3. Electroweak Phenomenology

Inputs

- $Z \to f \ \overline{f}$, $W \to f_1 \ \overline{f}_2$
- Z Peak Asymmetries
- Sensitivity to Higher Scales
- Standard Model Fits: M_H
- $e^+ e^- \rightarrow W^+ W^-$, $e^+ e^- \rightarrow Z Z$
- Higgs Search

The Standard Model

Quarks

Leptons

Bosons

up	down	electron	neutrino e	photon
charm	b b b strange	muon	neutrino µ	gluon
top	beauty	tau	heutrino τ	Z ⁰ W [±]

The Standard Model

A. Pich - TAE 2010

nep

Standard Model Parameters

QCD: $\alpha_{s}(M_{z})$

1

4

EW Gauge / Scalar Sector:

 $g, g', \mu^2, \lambda \iff \alpha, \theta_W, M_W, M_H \iff \alpha, G_F, M_Z, M_H$

The Standard Model

 $G_F = (1.166\ 371 \pm 0.000\ 006) \times 10^{-5} \ \text{GeV}^{-2}$ $lpha^{-1} = 137.\ 035\ 999\ 710\ \pm\ 0.000\ 000\ 096$ $M_Z = (91.\ 1875\ \pm\ 0.0021)\ \text{GeV}$

INPUTS

 $\alpha^{-1} \left(M_Z^2 \right) = 128.93 \pm 0.05$

 $M_W = 80.94 \text{ GeV}$ (79.96) [Exp: 80.399 ± 0.023] $\sin^2 \theta_W = 0.212$ (0.231)

The Standard Model

The Photon Couples to *Virtual* **f** *F Pairs* Vacuum **Polarized Dielectric Medium**

 $\alpha^{-1} = \alpha (m_e^2)^{-1} = 137.035999710$ (96) ; $\alpha (M_Z^2)^{-1} = 128.93 \pm 0.05$

($l^{-} l^{+}$ and $q \overline{q}$ contributions included)

A. Pich - TAE 2010

VACUUM

$$W^{-} \rightarrow e^{-} \overline{v}_{e} , \ \mu^{-} \overline{v}_{\mu} , \ \tau^{-} \overline{v}_{\tau} , \ d' \overline{u} , \ s' \overline{c}$$
$$\overline{u}_{j} = \overline{u}, \overline{c} \qquad ; \qquad \begin{pmatrix} d' \\ s' \end{pmatrix} \approx \begin{pmatrix} \cos \theta_{c} & \sin \theta_{c} \\ -\sin \theta_{c} & \cos \theta_{c} \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

$$\operatorname{Br}\left(W^{-} \to l^{-} \overline{\nu}_{l}\right) \equiv \frac{\Gamma\left(W^{-} \to l^{-} \overline{\nu}_{l}\right)}{\Gamma\left(W^{-} \to \operatorname{all}\right)} = \frac{1}{3 + 2N_{c}} = 11.1\%$$

QCD:

 $N_{c} \left\{ 1 + \frac{\alpha_{s}(M_{Z})}{\pi} \right\} \approx 3.115 \qquad \Longrightarrow \qquad \operatorname{Br}\left(W^{-} \to l^{-} \overline{v}_{l}\right) \approx 10.8\%$

Experiment:

 $Br\left(W^{-} \rightarrow e^{-} \overline{\nu}_{e}\right) = (10.65 \pm 0.17)\%$ $Br\left(W^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu}\right) = (10.59 \pm 0.15)\%$ $Br\left(W^{-} \rightarrow \tau^{-} \overline{\nu}_{\tau}\right) = (11.44 \pm 0.22)\%$

Universal $W l \overline{v_l}$ Couplings

The Standard Model

LEPTON UNIVERSALITY

CHARGE	D CURRE	NT UNIV	ERSALITY
	$ g_{\mu}/g_{e} $		
$B_{\tau \to \mu} / B_{\tau \to e}$	1.0018 ± 0.0015		
$B_{\pi \to \mu} / B_{\pi \to e}$	1.0021 ± 0.0016		$ g_{\tau}/g_{\mu} $
$B_{K\to\mu}/B_{K\to e}$	1.004 ± 0.007	$B_{ au ightarrow e} \ au_{\mu} / au_{ au}$	1.0006 ± 0.0022
$B_{K\to\pi\mu}/B_{K\to\pi e}$	1.002 ± 0.002	$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	0.996 ± 0.005
$B_{W \to \mu} / B_{W \to e}$	0.997 ± 0.010	$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	0.979 ± 0.017
		$B_{W \to \tau} / B_{W \to \mu}$	1.039 ± 0.013

$$\begin{vmatrix} g_{\tau} / g_{e} \end{vmatrix}$$
$$B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau} & 1.0005 \pm 0.0023$$
$$B_{W \to \tau} / B_{W \to e} & 1.036 \pm 0.014 \end{vmatrix}$$

The Standard Model

 $Z \rightarrow l^- l^+, v_l \overline{v_l}$ $\Gamma\left(Z \to l \,\overline{l}\right) \propto \left(\left|\mathbf{v}_l\right|^2 + \left|a_l\right|^2\right)$

$$\frac{\Gamma_{\text{inv}}}{\Gamma_{ll}} = \frac{\Gamma(Z \to \text{invisible})}{Z \to l^+ l^-} = N_{\nu} \frac{\Gamma(Z \to \nu_l \overline{\nu_l})}{\Gamma(Z \to l^+ l^-)} = N_{\nu} \frac{2}{\left(1 - 4\sin^2\theta_W\right)^2 + 1} = 1.955 N_{\nu}$$
(1.989)

Experiment:

$$\frac{\Gamma_{\text{inv}}}{\Gamma_{ll}} = 5.942 \pm 0.016 \qquad \longrightarrow \qquad N_{\nu} = 3.04 \qquad (2.99)$$

 $N_v = 2.9840 \pm 0.0082$

The Standard Model

	$W^{-} \rightarrow e^{-} \overline{v}_{e} , \ \mu^{-} \overline{v}_{\mu} , \ \tau^{-} \overline{v}_{\tau}$ $\Gamma = \frac{G_{F} M_{W}^{3}}{6\pi \sqrt{2}}$
W ⁻ \overline{u}_j	$W^{-} \rightarrow d' \overline{u} , s' \overline{c}$ $\Gamma = \frac{G_F M_W^3}{6\pi \sqrt{2}} V_{ij} ^2 N_C$
Z f T	$Z \rightarrow l^{-} l^{+}, v_{i} \overline{v_{i}}, q \overline{q} \qquad (q = u, d, s, c, b)$ $\Gamma = \frac{G_{F} M_{Z}^{3}}{6\pi\sqrt{2}} \left(\left v_{f} \right ^{2} + \left a_{f} \right ^{2} \right) N_{f} \qquad ; \qquad N_{l} = 1 , N_{q} = N_{C}$
$\begin{tabular}{ c c } & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	= 2.09 GeV , Γ_Z = 2.48 GeV 2.098 ± 0.048 2.4952 ± 0.0023

The Standard Model

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8s} N_{\rm f} \left\{ A \left(1 + \cos^2 \theta \right) + B \cos \theta - h_{\rm f} \left[C \left(1 + \cos^2 \theta \right) + D \cos \theta \right] \right\}$$

$$N_l = 1$$
 ; $N_q = N_C \left\{ 1 + \frac{\alpha_s (M_Z^2)}{\pi} + \cdots \right\}$; $h_f = \pm 1$

 $A = 1 + 2 v \chi_{f} \operatorname{Re}(\chi) + (v_{e}^{2} + a_{e}^{2}(v_{f}^{2} + a_{f}^{2} |\chi|^{2})$ $B = 4 a_{e} a_{f} \operatorname{Re}(\chi) + 8 v_{e} a_{e} v_{f} a_{f} |\chi|^{2}$ $C = 2 v_{e} a_{f} \operatorname{Re}(\chi) + 2 (v_{e}^{2} + a_{e}^{2}) v_{f} a_{f} |\chi|^{2}$ $\chi = \frac{G_{F} M_{Z}^{2}}{2\sqrt{2} \pi \alpha} \frac{s}{s - M_{Z}^{2} + i s \Gamma_{Z} / M_{Z}}$ $D = 4 a_{e} v_{f} \operatorname{Re}(\chi) + 4 v_{e} a_{e} (v_{f}^{2} + a_{f}^{2}) |\chi|^{2}$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8s} N_{\rm f} \left\{ A \left(1 + \cos^2 \theta \right) + B \cos \theta - h_{\rm f} \left[C \left(1 + \cos^2 \theta \right) + D \cos \theta \right] \right\}$$

$$\mathcal{A}_{FB}(s) \equiv \frac{N_{F} - N_{B}}{N_{F} + N_{B}} = \frac{3}{8} \frac{B}{A}$$

$$\mathcal{A}_{Pol}(s) \equiv \frac{\sigma^{(h_{f}=+1)} - \sigma^{(h_{f}=-1)}}{\sigma^{(h_{f}=+1)} + \sigma^{(h_{f}=-1)}} = -\frac{C}{A} \qquad ; \qquad \sigma = \frac{4\pi\alpha^{2}}{3s} N_{f} A$$

$$\mathcal{A}_{FB}^{Pol}(s) \equiv \frac{N_{F}^{(+1)} - N_{F}^{(-1)} - N_{B}^{(+1)} + N_{B}^{(-1)}}{N_{F}^{(+1)} + N_{F}^{(-1)} + N_{B}^{(+1)} + N_{B}^{(-1)}} = -\frac{3}{8} \frac{D}{A}$$

The Standard Model

Z Peak $(s = M_Z^2)$

$$\sigma = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_f}{\Gamma_Z^2} \qquad ; \qquad \Gamma_f \equiv \Gamma(Z \to f \ \overline{f})$$

 $\mathcal{A}_{\mathsf{FB}}(s) = \frac{3}{4} \mathcal{P}_{e} \mathcal{P}_{f} \qquad ; \qquad \mathcal{A}_{\mathsf{Pol}}(s) = \mathcal{P}_{f} \qquad ; \qquad \mathcal{A}_{\mathsf{FB}}^{\mathsf{Pol}}(s) = \frac{3}{4} \mathcal{P}_{e}$

$$\mathcal{A}_{LR}(s) \equiv \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = -\mathcal{P}_{e} \qquad ; \qquad \mathcal{A}_{FB}^{LR}(s) = -\frac{3}{4} \mathcal{P}_{f}$$

Final Polarization $\mathcal{P}_{f} \equiv -A_{f} = \frac{-2 v_{f} a_{f}}{|v_{f}|^{2} + |a_{f}|^{2}}$ Only Available for $f = \tau$

 $|v_l| = \frac{1}{2} |-1 + 4\sin^2\theta| \ll 1 \implies \mathcal{P}_l$ Sensitive to Higher Order Corrections

Sensitive to Heavier Particles: TOP, HIGGS

The Standard Model

Evidence of Electroweak Corrections

July 2010 LEPEWWG September 2005 _July 2010 0.233 -0.032 m_t= 173.3 ± 1.1 GeV m,= 172.7 ± 2.9 GeV m_µ= 114...1000 GeV m_u= 114...1000 GeV m_H -0.035 , m_H sin²θ^{lept} θ^{eff} g_{<I} -0.038 Δα $|^{+}|^{-}$ m_t 0.231 $\Delta \alpha$ 68% CL 68% CL -0.041-0.503-0.502-0.501-0.5 83.6 83.8 84 84.2 Γ_{\parallel} [MeV] g_{AI}

 $\alpha(M_Z^2)^{-1} = 128.93 \pm 0.05$

Low Values of M_H Preferred

The Standard Model

Bernabéu-Pich-Santamaría 1988

The Standard Model

$$M_t = (172.7 \pm 2.9)$$
 GeV
 $M_H = (300^{+700}_{-186})$ GeV

$$\alpha(M_Z^2)^{-1} = 128.93 \pm 0.05$$

Heavy Quarks (Leptons) Favour High (Low) M_H

The Standard Model

LEPEWWG

July 2010

 $m_t = (173.3 \pm 1.1) GeV$ (CI

(CDF + D0)

 $114.4 \text{ GeV} < M_H < 158 (185) \text{ GeV}$ (95% CL)

The Standard Model

Evidence of Gauge Self-Interactions

The Standard Model

No Evidence of γZZ or ZZZ couplings

The Standard Model

Searching for the HIGGS

D. Denegri

Interaction proportional to mass (M_W^2, M_Z^2, m_f)

Branching Ratios

The Higgs decays into the heaviest possible particles

The Standard Model

The Large Hadron Collider

LEPEWWG

July 2010

March 2006

The Standard Model

LEPEWWG July 2010

The Standard Model