The ATLAS and CMS Experiment

Albert De Roeck CERN, Geneva, Switzerland Universiteit Antwerpen, Belgium IPPP Durham, UK UC Davis, USA

Taller de Altas Energías 2010 32951

2010, Aug 31 -- Sep 11

Lecture Plan

- Introduction
- The LHC Collider
 - Introduction to the LHC
- The experimental challenges at the LHC
 - The experimental solutions
- The "general purpose" experiments
 - The CMS experiment
 - The ATLAS experiment
- First performance results of the experiments
- First physics with the ATLAS and CMS experiments
 - QCD, B-physics
 - EWK/Searches and the outlook

Summary: Challenges

- High event rate and pile-up
 - High granularity: typically 10x more channels compared to present detectors
- Timing/synchronization of 10⁸ channels is non trivial
- Event size (> 1 Mbyte)/Computing
 - Limit event rate to 100 Hz, use the Grid
- Trigger reduce event rate from 40MHz to 100 Hz
 - Multi-layered trigger system and pipelined electronics
- Detectors need excellent hermeticity (missing ET), lepton identification, B & Tau identification, jet measurements...
- Detectors must be radiation hard and reliable for ~ 10-20 years...

Can it be done?

ATLAS and CMS

General Purpose Detectors at the LHC

ATLAS A Toroidal LHC ApparatuS CMS Compact Muon Solenoid

In total about ~100 000 000 electronic channels Each channel checked 40 000 000 times per second (collision rate is 40 MHz) Amount of data of just one collisions >1 500 000 Bytes Trigger (online event selection) Reduce 40 MHz collision rate to ~100 Hz data recording rate Readout to disk 100 collisions/sec ⇒ pentaBytes of data/year

The CMS Collaboration: >3000 scientists and engineers, >700 students from 182 Institutions in 39 countries .

The Modular Design of CMS

Acceptance: Calorimetry $|\eta| < 5.0$ Tracking $|\eta| < 2.4$

CMS Detector Design Priorities

Expression of Intent (EOI): Evian 1992

- 1. A robust and redundant Muon system
- 2. The best possible e/γ calorimeter consistent with 1.
- 3. A highly efficient Tracking system consistent with 1. and 2.
- 4. A hermetic calorimeter system.
- 5. A financially affordable detector.

Compact Muon Solenoid (CMS)

Letter of Intent (LOI): LHCC, TDR in 1994

Transverse View

Strong Field 4T Compact design

Solenoid for Muon P_t trigger in transverse plane

Redundancy: 4 muon stations with 32 r-phi measurements

ΔP_t/P_t ~ 5% @1TeV for reasonable space
 resolution of muon chambers (200µm)

CMS Solenoid

The largest high field solenoid magnet ever build!!

Magnetic length Free bore diameter Central magnetic induction Temperature Nominal current Stored energy Magnetic Radial Pressure

12.5 m
6 m
4 T ≈100,000 times earth magnetic field
4.2 degrees Kelvin ≈-269 degrees Celcius
20 kA
2.7 GJ
64 Atmospheres

Successfully

tested in

August '06!!

Construction of CMS (≥2002)

CMS parts were assembled on surface and then lowered in the cavern (-100m)

The CMS Central Tracker

- 200 m² silicon detectors (~ tennis court)
- ~ 10⁷ read-out channels: silicon strips

Installation of the Central Tracker in CMS

Pixel Tracking Detector

In total 7.10⁷ read out channels ~ photo camera with 70 milion pixels taking 40 million photos per second!!

The CMS Detector: Calorimeters

ECAL: Barrel 36 super modules/1700 crystals Endcaps detectors completed in summer 2008 Total of ~70000 crystals for this detector

Central ECAL installation in CMS

Hadronic Calorimeter (brass/scintillator) completed in 2006 Lowering in the experimental hall

Lead tungstanate. Transparent like glass Heavy as lead!!

Calorimeter Resolution: eg. for Higgs

• Excellent energy resolution of EM calorimeters for e/γ and of the tracking devices for μ in order to extract a signal over the backgrounds.

CMS: Lead Tungstanate EM Calorimeter vvv Y W* If the Higgs is light (115-120 GeV) Η then one of the most promising W* signals is $H \rightarrow \gamma \gamma$ (i.e. 2 photons) W* 8000 100 fb⁻¹ Events/500 MeV for 100 fb¹ 7000 6000 5000 4000 Excellent calorimetery needed (PbWO₄) 120 130 110 140 m_{vv}(GeV) a)

The CMS Detector: Muon Detectors

250 Drift tube chambers

172,000 channels

468 Cathode strip chambers

500,000 channels

912 Resistive plate chambers

160,000 channels
Total area ~ 6000 m² ie like a
football field

Elements of Muon Detection

Muon Reconstruction (Momentum Res.)

- Stand-alone Muon Reconstruction
 - Muon system only
- Global MuonReconstruction
 - Muon system + silicon tracker

CMS Today: Closed and Ready for Collisions

The ATLAS Collaboration ...

... not just a complex detector, but also a very large community of physicists, engineers, students!

The ATLAS Detector: An Overview

Standalone muon spectrometer (η < 2.7), 3 layers gas based muon chambers, muon trigger and muon momentum determination

EM calorimeter: LAr/Pb according structure e/γ trigger, identification + measurement Hadronic calorimeter: Scint./Fe tiles in the central, W(Cu)/LAr in fwd region

Trigger and measure jets + missing E_t

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Inner Detector: ~10⁸ Si Pixels, $6 \cdot 10^6$ Si Strips, Transition Radiation Tracker (TRT) – Xe-filled straw tubes interleafed with PP/PE foil for Cherenkov light: precise vertexing, tracking, e/ π separation

ATLAS Installation

JUNE 2003 Cavern 92m underground

55m long 32m wide 35m high

Inner Detector

Silicon pixels (**Pixel**): 0.8 10⁸ channels Silicon strips (**SCT**) : 6 10⁶ channels Transition Radiation Tracker (**TRT**) : straw tubes (Xe), 4 10⁵ channels e/π separation

σ/p_T ~ 5x10⁻⁴ p_T ⊕ 0.01

Calorimetry

Muon System

Stand-alone momentum resolution $\Delta pt/pt < 10\%$ up to 1 TeV

2-6 Tm $|\eta|$ < 1.3 4-8 Tm 1.6 < $|\eta|$ < 2.7

Forward Detectors

ATLAS

Absolute Luminosity for ATLAS

An Historical Moment

Collision Event at 7 TeV with Muon Candidate

2010-03-30, 12:59 CEST Run 152166, Event 322215

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

ATLAS Trigger ...

Trigger and Data Flow Architecture

Overall recording rate: ~ 300 Hz

Level-1:

- Implemented in hardware,
- Muon + Calo based, coarse granularity
- e, μ, π, τ, jet candidate selection

Level-2:

- Implemented in software
- Seeded by level-1 ROIs, full granularity
- Inner Detector Calo track matching

Event Filter:

- Implemented in software
- Offline-like algorithms for physics signatures
- Refine LV2 decision
- Full event building

High Level Trigger = HLT

(New:) Forward detectors in ATLAS/CMS

FP420

TOTEM -T2 CASTOR ZDC/FwdCal TOTEM-RP

<image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>t 3<image>

The LHC Detectors are Major Challenges

- CMS/ATLAS detectors have about 100 million read-out channels
- Collisions in the detectors happen every 25 nanoseconds
- ATLAS uses over 3000 km of cables in the experiment
- The data volume recorded at the front-end in CMS is 1 TB/second which is equivalent to the world wide communication network traffic
- Data recorded during the 10-20 years of LHC life will be about all the words spoken by mankind since its appearance on earth
- A worry for the detectors: the kinetic energy of the beam is that of a small aircraft carrier of 10⁴ tons going 20 miles/ hour

Object	Weight (tons)			
Boeing 747 [fully loaded]	200			
Endeavor space shuttle	368			
ATLAS	7,000			
Eiffel Tower	7,300			
USS John McCain	8,300			
CMS	12,500			

ATLAS and CMS Operation at Startup

CMS Sub-detectors Status

Alignment/calibration status, dead/masked channels mirrored in MC

Trigger/DAQ

- L1/DAQ
 - L1 ~ 45kHz; Event size at DAQ 500 kB/evt (after compression in High Level Trigger ~250kB); 200-400Hz of data to storage.
 - Timing has precision of 1 ns or better
- All L1 triggers have high efficiency and sharp turn-on curves

Data Processing, Transfer and Analysis

Excellent experience so far: the whole offline and Computing organization + GRID infrastructure

Performing very well.

Tracker Performance

Tracker Tomography

Material studies with conversions and nuclear interactions

Understanding of the material distribution is important !!

Resonances

Charm Production

B-Tagging

3D impact parameter value and significance (+zoom into ±2 region) for all tracks with Pt>1GeV belonging to jets with $p_T > 40$ GeV and $|\eta| < 1.5$ (PFlow Jets anti- $k_T R=0.5$).

Excellent alignment and general tracking performance

b-tagging can be used for physics already now!!

B-tagging Ready for Physics

$M(\mu\mu K) = 5.268 \text{ GeV}/c^2$ $M(\mu\mu) = 3.135 \text{ GeV}/c^2$

CMS experiment at LHC, CERN Run 136100 / Event 256858438 2010-25-5 03:43:48 CEDT $B^- \rightarrow J/\psi K^-$ candidate

All other tracks: $p_T > 1.0 \text{ GeV/c}$

ECAL Clusters: electrons and photons

Low Mass Di-photons: π^{0 /} η

MC based correction applied according to cluster η and energy

1.46M of $\pi^0 \rightarrow \gamma \gamma$ $P_T(\gamma) > 0.4 \text{ GeV},$ $P_T(pair) > 1 \text{ GeV}$

25.5K $\eta \rightarrow \gamma\gamma$ $P_T(\gamma) > 0.5 \text{ GeV},$ $P_T(pair) > 2.5 \text{ GeV}$

Numbers refer to a few % of the currently available statistics. Very useful tool to intercalibrate the crystals.

Jet Finding

Calorimeter jet (cone)

- ♦ jet is a collection of energy deposits with a given cone *R*: $R = \sqrt{\Delta \varphi^2 + \Delta \eta^2}$
- ♦ cone direction maximizes the total E_T of the jet
- various clustering algorithms
 - → correct for finite energy resolution
 - → subtract underlying event
 - → add out of cone energy

Particle jet

 a spread of particles running roughly in the same direction as the parton after hadronization

Di-Jet Events CMS Experiment at LHC, CERN Jet Run 133450 Event 16358963 **Di-jet selection** Lumi section: 285 Sat Apr 17 2010, 12:25:05 CEST Jet1 p_T : 253 GeV Jet2 p_T : 244 GeV •Jet p_{T1.2} > 25 GeV Di-jet mass = 764 GeV $\bullet \Delta \Phi > 2.1$ Jet 2 E_T(GeV) Jet 1 Jet 1 •|η| < 3 20 Di-jet mass Jet 2 Calorimeter **Particle Flow** Calorimeter + Tracks Events/GeV Events/GeV Events/GeV CMS preliminary 2010 CMS preliminary 2010 CMS preliminary 2010 √s=7TeV √s=7TeV √s=7TeV p_(jet)> 25 GeV p_(jet)> 25 GeV p_(jet)> 25 GeV 10E 10눈 10E |n(jet)| < 3 |ŋ(jet)| < 3 |ŋ(jet)| < 3 Data Data Data Simulation Simulation Simulation 10⁻¹ 10'1 101 10⁻² 10⁻² 10⁻² 100 200 300 400 500 600 700 800 m_{j1,j2}[GeV] 200 300 400 500 600 700 80 m_{i1,j2}[GeV] 0 100 200 300 400 500 600 700 80 0 100 0 m_{j1,j2}[GeV]

Particle Flow

Jet Energy Corrections

* Jets reconstructed with anti- k_T R=0.5 algorithms.

Three different approaches: Purely Calorimetric, Jet+Tracks, Particle Flow Jets
 Jet Energy Correction performed using MC vs data on single particle response, dijet p_T balance, photon+jet balance.

Current physics analysis use a 10% (5%) JEC uncertainties for CALO jets (JPT and PFjets), with an additional 2% uncertainty per unit rapidity.

Our measurements show that this assumption can be considered conservative.

Excellent resolution and small non-gaussian tails. Understanding all sources of erratic noise is very important for cleaning the distributions. MET ready for physics.

Muon Distributions

"Global Muons": matched tracks from Muon system and Tracker

- η distribution dominated by light hadron decay muons (red)
- good agreement with MC prediction, including
 - heavy flavor decays (blue)
 - o punch-through (black)
- Tag and probe method using J/ψ 's

ATLAS Detector Status

Working fraction of the ATLAS detector end June '10:

Sub-Detector	Number of channels	Approx. operational fraction (%)		
Pixels	80 M	97.4		
SCT Silicon Strips	6.3 M	99.2		
TRT Transition Rad. Tracker	350 k	98.0		
LAr EM Calorimeter	170 k	98.5		
Tile Calorimeter	9800	97.3		
Hadronic Endcap LAr Calorimeter	5600	99.9		
Forward LAr Calorimeter	3500	100		
LV1 Calo Trigger	7160	99.9		
LV1 Muon RPC Trigger	370 k	99.5		
LV1 Muon TGC Trigger	320 k	100		
MDT Monitored Drift Tubes	350 k	99.7		
CSC Cathode Strip Chambers	31 k	98.5		
RPC Barrel Muon Chambers	370 k	97.0		
TGC Endcap Muon Chambers	320 k	98.6		

For all systems > 97% of channels are operational, in addition have built-in redundancy in most systems: Overall detector is performing very well, but a few issues with component failures to watch out for ...

Data Taking and Data Quality

Typical LHC fill ...

- Data Taking Efficiency very good
- Few minutes needed for tracking detectors (silicon and muons) to ramp HV when LHC declares stable beams
- Short 'dips' in recorded rate: recover "on-the-fly"
 modules which would otherwise give a BUSY blocking further events

Inner Tracking Detectors			Calorimeters			Muon Detectors				
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	TGC	CSC
97.7	96.4	100	94.4	98.7	99.3	99.2	98.5	98.3	98.6	98.3

Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams at vs=7 TeV between March 30th and August 14th (in %)

10 GB/s peak rate during data
and MC processing ...
More than 1000 users running analysis jobs on the GRID

~ 2GB/s design

Data distribution on the Grid: Constant impressive duty cycle !

ATLAS Trigger: 2010 Roadmap

Steps and Status of 2010 ATLAS trigger deployment:

- 10²⁷ cm⁻²s⁻¹ initial collisions
 - minimum bias hits in scintillator modules located 3.5m from interaction point, all HLT chains in pass thru mode
- $L = few \ 10^{27} \ \dots \ 10^{29} \ cm^{-2}s^{-1}$:
 - minimum bias prescaled at Level-1,
 - other level-1 items (largely) un-prescaled
- L > ~10²⁹ cm⁻²s⁻¹:
 - activate high level trigger algorithms,
 - starting with low threshold EM triggers, followed by tau and muon chains,
 - running with low Level-1 thresholds
 - high threshold Level-1 jet triggers un-prescaled as long as possible
- L >~ 10³⁰ cm⁻²s⁻¹: trigger menu for 2010 pp-physics fully deployed
 - Muon HLT rejection active for lower thresholds (MU0, MU6)
 - E/γ chains: HLT rejection active for all lower, pass thru mode for highest threshold(s)
 - Tau: HLT rejection active, pre-scale single tau HLT triggers as luminosity increases
 - jet HLT algorithms in pass-thru mode,
 - HLT B-physics chains activated, triggers un-prescaled

Tracker Performance in ATLAS

At low pT : from early peaks and cascade decays

Today ~10% level. Ultimate goal: 1%

Momentum scale known to few permil in low pT range

50

100

150

250

300

350

400 R [mm]

Inner Detector material known at 10%

1450

Electromagnetic Calorimeter

□ Taste of EM calorimeter uniformity with first million of $\pi^0 \rightarrow \gamma \gamma$

Hadron Calorimeter

 \Box E_T^{miss} resolution and tails

Jet energy scale

Presently from MC (based on last 10 years)

Jet Energy scale known to ~7% for pT>100 GeV. E_T^{miss} under control

Jet Reconstruction

□ Full ICHEP stat, MC normalised to data

- Main jet : p_T>80 GeV (and sub-leading jets: p_T>40 GeV) in ly^{jet}l<2.8</p>
- Statistical error only

Already start to explore new phase space !

Missing E_T

Missing E_{T} : Min. bias events and p_{t} -enhanced L1Calo samples, full calorimeter coverage

Muon System

Combined Inner Detector (ID) + Muon Spectrometer (MS) measurement

Muon Reconstruction

J/ψ Signals

\Box Probe J/ ψ production mechanisms

Comparison limited by theoritical uncertainties

Photon Reconstruction

D Possible in ATLAS with the fine granular EM calorimeter (π^0 rejection)

• Test perturbative QCD, constraint parton structure function (first step for $H,G \rightarrow \gamma\gamma$ search)

Observe ~ 40 prompt γ signal / nb with E_T>20 GeV with a good purity (~70%)

$W \rightarrow \tau v$ candidate

 $W \rightarrow \tau v$ signal more difficult to observe due to softer spectrum and larger backgrounds (jets, $W \rightarrow ev, Z \rightarrow \tau \tau$): signal efficiency < 1%, S/B ~ 7

The Detectors work well! Now we can look at the first physics results!!