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Problem 1
The scalar sector of the Standard Model Lagrangian has the form

Ls = (D) D6 = V(9), D¢ = [@uz‘ggfvuww BM] 2
V() = i'o+h (910)" (h>0, 12 <0),

where ¢(z) is an SU(2), doublet of complex scalar fields. The potential, which only

depends on the modulus of the scalar doublet, has its minimum at |¢|mim = 1/ _2—’22 = %
The scalar doublet can be then parametrized in the form

w0 = (50) == ligow} (v )

The (arbitrary) choice of vacuum configuration, ¢ = % (0, v), breaks the SU(2),®U(1)y
gauge symmetry ‘spontaneously’, leaving one generator unbroken:
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We would like to identify () with the electric charge and the associated unbroken symmetry

with U(1)em. Thus, ¢y(z) and H(z) are neutral fields, ¢,(z) has Q = +1 and y, = 3.

a) Under a local U(1)y, transformation, ¢'(x) = e'@7(®) ¢(z), the electromagnetic field
should transform as A/ (z) = A,(z) — £ 9,7(x), while the Z field should remain invariant.
Show that this requirement implies e = ¢ sinfy = ¢’ cos Oy, where 6y is the electroweak

mixing angle,
Wi\ _ cosfy  sinfy Z,
B, ] — \ —sinfy costy A, ]

b) Find the explicit expression of the Lagrangian Lg in the ‘unitary gauge’ 5(33) = 0.
Show that Mz cosbOy = My = %gv.

c) Working in a general gauge where charged scalars are present, show that one gets
the correct U(1)en covariant derivative D* = OF + ieQ AM.



Problem 2

Consider the free Lagrangian of a complex massless spin—1 field W*(z),

Ly = —- 0w —o,WhHo"w” —a"w*).
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a) Imposing the minimal coupling prescription 0* — D# = 0" + ieQQ A*, obtain the

corresponding electromagnetic couplings. Check that, taking the charge of W* to be
Q = —1, one correctly reproduces the Standard Model WTW A and WTW A? vertices.

b) The Standard Model Lagrangian contains one additional WJW,,F " term. Derive
its explicit form.

¢) The Standard Model does not contain any trilinear coupling of three neutral gauge
bosons [Z3, vZ?%, v*Z ,+3]. Explain this fact.

Problem 3

The three polarizations of a massive spin—1 particle with momentum k* are described

through a basis of three four-vectors #(k), satisfying aﬁ(E)ku = 0 and (k) 5‘;(15) = —0ps.
In the rest frame, k* = (M, 6), they correspond to the three independent space unit vectors
with a zero time component [} (k) = (0,1,0,0), e5(k) = (0,0, 1,0), e5(k) = (0,0,0,1)]. In

the boosted frame k* = (k°,0,0, |k|), the transverse polarization vectors e 5(k) remain the
same, while the longitudinal polarization is given by e%(k) = = (|k],0,0,k°). Note that
this longitudinal state diverges when the momentum of the particle approaches infinity
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a) Consider the process v, — W; W; . In the Standard Model there are two ampli-
tudes contributing to lowest-order: t—channel electron exchange and s—channel Z exchange.
Show that the t—channel amplitude leads to a cross section which increases with energy,
violating unitarity:.

b) Show that the s—channel amplitude cancels exactly the bad high-energy behaviour.

c¢) The process v, — Z1,Z1, does not receive any s—channel contribution (a Z3 vertex
does not exist in the Standard Model). Show that the t—channel contribution is well-
behaved in this case. Discuss the result.



Solutions

Problem 1
a) Under a local U(1)ey transformation, ¢/(z) = @@ ¢(z),

Al (r) = Ay(z) — if),ﬁ(x) , Z(v) = Zu(x),
Wie) = Wila) = -0, (a). Bl(w) = By(e) = = 1 (a).
This requires
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where sy = sinfy, ¢y = cos by, Therefore,

tan Oy = g—/, e = gsinfy = g’ cosby = gig’
g NEETE
b) Taking 0(z) = 0,
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Therefore,
1
MZ COSQW = MW = i’l)g.
The scalar potential takes the form [My = /—2u? = vV2hv)
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c) In a general gauge [Th = 5 (T1 £iTs) = 55 (01 i o)
D' = 0" + i QA" — i zi (1-2¢%,Q) 2" +ig(WHT, + WHT).
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Problem 2
a)
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b) The pure gauge sector of the Standard Model Lagrangian is given by the following
expression [V} = % (WH 4+ WH), Wi = ﬁ (WH — WH), ke, = 67 0% — 61k ]
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The WTW A and WTW A2 terms agree with the Lagrangian derived in section a). The

WIW, F vertex is generated by the term g (9*W4 —0"W4' )W, W2. The U(1)er invariance
is better understood writing the SU(2), covariant derivative in the form

DE = 9h 4y g W = (9" + i eAPTy) +i g (WHT, + WHT_ + ey ZPTy) .
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Remember that £Is<lijn(2) =—1Tr [WWWW].



c) The U(1)em invariance guarantees that the photon does not couple to neutral par-
ticles. Moreover the SU(2); commutation relation [the antisymmetric ¢¥/* factor] cannot
generate terms with three or four W4 fields.

Problem 3

a) At very high energies, the reduced t—channel amplitude contributing to the scattering
process ve(p1) + Ze(p2) = Wil (ky) + Wi (ko) is  [Pruy(p) = 5(1—75) w(pr) = w(p1),
"= (p — k)t = (k- —p)*, t =1

T, =~ %5?*(k+)€§*(k—> U5, (P2) 7 Pruw, (p1)] =~ 2]\g43vt [05, (p2) K [ o, (p1)]
— 2J\£/][%,t (U5, (p2) (K= — p2) K un, (p1)] = 2]‘?4%/ [0, (p2) Ky, (p1)] -

On dimensional grounds, this implies o ~ gs/M;,, with s = ¢* = (p1 +p2)* = (k_ + k)2

b) The s—channel exchange of a neutral Z boson generates the additional amplitude:
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which cancels the t—channel contribution.

c) The process ve(p1) + Ve(p2) — Zr(k1) + Zp (ko) has two t—channel amplitudes,
corresponding to the permutation of the two identical Z; bosons [I* = (p1 — k)" =
(ke —pa), t =1, v = (p1 — ko)* = (k1 — p2)*, uw =17
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This is a consequence of Bose symmetry



