Finite-Size Technology in Low-Dimensional Quantum Systems

Benasque

June 27 - July 17 2010

UNIVERSAL PROPERTIES OF ISING CLUSTERS AND DROPLETS NEAR CRITICALITY

Gesualdo Delfino

SISSA-Trieste

Based on :

GD, Nucl.Phys.B 818 (2009) 196

GD, J. Viti, arXiv:1006.2301 [hep-th]

• Recent developments (SLE, log CFT's, ...) put new emphasis on the dualism between local (spin) and non-local (cluster) observables

• The debate goes back to the "droplet model" (60's): is the ferromagnetic transition a percolative transition of spin clusters? No (70's), but ... (80's)

• The universal critical properties of both local and non-local observables can be studied by field theory. In 2D the exact fractal dimensions of clusters are known in many cases (CFT)

• I'll use integrable field theory for the Ising case to obtain two results:

 exact non-perturbative mechanism explaining cluster criticality in absence of magnetic criticality

- quantitative characterization of universal cluster properties near criticality

Ising percolation

$$-\mathcal{H}_{Ising} = \frac{1}{T} \sum_{\langle ij \rangle} \sigma_i \sigma_j + H \sum_i \sigma_i , \qquad \sigma_i = \pm 1 \qquad (T \ge 0)$$

No magnetic transition away from $T \leq T_c$, H = 0

 $P \equiv$ probability that a site belongs to an infinite cluster of + spins (percolative order parameter)

 $\forall T \geq 0 \exists H_c(T)$ such that P > 0 for $H > H_c(T)$

$$H_c(0) = 0 \qquad \qquad \frac{e^{H_c(\infty)}}{2\cosh H_c(\infty)} = p_c^0$$

 $p_c^0 = \text{critical point of random percolation (non-universal)}$

Three observations:

i) $H_c(T)$ monotonic

ii) spontaneous magnetization \implies infinite cluster (Coniglio et al '77) iii) $p_c \le p_c^0$ at H = 0 (interaction makes percolation easier)

Ordinary lattices in d=2 have $p_c^0 \geq 1/2 ~~\longrightarrow~~$ a) $d= 3 ~~ {\rm have}~ p_c^0 < 1/2 ~~\longrightarrow~~ {\rm b})$

Kasteleyn-Fortuin representation

$$-\mathcal{H}_q = -\mathcal{H}_{Ising} + J \sum_{\langle ij \rangle} t_i t_j \left(\delta_{s_i, s_j} - 1 \right), \quad t_i = \frac{1}{2} (\sigma_i + 1) = 0, 1, \quad s_i = 1, \dots, q$$

$$egin{array}{rcl} Z_{q} &=& \displaystyle{\sum_{\{t_{i}\}}\sum_{\{s_{i}\}}e^{-\mathcal{H}_{q}}}=& ({\sf Murata '79}) \ &=& \displaystyle{\sum_{\{t_{i}\}}e^{-\mathcal{H}_{Ising}}\,q^{N_{v}}\sum_{G}p^{b}_{B}(1-p_{B})^{ar{b}}\,q^{N_{c}}} \end{array}$$

 $N_v = \#$ of empty sites

G = graph made of bonds between occupied sites

b = # of bonds in G; $\overline{b} = #$ of absent bonds (dashed)

 $N_c = \#$ of connected components in G (KF clusters)

 $p_B \equiv 1 - e^{-J}$ prob that a bond is present (KF cl=Ising cl for $p_B = 1$)

q continuous parameter

$$\langle X \rangle_{q \to 1} = Z_{Ising}^{-1} \sum_{\{t_i\}} e^{-\mathcal{H}_{Ising}} \sum_G X p_B^b (1 - p_B)^{\overline{b}}$$
 dilute percolation average

pure percolation for $H = +\infty$

Example of percolative observable: mean cluster number per site

$$\frac{\langle N_c \rangle}{N} = -\partial_q f_q|_{q=1} - \frac{1}{2}(1 - M) \qquad M \text{ Ising magnetization per site}$$

$$f_q \equiv -\frac{1}{N} \ln Z_q = f_{Ising} + (q-1)F + O((q-1)^2)$$

Dilute Potts model yields

- Ising magnetic properties at q = 1
- KF cluster properties at $q = 1 + \epsilon$
- Ising cluster properties at $q=1+\epsilon,~J\to+\infty$

RG analysis in d = 2 (Coniglio-Klein '80 + CFT)

Look for fixed points of $\mathcal{H}_{q \to 1}(T, H, J) = \mathcal{H}_{Ising}(T, H) - J \sum_{\langle ij \rangle} t_i t_j (\delta_{s_i, s_j} - 1)$ Need a magnetic fixed point to start with $\implies T = T_c, H = 0.$ J?

d=2 fixed points characterized by

- central charge c = 1 - 6/[m(m+1)]

- primary fields $\varphi_{r,s}$ with scaling dimensions $X_{r,s} = \frac{[(m+1)r - ms]^2 - 1}{2m(m+1)}$

 $\mathcal{H}_{Ising}(T_c, 0)$: m = 3, c = 1/2, $X_{\sigma} = X_{1,2} = 1/8$, $X_{\varepsilon} = X_{1,3} = 1$

 \mathcal{H}_q possesses two critical lines as functions of q:

$$\begin{split} \sqrt{q} &= 2\sin\frac{\pi(t-1)}{2(t+1)}, \quad m = \begin{cases} t, \text{ critical } (H=+\infty): & X_s = X_{\frac{m-1}{2},\frac{m+1}{2}}, & X_{t_1} = X_{2,1} \\ t+1, \text{ tricritical: } X_s = X_{\frac{m}{2},\frac{m}{2}}, & X_{t_1} = X_{1,2}, & X_{t_2} = X_{1,3} \end{cases} \\ q \to 1: \quad m = \begin{cases} 2, \text{ pure perc: } c = 0, & X_s = 5/48, & X_{t_1} = 5/4 \\ 3, \text{ dilute perc: } c = 1/2, & X_s = 5/96, & X_{t_1} = 1/8, & X_{t_2} = 1 \end{cases} \end{split}$$

We found a fixed point of dilute percolation for $J = J^*$

A trivial (purely magnetic) fixed point is at J = 0J irrelevant at these two fixed points $\implies \exists$ a third one

$$\begin{aligned} -\mathcal{H}_q|_{J=2/T} &= \frac{2}{T} \sum_{\langle ij \rangle} (\delta_{\nu_i,\nu_j} - 1) + (\ln q - 2H) \sum_i \delta_{\nu_i,0} \,, \quad \nu_i = 0, 1, \dots, q \\ \implies \text{ fixed point at } J = 2/T_c \text{ as } q \to 1, \text{ with } X_s = X_\sigma = 1/8 \\ \text{ (KF clusters with } J = 2/T) \quad = \quad \text{Ising droplets} \end{aligned}$$

J*

J

 $2/T_c$

RG flows among fixed points with c = 1/2 (*c*-theorem does not apply) Critical behavior of Ising clusters is ruled by J^* (agrees with numerics)

cluster size ~ (linear extension)^D
$$D = d - X_s$$
 fractal dimension
 $D = \begin{cases} 91/48 = 1.89.. \text{ pure percolation} \\ 187/96 = 1.94.. \text{ Ising clusters} \\ 15/8 = 1.87.. \text{ Ising droplets} \end{cases}$

Ising field theory:

$$\mathcal{A}_{Ising} = \mathcal{A}_{CFT}^{Ising} - \tau \int d^2 x \, \varepsilon(x) - h \int d^2 x \, \sigma(x), \qquad \tau \sim T - T_c, \ h \sim H$$

Dilute Potts field theory:

$$\mathcal{A}_q = \mathcal{A}_{CFT}^{tricr} - g \int d^2 x \, \varphi_{1,3}(x) - \lambda \int d^2 x \, \varphi_{1,2}(x)$$

 $\mathcal{A}_{q=1} = \mathcal{A}_{Ising}$ $(g = \tau, \lambda = h)$

 \mathcal{A}_q integrable for g and/or λ equal zero

 S_q symmetry breaks spontaneously at $\lambda = 0$

q degenerate vacua for $\lambda < 0$

The $q \rightarrow 1$ limit of the Potts critical surface is the Ising percolation transition: 1st order (massive) at $T < T_c$, 2nd order (massless) at $T > T_c$ $\mathcal{A}_{q=1} = \mathcal{A}_{Ising}$, however, is purely massive: no transition above T_c

We can take the limit analytically

The massless surface of A_q is an integrable field theory (Fendley, Saleur, Zamolodchikov '93, in RSOS basis)

Fundamental particles: right/left movers A_k , k = 1, ..., q - 1 with $p^1 = \pm p^0$

Poles of two-particle amplitudes contained in $S_{-1/2}(\theta)/(S_{1/2}(\theta)\cosh\rho(i\pi-\theta))$

$$S_{\gamma}(\theta) = \prod_{n=0}^{\infty} \frac{\Gamma\left(\frac{1}{2} + \left(2n + \frac{3}{2} - \gamma\right)\rho - \frac{\rho\theta}{i\pi}\right)\Gamma\left(\frac{1}{2} + \left(2n + \frac{1}{2} - \gamma\right)\rho + \frac{\rho\theta}{i\pi}\right)}{\Gamma\left(\frac{1}{2} + \left(2n + \frac{3}{2} - \gamma\right)\rho + \frac{\rho\theta}{i\pi}\right)\Gamma\left(\frac{1}{2} + \left(2n + \frac{1}{2} - \gamma\right)\rho - \frac{\rho\theta}{i\pi}\right)}, \qquad \rho = 1/(m-1)$$

$$s = \mu^{2}e^{\theta} : \begin{cases} \operatorname{Im} \theta \in (0, \pi) & \text{physical sheet} \\ \operatorname{Im} \theta \in (0, -\pi) & \text{second sheet} \end{cases}$$

No poles on physical sheet

Pole at $\theta_0 = -i\pi(m-3)/2$, on 2nd sheet for $m \in (3,5)$

 $q \rightarrow 1^+$: resonance B with Im $s_0 \propto (q-1)\mu^2$

• $q = 1 + \epsilon$: ϵ massless particles A_k , one resonance B with lifetime $\propto 1/\epsilon$

• q = 1: 0 massless particles, one stable particle B with mass μ

 \implies percolative transition in absence of magnetic singularities above T_c

 $B S_q$ -singlet (survives at q = 1) \implies only S_q -invariant fields ϕ have non-zero correlations at q = 1:

$$\begin{split} \lim_{q \to 1} \langle \phi(r)\phi(0) \rangle &= \lim_{q \to 1} (q-1) \int d\theta_1 d\theta_2 \left| \langle 0 | \phi(0) | A_k(\theta_1) A_{q-k}(\theta_2) \rangle \right|^2 e^{-rE_{2,0}(\theta_1,\theta_2)} + \dots \\ &= \lim_{q \to 1} (q-1) \int d\beta d\theta \frac{|R_{\phi}|^2}{(\theta - \theta_0)(\theta + \theta_0)} e^{-rE_{2,0}((\beta + \theta)/2, (\beta - \theta)/2)} + \dots \\ &\propto \int d\beta \, e^{-rE_{1,\mu}(\beta)} + \dots \end{split}$$

 $E_{2,0}(\theta_1,\theta_2) \equiv \mu(e^{\theta_1} + e^{-\theta_2})/2, \qquad \theta_0 \propto -i(q-1), \qquad \mathsf{E}_{1,\mu}(\beta) \equiv \mu \cosh(\beta/2)$

$$\sum_{k=1}^{q-1} \qquad \phi \xrightarrow{A_k} \qquad \phi \qquad \xrightarrow{q \to 1} \qquad \phi \xrightarrow{B \to \phi}$$

This is how the canonical space of fields $[I] \oplus [\sigma] \oplus [\epsilon]$ of Ising field theory is recovered at q = 1

Field theory of Ising droplets

H

Kertesz line

 T_{c}

Т

Droplets are KF clusters with J = 2/T, i.e. $p_B = 1 - e^{-2/T}$ $T = \infty$: $p_B = 0$, no percolation $H = +\infty$: transition at $T = -2/\ln(1 - p_c^0)$ $p_c^0 =$ threshold of random bond percolation

Scaling limit :

$$\begin{split} \tilde{\mathcal{A}}_q &= \mathcal{A}_{CFT}^{(q+1)} - \tau_q \int d^2 x \, \varphi_{2,1}(x) + 2h_q \int d^2 x \, \delta_{\nu(x),0} \,, \qquad \nu(x) = 0, 1, \dots, q \\ \text{RG invariant:} \quad \eta_q &= \tau_q / h_q^{(2-X_{2,1})/(2-X_s)} \qquad (\tilde{\mathcal{A}}_{q=1} = \mathcal{A}_{Ising}, \quad \eta_1 \equiv \eta = \tau / h^{8/15}) \\ h_q \text{ breaks } S_{q+1} \text{ into } S_q \,; \quad \text{for } q > 1 \, S_q \text{ breaks spontaneously at } \eta_q = \eta_q^c \\ \text{The Kertész line is the limit } a \to 1 \text{ of the flow from } S_{+1} \text{ fixed point at } h_q = 0 \end{split}$$

The Kertész line is the limit $q \to 1$ of the flow from S_{q+1} fixed point at $h_q = 0$ to S_q fixed point at $h_q = +\infty$

Again, no transition at q = 1; resonance mechanism most likely, but no integrability in this case

• Universal limit of the Kertész line: lattice data (Fortunato, Satz '01) + lattice-continuum relations (Caselle, Grinza, Rago '04) give $\eta_K \equiv \eta_{a \to 1}^c \simeq 0.12$

Cluster observables

Universal amplitude ratios

- provide the canonical way of characterizing universal critical behavior *around* critical points
- two universality classes can have the same exponents but different amplitude ratios (e.g. droplet size vs magnetic susceptibility)
- allow to test methods of non-conformal field theory (e.g. calculation of correlation functions from the S-matrix)
- $\bullet\,$ in the percolative case we test results of non-conventional field theory (non-unitary, non-rational, $\ldots)$
- challenge for any approach alternative to field theory (e.g. massive SLE)

	clusters	droplets
Γ_a/Γ_b^+	non-universal	40.3
$\int f_{2nd,a}/f_{t,a}$	"	0.99959
$\int f_{t,a}/f_{t,b}^+$	"	2
$\int f_{t,a}/\widehat{f}_{t,a}$	"	1
$A_{k,a}/A_{k,b}^+; k = 0, -1$	"	1
$ \Gamma_b^+/\Gamma_b^-$	-	1
$\int f_{t,b}^+ / f_{t,b}^-$	1/2	1
$\int \frac{f_{2nd,b}^{-}}{f_{t,b}^{-}}$	0.6799	0.61
$\int f_{2nd,b}^+ / f_{2nd,b}^-$	_	1
$\int f_{t,b}^{+}/\widehat{f}_{t,b}^{\pm}$	1/2	1
U_b	24.72	15.2
$A_{k,b}^+/A_{k,b}^-; k = 0, -1$	1	1
$A_{0,b}^{\pm}/A_{-1,b}^{\pm}$	$-\gamma - \ln \pi = -1.7219$	$-\gamma - \ln \pi = -1.7219$
R_b	$\frac{3\sqrt{3}(\gamma + \ln \pi)}{64\pi^2} = 0.014165$	$-\frac{\gamma + \ln \pi}{12\pi^2} = -0.014539$
$\int f_{t,c}^+ / f_{t,c}^-$	1/2	-
$\int f_{2nd,c}/f_{t,c}^{-}$	1.002	-
$\int_{t,c}^{+}/\widehat{f}_{t,c}^{\pm}$	$\sin \frac{\pi}{5} = 0.58778$	_
$A_{k,c}^+/A_{k,c}^-; k = 0, 1$		_
$A_{0,c}^{\pm}/A_{1,c}^{\pm}$	-0.42883	_
$R_c^{\circ,\circ}$	$-3.7624 imes 10^{-3}$	-

Universal amplitude ratios for Ising percolation (GD, J. Viti, 2010) :

 $\gamma = 0.5772.$. Euler-Mascheroni constant

Random percolation case (GD, J. Viti, J. Cardy, J.Phys.A43 (2010) 152001):

	Field Theory	Lattice
A^+/A^-	1	1^a
f_t^+/f_t^-	2	-
f_{2nd}^{+}/f_{t}^{+}	1.001	-
f_{2nd}^+/f_{2nd}^-	3.73	4.0 ± 0.5^c
U^{-na}	2.22	2.23 ± 0.10^d
$R^+_{\xi_{2nd}}$	0.926	$pprox$ 0.93 $^{a+b}$
Γ^+/Γ^-	160.2	162.5 ± 2^e

- a) Domb, Pearce, J. Phys. A 9 (1976) L137
- b) Aharony, Stauffer, J. Phys. A 30 (1997) L301
- c) Corsten, Jan, Jerrard, Physica A 156 (1989) 781
- d) Daboul, Aharony, Stauffer, J. Phys. A 33 (2000) 1113
- e) Jensen, Ziff, Phys. Rev. E 74 (2006) 20101

Conclusion

- There is more physics in the Ising model than we are used to think
- This extends to more general spin models
- Field theory is able to describe this physics, through analytic continuation from unitary cases