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A simulated SUSY event in ATLAS
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
jets and muons,

and some missing transverse
energy.

→ can easily mimic a SUSY event.
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A simulated event

PYTHIA Monte Carlo
pp → gluino-gluino

.

.
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Event selection as a statistical test
For each event we measure a set of numbers:  nx,,x=x 1



x
1

= jet p
T

x
2

= missing energy
x

3
= particle i.d. measure, ... 

x follows some n-dimensional joint probability density, which 

depends on the type of event produced, i.e., was it ,ttpp  ,g~g~pp

x i

x j

E.g. hypotheses H
0
, H

1
, ... 

Often simply “signal”,
“background”
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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:
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Maybe later try some other type of decision boundary:

H
0 H

0

H
0

H
1

H
1

H
1



G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 8



G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 9



G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 10



G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 11

Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example:  separation of different particle types (electron vs muon)

Use the selected sample for further study.

In other cases, the null hypothesis H0 means "Standard Model" events,

and the alternative H1 means "events of a type whose existence is

not yet established" (to do so is the goal of the analysis).

Many subtle issues here, mainly related to the heavy burden

of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis 

below ~ 10-7 (a 5 sigma effect) to claim discovery of 

"New Physics".
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Using classifier output for discovery

y

f(y)

y

N(y)

Normalized to unity Normalized to expected 
number of events

excess?

signal

background background

search
region

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially 
distribution f(y|b) in the "search region".

y
cut
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Example of a "cut-based" study
In the 1990s, the CDF experiment at Fermilab (Chicago) measured

the number of hadron jets produced in proton-antiproton collisions

as a function of their momentum perpendicular to the beam direction:

Prediction low relative to data for

very high transverse momentum.

"jet" of

particles
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High pT jets = quark substructure?
Although the data agree remarkably well with the Standard Model

(QCD) prediction overall, the excess at high pT appears significant:

The fact that the variable is "understandable" leads directly to a plausible 

explanation for the discrepancy, namely, that quarks could possess an 

internal substructure.

Would not have been the case if the variable plotted was a complicated 

combination of many inputs.
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High pT jets from parton model uncertainty

Furthermore the physical understanding of the variable led one

to a more plausible explanation, namely, an uncertain modeling of

the quark (and gluon) momentum distributions inside the proton.

When model adjusted, discrepancy largely disappears:

Can be regarded as a "success" of the cut-based approach.  Physical

understanding of output variable led to solution of apparent discrepancy.
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Neural networks in particle physics
For many years, the only "advanced" classifier used in particle physics.

Usually use single hidden layer, 

logistic sigmoid activation function:

s(u) = (1+ e¡u)¡1
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Neural network example from LEP II

Signal:  e+e- → W+W- (often 4 well separated hadron jets)

Background:  e+e- → qqgg  (4 less well separated hadron jets)

← input variables based on jet

structure, event shape, ...

none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Some issues with neural networks
In the example with WW events, goal was to select these events

so as to study properties of the W boson.

Needed to avoid using input variables correlated to the

properties we eventually wanted to study (not trivial).

In principle a single hidden layer with an sufficiently large number of

nodes can approximate arbitrarily well the optimal test variable (likelihood

ratio).

Usually start with relatively small number of nodes and increase

until misclassification rate on validation data sample ceases

to decrease.

Often MC training data is cheap -- problems with getting stuck in 

local minima, overtraining, etc., less important than concerns of systematic 

differences between the training data and Nature, and concerns about

the ease of interpretation of the output.
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Overtraining 

training sample independent test sample

If decision boundary is too flexible it will conform too closely

to the training points  → overtraining.

Monitor by applying classifier to independent test sample.
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Particle i.d. in MiniBooNE
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes:

H.J. Yang, MiniBooNE PID, DNP06H.J. Yang, MiniBooNE PID, DNP06

Search for n
m

to n
e

oscillations 
required particle i.d. using 
information from the PMTs.
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Decision trees
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity:

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577

where w
i
. is the weight of the ith event.

Resulting nodes classified as either 
signal/background.

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node.

The set of cuts defines the decision 
boundary.
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BDT example from MiniBooNE
~200 input variables for each event (n interaction producing e, m or p.

Each individual tree is relatively weak, with a misclassification 
error rate ~ 0.4 – 0.45 

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.
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Comparison of boosting algorithms
A number of boosting algorithms on the market; differ in the
update rule for the weights.
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Single top quark production (CDF/D0)

Top quark discovered in pairs, but

SM predicts single top production.
Use many inputs based on 

jet properties, particle i.d., ...

signal

(blue +

green)

Pair-produced tops are now 

a background process.
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Different classifiers for single top

Also Naive Bayes and various approximations to likelihood ratio,....

Final combined result is statistically significant (>5s level) but not 

easy to understand classifier outputs.



G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 35

Support Vector Machines

Map input variables into high dimensional feature space: x→ f

Maximize distance between separating hyperplanes (margin) 

subject to constraints allowing for some misclassification.

Final classifier only depends on scalar

products of  f(x):

So only need kernel

Bishop ch 7
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Using an SVM
To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the s of the Gaussian)
a cost parameter C (plays role of regularization parameter)

The training is relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.

The advantages/disadvantages and rationale behind the choices above 
is not always clear to the particle physicist -- help needed here.
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SVM in particle physics
SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP.  Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTAT02).

signal
eff.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant

neural networks

naive Bayes

and has in the last several years started to use a few more

k-nearest neighbour

boosted decision trees

support vector machines

The emphasis is often on controlling systematic uncertainties between

the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery

at 5s significance with a sophisticated (opaque) method will win the

competition if backed up by, say, 4s evidence from a cut-based method.



Quotes I like

“If you believe in something 
you don't understand, you suffer,...”

– Stevie Wonder

“Keep it simple.
As simple as possible.
Not any simpler.”

– A. Einstein
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Extra slides 
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