Open Problems in Inflationary Cosmology

Daniel Baumann Institute for Advanced Study

Benasque, February 2011

How can **inflation** become part of the standard history of the universe with the same level of confidence as **BBN** ?

Outline

Observations

I. Current Observations "What do we really know?"

4. Future Observations

"How can we learn more?"

Theory

2. Status

"What is Inflation?"

3. Problems

"Physics thrives in crisis" Steven Weinberg

Current Observations

 $-0.0181 < \Omega_k < 0.0071$

(Primordial) density **fluctuations** are:

• small

(Primordial) density *fluctuations* are:

• small

scale-invariant

Peiris and Verde (2010)

(Primordial) density *fluctuations* are:

• small

- scale-invariant
- Gaussian

1% non-Gaussianity

(Primordial) density *fluctuations* are:

small

Multipole moment ℓ

(Primordial) density *fluctuations* are:

• small

- scale-invariant
- Gaussian
- adiabatic

 $\langle TE \rangle$

Inflation is an elegant explanation for the data: Guth (1980)

We need a definition:

where
$$ds^2 = -dt^2 + a(t)^2 d\vec{x}^2$$

 $\checkmark H = \frac{\dot{a}}{a}$

 $-\dot{H} \ll H^2$

There exist many different microscopic realizations of inflation, BUT only a few distinct mechanisms (effective theories)

 $-\dot{H} \ll H^2$

approximate time-translation symmetry

 $-H \ll H^2$

inflation has to end, so **symmetry is spontaneously broken** fluctuations in the 'clock' $\zeta \sim \frac{\delta a}{a} = H\pi$ **Goldstone boson** $\pi \sim \delta t \sim \frac{\delta \phi}{\dot{\phi}}$

curvature perturbations

 $-\dot{H} \ll H^2$

tests of minimal inflation = tests of (pseudo)-Goldstone fluctuations are predicted to be: \leftarrow nearly massless • scale-invariant • Gaussian • adiabatic

superhorizon

 $-H \ll H^2$

implies a shrinking Hubble sphere

 $\frac{d}{dt}(aH)^{-1} < 0$

Classic Predictions

scalar fluctuations

tensor fluctuations

power spectra teach us about:

H(t)

Non-Gaussianity

in the effective theory of inflation

Senato
Non-Gaussianity
in the effective theory of inflation

$$\mathcal{L}_3 \propto \frac{1}{c_s^2} \dot{\pi} (\partial_i \pi)^2 + \frac{\mathcal{O}(1)}{c_s^2} \dot{\pi}^3$$
• large interactions from small sound speed: $f_{\rm NL} \sim \frac{1}{c_s^2}$
• two distinct shapes:

$$\begin{array}{c} \underline{equilateral} \\ -214 < f_{\rm NL}^{\rm equil.} < 266 \\ -410 < f_{\rm NL}^{\rm ortho.} < 6 \end{array} + \underbrace{-410 < f_{\rm NL}^{\rm ortho.} < 6}$$
• vanishing squeezed limit:
$$\begin{array}{c} \underline{=0} \\ \underline{maldacena} \end{array}$$

What is the "theory space" of multi-field inflation?

Challenges

bef	ore	Initial Conditions	•
dur	ing	Lagrangian	•
aft	ter	Reheating	

How did inflation start?

- singularity
 - inflation is past-geodesically incomplete.
 - is there really a horizon problem in QG?
- patch problem
- overshoot problem
- eternal inflation?
- measure problem

What is the physics of inflation?

- UV-sensitivity:
 - eta problem
 - gravitational waves
 - non-Gaussianity
- naturalness / fine-tuning

How did inflation end?

observational signatures?

So far we have discussed fluctuations around a given quasi-de Sitter background

but we haven't said how this background arises in the first place.

PROBLEM 1:

Why is the inflaton so light ?

Why is the inflaton so light? $\eta \approx \frac{m_{\phi}^2}{H^2} \ll 1$

like the Higgs hierachy problem

like the Higgs hierachy problem

supersymmetry ameliorates the problem, but doesn't solve it.

need fine-tuning or additional symmetry

(I part in 100) (easy to assume, hard to explain)

In inflation, even Planck-suppressed interactions cannot be ignored !

Inflation is sensitive to dimension-6 Planck-suppressed operators

$$\Delta V = V_0 \frac{\phi^2}{M_{\rm pl}^2} \longrightarrow \Delta \eta = 1$$

Can we forbid corrections with a symmetry ?

shift symmetry

spontaneous breaking of global symmetries

Many models implement this solution in supergravity.

BUT:

How does the symmetry arise from the top-down?

What is the UV-completion?

Planck-suppressed operators reintroduce the eta problem !

"Quantum gravity breaks global symmetries."

protecting the inflation from this is the real challenge:

I. compute the symmetry breaking effects in string theory see Eva Silverstein's talk

2. find a sufficiently powerful symmetry in **field theory** e.g. "Inflating with Baryons" DB and Daniel Green Every model of inflation has to address the eta problem.

Some classes of models have observational signatures that dramatically enhance the UV sensitivity:

Gravitational Waves Non-Gaussianity

PROBLEM 2:

Is large 'r' UV-completable ?

Gravitational Waves CMB Polarization

energy scale of inflation

Gravitational Waves CMB Polarization

Gravitational Waves

The Lyth Bound

This makes an effective field theorist nervous and a string theorist curious!

Gravitational Waves

Gravitational Waves

What is the UV-completion of large-field inflation?

Opportunity for String Inflation!

see Eva Silverstein's talk

Problem 3:

Is small 'c_s' UV-completable ?

Non-Gaussianity

slow-roll inflation

"Why should I care about UV-completion?"

Future Observations

I. Gravitational Waves

3. Multi-Field Inflation

2. Non-Gaussianity

Can we falsify inflation?

Can we falsify inflation ?

Can we falsify ...

the paradigm?

single-field?

multi-field?

 $\Omega_k > \zeta \sim 10^{-4}$ $f_{\rm NL}^{\rm local} > 1$ $\tau_{\rm NL} > (f_{\rm NL})^2$?

7

$$n_t = 2\frac{\dot{H}}{H^2} > 0$$
 $|n_t| \neq 8c_s r$ $|n_t| > 8r$

superhorizon vector modes

Conclusions

eta problem

Inflation is sensitive to Planck-scale physics!

gravitational waves

 $\Delta \phi \gg M_{\rm pl}$

non-Gaussianity

 $(\partial \phi)^2 \sim M_{\rm pl}^4$

How did inflation start?

- singularity
 - inflation is past-geodesically incomplete.
 - is there really a horizon problem in QG?
- patch problem
- overshoot problem
- eternal inflation?
- measure problem

What is the physics of inflation?

- UV-sensitivity:
 - eta problem
 - gravitational waves
 - non-Gaussianity
- naturalness / fine-tuning

How did inflation end?

• observational signatures?

The End