BSM Physics at the LHC

Sven Heinemeyer, IFCA (CSIC, Santander)

Barcelona, 09/2010

- 1. Introduction
- 2. Introduction to Supersymmetry
- 3. Supersymmetry at the LHC
- 4. More BSM phenomenology at the LHC
- 5. Conclusions

BSM Physics at the LHC

Sven Heinemeyer, IFCA (CSIC, Santander)

Barcelona, 09/2010

- 1. Introduction
- 2. Introduction to Supersymmetry
- **3**. Supersymmetry at the LHC
- 4. More BSM phenomenology at the LHC
- **5**. Conclusions

BSM Physics at the LHC (II)

Supersymmetry at the LHC

- 1. SUSY Higgs physics at the LHC
- 2. Colored Sparticles at the LHC
- **3**. SUSY fits and predictions for the LHC

1. SUSY Higgs at the LHC

Enlarged Higgs sector: Two Higgs doublets

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{2}^{+} \\ \psi_{2}^{-} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

Enlarged Higgs sector: Two Higgs doublets

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{+} \end{pmatrix} e^{i\xi}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

2 CP-violating phases: ξ , $\arg(m_{12}) \Rightarrow$ can be set/rotated to zero

Input parameters: (to be determined experimentally)

$$\tan\beta = \frac{v_2}{v_1}, \qquad M_{H^{\pm}}^2$$

1. Find the new particle

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, ...

- 1. Find the new particle T
- 2. measure its mass $(\Rightarrow ok?)$ T
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, ...

T = Tevatron,

- 1. Find the new particleTL2. measure its mass (⇒ ok?)TL3. measure coupling to gauge bosonsL4. measure couplings to fermionsL5. measure self-couplingsL6. measure spin, ...
- T = Tevatron, L = LHC,

1. Find the new particle	Т	L	Ι	
2. measure its mass (\Rightarrow ok?)	Т	L	Ι	
3. measure coupling to gauge bosons		L	Ι	
4. measure couplings to fermions		L	Ι	
5. measure self-couplings			Ι	
6. measure spin,			Ι	

T = Tevatron, L = LHC, I = ILC

We need the ILC to find the Higgs and to establish the Higgs mechanism! But the LHC can do a crucial part already!

m_h is not a free parameter

MSSM tree-level bound: $m_h < M_Z \Rightarrow$ SUSY always requires a light Higgs!

Large radiative corrections:

Dominant one-loop corrections:

$$\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Measurement of M_h , Higgs couplings \Rightarrow test of the theory

Upper bound on M_h in the MSSM:

"Unconstrained MSSM":

 M_A , tan β , 5 parameters in $\tilde{t}\text{--}\tilde{b}$ sector, μ , $m_{\tilde{g}}$, M_2

 $M_h \lesssim$ 135 GeV

for $m_t = 173.3 \pm 1.1 \, \mathrm{GeV}$

(including theoretical uncertainties from unknown higher orders) \Rightarrow observable at the LHC

Obtained with:

FeynHiggs

[S.H., W. Hollik, G. Weiglein '98 – '02] [T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '03 – '10]

www.feynhiggs.de

 \rightarrow all Higgs masses, couplings, BRs, XSs (easy to link, easy to use :-)

Higgs couplings, tree level:

$$g_{hVV} = \sin(\beta - \alpha) g_{HVV}^{SM}, \quad V = W^{\pm}, Z$$
$$g_{HVV} = \cos(\beta - \alpha) g_{HVV}^{SM}$$
$$g_{hAZ} = \cos(\beta - \alpha) \frac{g'}{2\cos\theta_W}$$

$$\begin{split} g_{hb\overline{b}}, g_{h\tau^+\tau^-} &= -\frac{\sin\alpha}{\cos\beta} g_{Hb\overline{b},H\tau^+\tau^-}^{\mathsf{SM}} \\ g_{ht\overline{t}} &= \frac{\cos\alpha}{\sin\beta} g_{Ht\overline{t}}^{\mathsf{SM}} \\ g_{Ab\overline{b}}, g_{A\tau^+\tau^-} &= \gamma_5 \tan\beta g_{Hb\overline{b}}^{\mathsf{SM}} \end{split}$$

 $\Rightarrow g_{hVV} \leq g_{HVV}^{SM}$, g_{hVV} , g_{HVV} , g_{hAZ} cannot all be small

 $g_{hb\bar{b}},g_{h\tau^+\tau^-}$: significant suppression or enhancement w.r.t. SM coupling possible

For $M_A \gtrsim 150$ GeV:

The lightest MSSM Higgs is SM-like

The heavy MSSM Higgses: $M_A \approx M_H \approx M_H \approx M_{H^\pm}$

of course there are exceptions . . .

Higgs search at the LHC:

Important SM production channel at the LHC:

Important decay for Higgs mass measurement:

SM Higgs search at the LHC: \Rightarrow full parameter accessible

Overview about SUSY Higgs production cross sections ($\phi = h, H, A$)

[Tev4LHC Higgs working group report '06]

gluon fusion: $gg \rightarrow \phi$ weak boson fusion (WBF): $q\bar{q} \rightarrow q'\bar{q}'\phi$

top quark associated production: $gg, q\bar{q} \rightarrow t\bar{t}\phi$

weak boson associated production: $q\bar{q}' \rightarrow W\phi, Z\phi$

NEW: $b\overline{b}\phi$

Search for the lightest MSSM Higgs at the LHC:

 \Rightarrow full parameter accessible But there might be problems . . .

Possible problem in SUSY:

 $gg
ightarrow h
ightarrow \gamma\gamma$

1000

M_h measurement in the "nice" m_h^{max} scenario:

[CMS '06]

Measurement possible only for $M_A\gtrsim 250~{\rm GeV} \\ \Rightarrow \delta M_h\approx 200~{\rm MeV} \label{eq:Max}$

other channels: $h \to Z Z^* \to 4 \mu ~(M_h \gtrsim 130~{\rm GeV})$

otherwise: $\delta M_h \gtrsim 1 - 2 \text{ GeV}$

The heavy MSSM Higgs bosons

MSSM Higgs discovery contours in M_A -tan β plane $(m_h^{\text{max}} \text{ benchmark scenario})$: [ATLAS '99] [CMS '03]

areas where only h is observable \Rightarrow "LHC wedge"

Latest results for neutral heavy Higgs bosons:

MSSM Higgs discovery contours in M_A -tan β plane ($\Phi = H, A$) (m_h^{max} benchmark scenario): [*CMS PTDR '06*]

Charged Higgs boson searches:

MSSM Higgs discovery contours in M_A -tan β plane $(m_h^{\text{max}} \text{ benchmark scenario})$: [CMS PTDR '06]

light charged Higgs: $M_{H^\pm} < m_t$

heavy charged Higgs: $M_{H^\pm} > m_t$

Differences compared to the SM Higgs:

Additional enhancement factors compared to the SM case:

 \Rightarrow other parameters enter \Rightarrow strong μ dependence

Most powerful search modes for heavy MSSM Higgs bosons:

$$b\overline{b} \to H/A \to \tau^+ \tau^- + X$$

$$gb \to tH^{\pm} + X, \ H^{\pm} \to \tau\nu_{\tau}$$

$$pp \to t\overline{t} \to H^{\pm} + X, \ H^{\pm} \to \tau\nu_{\tau}$$

Enhancement factors compared to the SM case:

$$H/A : \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \frac{\mathsf{BR}(H \to \tau^+ \tau^-) + \mathsf{BR}(A \to \tau^+ \tau^-)}{\mathsf{BR}(H \to \tau^+ \tau^-)_{\mathsf{SM}}}$$
$$H^{\pm} : \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \mathsf{BR}(H^{\pm} \to \tau \nu_{\tau})$$

⇒ Δ_b effects so far not included in ATLAS/CMS analyses also relevant for BR($H/A \rightarrow \tau^+ \tau^-$), BR($H^\pm \rightarrow \tau \nu_\tau$) also relevant: correct evaluation of $\Gamma(H/A/H^\pm \rightarrow \text{SUSY})$ ⇒ additional effects on BR($H/A \rightarrow \tau^+ \tau^-$), BR($H^\pm \rightarrow \tau \nu_\tau$)

Dependence of LHC wedge from $b\bar{b} \rightarrow H/A \rightarrow \tau^+ \tau^- \rightarrow 2jets$ on μ :

[S.H., A. Nikitenko, G. Weiglein et al. '06]

 \Rightarrow now based on full CMS simulation

- \Rightarrow non-negligible variation with the sign and absolute value of μ
 - $(\rightarrow$ numerical compensations in production and decay)

Charged Higgs: comparison with CMS PTDR (m_h^{max} scenario):

[M. Hashemi, S.H., R. Kinnunen, A. Nikitenko, G. Weiglein '07]

 \rightarrow note: M_A -tan β plane

light charged Higgs:

always worse than PTDR better $M_{H^{\pm}}$ calculation! inclusion of Δ_b effects

heavy charged Higgs: PTDR in "the middle" new results partially substantially worse

2. Colored sparticles at the LHC

SUSY particle production at the LHC:

 \Rightarrow colored (s)particles are copiously produced

 \Rightarrow production of gluinos, squarks, ...

As in QCD: NLO corrections are crucial!

Example for SUSY production:

[*Prospino collaboration*]

As in QCD: NLO corrections are crucial!

Production of SUSY particles at the LHC

will in general result in complicated final states \Rightarrow cascade decays

$$\tilde{g} \to \bar{q}\tilde{q} \to \bar{q}q\tilde{\chi}_2^0 \to \bar{q}q\tilde{\tau}\tau \to \bar{q}q\tau\tau\tilde{\chi}_1^0$$

Production of uncolored particles via cascade decays often dominates over direct production

Many states are produced at once

⇒ Main background for SUSY is SUSY itself!

Another model beyond the SM: Extra dimensions

Comparison of SUSY with e.g. Extra Dimensions: \Rightarrow cascades may look very similar:

 \Rightarrow In order to establish SUSY experimentally:

Need to demonstrate that:

- every particle has superpartner
- their spins differ by 1/2
- their gauge quantum numbers are the same
- their couplings are identical
- mass relations hold

. . .

- ⇒ Precise measurements of masses, branching ratios, cross sections, angular distributions, ... mandatory for
 - establishing SUSY experimentally
 - disentangling patterns of SUSY breaking

 \Rightarrow We need both: hadron colliders (Tev./LHC) and high luminosity ILC

3. SUSY fits and predictions for the LHC:

How to make a prediction?

Comparison of precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections

 \Rightarrow Information about unknown parameters

Very high accuracy of measurements and theoretical predictions needed

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A. Weber, G. Weiglein '07]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

[LEPEWWG '10]

Assumption for the fit: SM incl. Higgs boson \Rightarrow no confirmation of

Higgs mechanism

 \Rightarrow Higgs boson seems to be light, $M_{H} \lesssim 160~{\rm GeV}$

Main idea of SUSY fits: do the same in Supersymmetry!

Combine all existing precision data:

- Electroweak precision observables (EWPO)
- *B* physics observables (BPO)
- Cold dark matter (CDM)
- . . .

Predict:

- best-fit points
- ranges for Higgs masses
- ranges for SM parameters
- ranges for SUSY masses \Rightarrow LHC/ILC reach

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ... Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ... \Rightarrow combination makes only sense if all parameters are connected! \Rightarrow GUT based models: \Rightarrow CMSSM, NUHM, ...

χ^2 calculation:

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- M: SM parameters: $\mathbf{\Delta}\alpha_{\mathsf{had}}, m_t, M_Z$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

CMSSM:

 $m_{1/2} = 310 \text{ GeV}, m_0 = 60 \text{ GeV}, A_0 = 130 \text{ GeV},$ $\tan \beta = 11, \mu = 400 \text{ GeV}, M_A = 450 \text{ GeV}$ $\chi^2/N_{\text{dof}} = 20.6/19 \text{ (36 \% probability)}$ $\Rightarrow \text{ very similar to SPS 1a :-)}$

NUHM1:

$$m_{1/2} = 270 \text{ GeV}, m_0 = 150 \text{ GeV}, A_0 = -1300 \text{ GeV},$$

tan $\beta = 11, \mu = 1140 \text{ GeV}, M_A = 310 \text{ GeV}$

(similar probability)

$\Rightarrow \mathcal{L}_{\mathsf{SUSY}}$

 \Rightarrow largely accessible spectrum for LHC (and ILC)

Masses for best-fit points: CMSSM

Sven Heinemeyer, TAE 2010 (Barcelona), 10.09.2010

800 1000 1200 1400 1600 1800 1000 1200 1400 1600 1800 mass [GeV/c²] **NUHM1** 8000 000 000 **6**0 **6**0 200 200 ο ο 245 × 0 × 0 × 4 $\frac{1}{2}$ £ ÷ ti ∠ST 115 4 <u>___</u> \Rightarrow largely accessible spectrum for LHC (and ILC)

Masses for best-fit points: NUHM1

LHC (CMS) \oplus CMSSM analysis:

 \Rightarrow best-fit point and part of 68% C.L. are can be tested in 2011

 \Rightarrow best-fit point and part of 68% C.L. are can be tested in 2011

LHC (CMS) \oplus CMSSM analysis:

[2008]

reach with 1 fb⁻¹ @ 14 TeV incl. leptonic edge measurements

Some more predictions:preferred M_A -tan β parameter spaceCMSSMNUHM1

red dotted: discovery with 1 fb⁻¹ @ 7 TeV blue solid: 95% C.L. exclusion with 1 fb⁻¹ @ 7 TeV

\Rightarrow preferred regions missed in 2010-2011 run

Some more predictions: $m_{\tilde{g}} - m_{\tilde{q}_L}$

CMSSM

NUHM1

 $\Rightarrow m_{\tilde{q}}$ often largest mass, but exceptions are possible

NUHM1

[2009]

CMSSM

\Rightarrow only partially covered by future experiments