1 SSSG theories

The CPn+1 (relativistic) soliton avatars

TJH-Miramontes’09

(ξ = re ip/2,Ω) −→ tan q = 2r
1−r2 sin p

2

→


Mass: m = 4k

π

∣∣ sin q
∣∣

Topological charge: γ−1(−∞)γ(+∞) = exp (−2qhΩ)

Rapidity: tanhϑ = 2r
1+r2 cos p

2

Solitons carry an internal collective coordinate Ω ∈ CPn−1 hidden in
the algebra element hΩ.



Quantizing the solitons

How do we deal with Ω?

Under H

ΩΩ† → UΩΩ†U−1

so moduli space is a (co-)adjoint orbit of an element of the Lie
algebra h

ΩΩ† = diag(1, 0, . . . , 0) ∼ ~ω1 · ~H

The orbit is SU(n)/U(n − 1) = CPn−1.

But H = U(n) is gauged: is the orbit physical?

Moduli space dynamics: allow U → U(t) and substitute into action
to get effective quantum mechanics on the orbit.



Quantizing the solitons

Because soliton is a kink there is a boundary term
∫

dt L coming from
the WZ term

L =
2iqk

π
Tr
(
U−1U̇ hΩ

)
Balachandran et al’01

Leads to quantization of the co-adjoint orbit (fuzzy geometry).

Coordinates U = e iλiθ
i

and conjugate momenta give constraints

πi =
∂L

∂θ̇i
≈ 2iqk

π
Tr

(
U−1 ∂U

∂θi
hΩ

)
Using U−1dU = −iλiEijdθ

j , define for a ∈ h

Λa = −πj(E
−1)ji Tr(aλi )

Poisson brackets

{Λa,U} = −iUa , {Λa,Λb} = Λ[a,b]
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Quantizing the solitons

H0 = U(n − 1) stability group of hΩ, so h0 = {a} such that
[hΩ, a] = 0 then

h = h0 ⊕ r h0 = hΩ ⊕ h̃0

and the Lie algebra has the structure

[h0, h0] = h̃0 , [h0, r] = r , [r, r] = hΩ ⊕ h̃0 ,

Constraints

Λa ≈ 0 except ΛhΩ
≈ 2kq

π

So constraints for Λa a ∈ h0 are first class and for a ∈ r are second
class.



Quantizing the solitons

Quantize: set of L2 functions on H are (Peter-Weyl Theorem)

ψ(U) = 〈ρl |U|ρr 〉 ,

constraints: Λ̂aψ(U) = 〈ρl |Ua|ρr 〉

F For first class a ∈ h0 = {~H,E~α}, with ~α · ~ω1 = 0,

E~α|ρr 〉 = 0 , ~H|ρ2〉 =
2kq

π
~ω1|ρr 〉

F Second class a ∈ r = {E~α}, with ~α · ~ω1 6= 0: split a = E±~α then
impose

Esign(q)~α|ρr 〉 = 0

So |ρr〉 is the highest (lowest) weight state with weight a~ω1 for a ∈ Z
There is a quantization

2kq

π
= a ∈ Z .



Quantizing the solitons

The Hilbert space consists of modules with highest (lowest) weight
±a~ω1 for a = 1, 2, . . . and

q =
πa

N
ma =

4k

π
sin

π|a|
N

N = 2k (N = n + 2k exactly).

So solitons have kink charges which are weights of the symmetric
representations of H = U(n − 1) (this is not a Noether symmetry)!

Note: a must be fixed as k →∞. But what happens beyond the
semi-classical limit; how does the tower of states truncate?
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The S matrix

Back in the 20th century...
Ahn-Bernard-LeClair’90

TJH’90

deVega-Fateev’91

· · · · · · · · · · · · · · · · · ·

S-matrices associated to trigonometric solution to Yang-Baxter
equations, involving the affine quantum group Uq(SU(n)(1))

R-matrix for vector-vector scattering q = −e iω

R(ϑ) ∼ sin(ω + iλϑ)Psymm + sin(ω − iλϑ)Panti-symm

old choice ω/λ > 0 and bound-state pole at ϑ = iω/λ corresponds to
anti-symmetric rep

In the present context, take instead ω/λ < 0 and have
bound-state pole at ϑ = −iω/λ corresponds to symmetric rep



The S matrix

Spectrum naturally truncates if q =root of unity

Kinks a = 1, . . . , k in completely symmetric rank-a representations of
SU(n) and their conjugates, S-matrix has Uq(SU(n)(1)) symmetry
with

q = − exp

(
iπ

n + k

)
and

ma = M sin

(
πa

n + 2k

)

F Quantum group at q2(n+k) = 1 ensures that tower of states truncates

For TBAers: kinks associated to blobs on An+2k−1 Dynkin
diagram except for a gap between k + 1, . . . , n + k: each blob is

a symm-a rep (or conjugate) of SU(n)
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The S matrix

The S-matrix

Involves the trigonometric solution of the Yang-Baxter equations
associated to Uq

(
SU(n)(1)

)
with q = −e iω, ω = π

k+n

S11(ϑ) = Y11(ϑ)

(
Psymm +

sin(ω + iλϑ)

sin(ω − iλϑ)
Panti-symm

)
Y11(ϑ) infinite product of gamma functions.

Crossing: Sab(iπ − ϑ) = Sb̄a(ϑ) ⇒ λ = 2k+n
2k+2n

Fusing rules:

[a] ◦ [b] =

{
[a + b] a + b ≤ k

0 a + b > k
, [a] ◦ [bn−1] =

{
[a− b] a > b

[(b − a)n−1] a < b.
.

subset of An+2k−1 fusing rules.



The S matrix

Semiclassical limit

The scattering amplitudes for the special (coherent) states

||Ω, a〉〉 =
(
Ωi |ei 〉

)⊗a
matches the classical time-delays

lim
k→∞

S(E ) ∼ exp

[
i

∫ E

dE ′∆t(E ′)

]
In the semi-classical limit k →∞ solitons with a/k fixed.

F The symmetric representations of SU(n) can be thought of as fuzzy
CPn−1s. In the semi-classical limit, the fuzzy CPn−1 becomes a
closer approximation of CPn−1 itself, which matches the fact that
classical solitons exhibit a CPn−1 moduli space of solutions.
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Generalizations to other symmetric spaces

Sn+1 = SO(n + 2)/SO(n + 1) with H = SO(n). Co-adjoint orbit in
this case is a real Grassmannian SO(n)/SO(2)× SO(n − 2) and
states transform in the symmetric rank-a representations of SO(n),
a = 1, 2, . . . , k .

ma = M sin

(
πa

n − 2 + 2k

)
SU(2m + n)/S(U(m)× U(m + n)) in which case H = U(n).

Λ =

 0 A 0
−A 0 0
0 0 0

 G =

 ∗ 0 0
0 ∗ ∗
0 ∗ ∗

 H =

 e iα 0 0
0 e iα 0
0 0 ∗


in (m + m + n)2 block-form where A = diag(a1, . . . , am).

F This case is like the homogeneous SG theories with masses that
“float”. TBA system should involve 3 algebras: An−1, Am−1 and
An+2k−1.
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AdS5 × S5

Grigoriev-Tseytlin’08

In this case F = PSU(2, 2|4) and the involution σ is replaced by a Z4

automorphism with G = Sp(2, 2)× Sp(4).

However the SSSG can be formulated in terms of a Lax pair in the
graded affine algebra

f̂ =
⊕
n∈Z

3⊕
j=0

z4n+j fj , f =
3⊕

j=0

fj

where f0,2 are bosonic and f1,3 are fermionic, f0 = sp(2, 2)⊕ sp(4).

Fields γ ∈ G and fermions with gauge group H = SU(2)4.

It seems that the dressing transformation extends in a nice way.

The solitons now have bosonic and Grassmann collective coordinates.

Quantization?
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Are magnons and solitons quantum equivalent?

It is not obvious: magnons come in an infinite tower of symmetric
representations whereas the soliton tower is truncated.

Even if the quantum magnons and solitons come in the same
representations how can a relativistic S-matrix be equivalent to a
non-relativistic one?

Other open problems

Solve all the other classes of symmetric space sine-Gordon theories.

Further checks of the conjectured S-matrix: TBA, etc.

· · · · · · · · · · · · · · ·
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Muchas Gracias


