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@_ Some slides related to this talk:

http://ww. cer enmade. dauphi ne. fr/ ~dol beaul / Conf er ences/

@ A review of known results:
Jean Dolbeault and Maria J. Esteban
About existence, symmetry and symmetry breaking for extremal
functions of some interpolation functional inequalities

http://ww. cer emade. dauphi ne. fr/ ~dol beaul / Prepri nt s/
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Introduction
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A symmetry breaking mechanism
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The energy point of view (ground state)
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Caffarelli-Kohn-Nirenberg
iInequalities (Part |)

Joint work(s) with M. Esteban, M. Loss and G. Tarantello




Caffarelli-Kohn-Nirenberg (CKN) inequalities

p 2/p 2
(/ ul d:z:) < Cap [Vl dx Vue€Dyp
R

a |z[oP Ra |T[*
Witha§b§a+1ifd23,a<b§a,+1ifd:2,anda7é%::ac

) 2d
- d—2+2(b—a)

p

Dy i= { 2| P u € LP(RY, dx) : |z~ |Vu| € LQ(Rd,d:z:)}

Y

(a")): (pll)
|1‘w\daa —

A
(alb): @0\: Coé,é,w
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The symmetry issue

p 2/p 2
(/ ul d:z:) < Cap [Vl dx Vue€Dyp
R

@ |x|oP ra |2[2

C..» = best constant for general functions «
C; , = best constant for radially symmetric functions u

Cz,b S Ca,b
Up to scalar multiplication and dilation, the optimal radial function is

d b— _d_2+2(b—a)
up () = [Tz (1 + |:1:|2> 2(1+a=1)

Questions: is optimality (equality) achieved ? do we have u,, = u, ;, ?
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Known results

[Aubin, Talenti, Lieb, Chou-Chu, Lions, Catrina-Wang, ...]

Q. Extremalsexistfora <b<a+1land0<ag < %=
fora<b<a+landa<0ifd>2

@_ Optimal constants are never achieved in the following cases

@ “critical / Sobolev” case: forb=a < 0,d > 3
@ “Hardy"case:b=a+1,d> 2

Q Ifd>3,0<a< % and a < b < a + 1, the extremal functions are

radially symmetric ... u(z) = |z|* v(x) + Schwarz symmetrization

[Cﬂuw,m 13) [ Horid 7]

bt

N
: p \ C)a}o:.[\:,lb
) / Ay 0)0/"“"0'(
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More results on symmetry

@_ Radial symmetry has also been established for d > 3, a < 0, |a| small
and 0 < b < a + 1: [Lin-Wang, Smets-Willem]

@ Schwarz foliated symmetry [Smets-Willem]

d = 3: optimality is achieved among solutions which depend only on
the “latitude"” # and on r. Similar results hold in higher dimensions
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Symmetry breaking

@_ [Catrina-Wang, Felli-Schneider] if a < 0, a < b < b¥°(a), the extremal
functions ARE NOT radially symmetric !

FS, N d(d—2—2a) o .
’ (a)_Q\/(d—Q—Za)2+4(d—1) p (=220

@_ [Catrina-Wang] AS a — —oo, optimal functions look like some
decentered optimal functions for some Gagliardo-Nirenberg
Interpolation inequalities (after some appropriate transformation)
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Approaching Onofri’'s inequality (  d = 2)

@ [J.D., M. Esteban, G. Tarantello] A generalized Onofri inequality

2 . _ a+1 |:1:|2O‘ dx .
On R<, consider du, = * (EREICEEDE with o > —1

1
1 ( "’da)— ity < 2, s
og /R26 T /R2v Mo S 6 et D) V|72 (R2, 4z

@ For d = 2, radial symmetry holds if —n <a <0and —e(n)a <b<a-+1
Theorem 1. [J.D.-Esteban-Tarantello] Foralle > 03n > 0st fora <0, |a] <7

b

N 2 2
(i) if la] > 5= (1 + |a[*), then
Cap > C7  (symmetry breaking)

(i if |a| < 37 (1+al?), then

sCap = Cz,b and Ugp = uf;,b
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A larger symetry region

@ For d > 2, radial symmetry can be proved when b is close to a + 1

Theorem 2. [J.D.-Esteban-Loss-Tarantello] Let d > 2. For every A < 0, there exists
£ > 0 such that the extremals are radially symmetricifa + 1 — ¢ < b < a + 1 and
a € (A,0). So they are given by ., up to a scalar multiplication and a dilation

b b
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Two regions and a curve

@ The symmetry and the symmetry breaking zones are simply connected
and separated by a continuous curve

Theorem 3. [J.D.-Esteban-Loss-Tarantello] For all d > 2, there exists a continuous
function a*: (2, 2*) — (—00, 0) such that lim,_,2+ a*(p) = 0,
>l<

lim, >, a*(p) = —oc and
() 1f (a,p) € (a*(
(i) If (a,p) € (=00 ( )

Open question. Do the curves obtained by Felli-Schneider and ours coincide ?
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Emden-Fowler transformation and the cylinder C =R x S}

1
t = log |z| w:|x—|€Sd_1, w(t,w) = |¢| “o(@), A= (d—2-2a)’
xr

@ Caffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become
standard interpolation inequalities of Gagliardo-Nirenberg type

[wl3ae) < Cap [IV0]22c) + A lwll3ae))

Enfw] = [[Vwllz2c) + AlwlZz e

Crli=Cl = inf{gA(w) w2 ey = 1}

a<0 = A>a =1(d-2)
2d
d—2

“Hardy” case:b— (a+1) —» 0 < p — 24

“critical / Sobolev’ case: b —a — 0 <— p —
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Perturgative methods for proving symmetry

@ Euler-Lagrange equations

@ A priori estimates (use radial extremals)

@ Spectral analysis (gap away from the FS region of symmetry breaking)
@ Elliptic regularity

@ Argue by contradiction
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Scaling and consequences

@ A scaling property along the axis of the cylinder (d > 2)
let w, (t,w) := w(ot,w) forany o > 0

) Je V,wl|? dy
(fc w|P dy)Q/p

Lemma 4. [JD, Esteban, Loss, Tarantello] Ifd > 2, A > O and p € (2, 2*)

Foonp(we) =o' T2P Fp p(w) — o 1H2/7 (02

. d, d,
(i) If Cﬁl\,p = CA;, then Cﬁ\i,p = CA,; and wy p = wy ,, forany A € (0,A)

(i) If there is a non radially symmetric extremal wy ,,, then C‘}\’p > Ci’,; forall A > A
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A curve separates symmetry and symmetry breaking regions

Corollary 5. [JD, Esteban, Loss, Tarantello] Let d > 2. Forall p € (2, 2%),
A*(p) € (0, A">(p)] and

i) fA e (0,A*(p)), thenwy , = w}"\,p and clearly, C’g\l,p — Cf:;
(i) 1t A= A*(p),then C§ = CP*

A,p

(iiiy 1f A > A*(p), then C{ > Cf\l:;

727 SR

Upper semicontinuity
IS easy to prove

For continuity,

a delicate spectral
analysis is needed
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Caffarelli-Kohn-Nirenberg
iInequalities (Part Il)

and
Logarithmic Hardy
Inequalities

Joint work with M. del Pino, S. Filippas and A. Tertikas
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let2* = ifd=10rd=2,2*=2d/(d — 2) if d > 3 and define

d(p—2)
2p

V(p,d) =

Theorem 6. [Caffarelli-Kohn-Nirenberg-84] Let d > 1. For any 8 € [¥(p, d), 1], with

_ 2d
P= 32209

2 0 1—60
W\ / Vu? / uf?
d < C 6 d d
(/ apr @) S Conpal | Tmede ) | | pEe

In the radial case, with A = (a — a.)?, the best constant when the
inequality is restricted to radial functions is C¢ (6, p, a) and

, there exists a positive constant Cckn (6, p, a) such that

CCKN(Qapa CL) > CEKN(Qapa a) — CEKN((gap) Ap2;p_9

D —

x(0.p) = | 2222 255 (p—2)° D 2+(20-1)p]? [ 4 D M(g2s+s) |
oxn(0,p) = I'(d/2) 2+(26—-1)p 2p0 p+2 V7 D(=25)

=
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Weighted logarithmic Hardy inequalities (WLH)

Q_A “logarithmic Hardy inequality”

Theorem 7. [del Pino, J.D. Filippas, Tertikas] Let d > 3. There exists a constant
2
Cru € (0,S] such that, for all u € DV2(R*) with [, % dx = 1, we have
R ||

Q_A “weighted logarithmic Hardy inequality” (WLH)

Theorem 8. [del Pino, J.D. Filippas, Tertikas] Let d > 1. Suppose that a < (d — 2)/2,
v > d/4andy > 1/2if d = 2. Then there exists a positive constant Cyy,i such that,

1,2(mod : |u|? _
for any u € Dg>*(R) normalized by [, PIEICERY dr = 1, we have

ul? d—2—2a |, |2 [Vul?
/Rd PEICESy log (|z| ul?) dz < 2+ log |Cwrn /Rd L dx

Svmmetrv and svmmetrv breakina of extremal functions in some interpolation ineaualities:an overview — p. 21/40



Weighted logarithmic Hardy inequalities: radial case

Theorem 9. [del Pino, J.D. Filippas, Tertikas] Letd > 1,a < (d — 2)/2andy > 1/4.
2
If u = u(|z]) € DL2(R?) is radially symmetric, and [5, lx";g—!m) dr = 1, then

|U‘2 d—2—2 2 / WU‘Q
1 T @ dr < 2~v1 C3 dx
/d| |2(a+1) 0g (| | |ul ) > 27 108 [“wLH

d |£IZ|2a

u ~ —d 2-2a (d—2—2a)? 2
U = Iﬂ_ where u(x) = |z|~ exp (— T | log |z| | )
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Extremal functions for
Caffarelli-Kohn-Nirenberg

and logarithmic Hardy
Inequalities

Joint work with Maria J. Esteban
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First existence result: the sub-critical case

Theorem 10. [J.D. Esteban] Let d > 2 and assume that a € (—00, a.)

(i) Foranyp € (2,2*)andany 6 € (J(p,d), 1), the Caffarelli-Kohn-Nirenberg
inequality (CKN)

2 0 1—60
w5 / Vu? / uf?
d < C(6# d d
(/ apr ) =COpal | Tpe @)\ L, pEe

admits an extremal function in D12 (R9)

Critical case: there exists a continuous function a* : (2,2*) — (—00, a.) such
that the inequality also admits an extremal function in D12 (R%) if § = 9(p, d) and

a € (a*(p),ac)
(i) Forany vy > d/4, the weighted logarithmic Hardy inequality (WLH)

ul? d—2—2a |, |2 [Vul?
/Rd PEICESy log (|| ul?) dz < 2+ log | Cwru e dx

admits an extremal function in D12 (R9)
Critical case: idemif v = d/4,d > 3and a € (a*, a.) for some a* € (—o0, a.)
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Existence for CKN
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Second existence result: the critical case

Let

Ay 1= Q¢ — \/(d — 1) e (2441 )—1/(d=1) T"(d/2)2/(d=1)

Theorem 11 (Critical cases). [J.D. Esteban]

() if0 =Y(p,d)and Can(p) < Cecxn (6, p, a), then (CKN) admits an extremal
function in D}:2(R%),

(iy ify=d/4,d > 3,and Cp s < Cwru(7,a), then (WLH) admits an extremal
function in D}:2(R9)

Ifa € (ay, a.) then
CLS < CWLH(d/47 CL)
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Radial symmetry and
symmetry breaking

Joint work with
M. del Pino, S. Filippas and A. Tertikas (symmetry breaking)
Maria J. Esteban, Gabriella Tarantello and Achilles Tertikas
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Implementing the method of Catrina-Wang / Felli-Schneider

Among functions w € H!(C) which depend only on s, the minimum of

Tlul = [ (Vw? +3 =220 [wl?) dy - [C"(O.p.0))? .

is achieved by w(y) := [ cosh(\ s)] _ﬁ, y = (s,w) € R x S4~1 = C with

A= i (d—2—-2a)(p—2) \/2p9p_+(229_2) as a solution of

M (p—22uw" —4w+2p|lwP 2 w=0

Spectrum of £ := —A + kwP~2 + pis given for /1 +4k/A2 > 235+ 1 by
2
Ng=pti(d+i=2)— 2 (/1+35 -1 +25)) Vi, jeN

Q The eigenspace of £ corresponding to Ao o is generated by w
Q The eigenfunction ¢ o) associated to A1 o is not radially symmetric and such that

Je®d@,0) dy=0and [, WP~ p(1 0y dy =0
Q If A\1,0 < 0, optimal functions for (CKN) cannot be radially symmetric and

C(0,p,a) > C*(0,p,a)
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Schwarz’ symmetrization

With u(x) = |z|* v(x), (CKN) is then equivalent to
[21°7" ]2, ) < Coxn(8,p.A) (A= AB)" B

with A := HVUH%Q(RN), B:=|||z|* UH%Q(RN) and A :=a(2a. —a). We
observe that the function B — h(B) := (A — AB)? B!~ satisfies

WB) 1-0 A0
hB) B  A-AB

By Hardy’s inequality (d > 3), we know that

A—AB > ir;%(A—a(Qac—a)B) = A—aB>0
andso h'(B) <0if(1-0)A<AB<«<= A/B<\/(1-0)
By interpolation A/B is small if a. — a > 0 is small enough, for 8 > ¥(p, d)
and d > 3
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Regions in which Schwarz’ symmetrization holds

01\
1
0.8
0.6
0.4 < a9(0,23)
<—CLO(0,2.2)
0.2] <« ag(6,2.1)
‘ ‘ ‘ ‘ ‘ ‘ ‘ S
0.2 0.4 0.6 0.8 1 1.2 1.4

QHered=5,a.=15andp =2.1,2.2,...3.2

Q Symmetry holds if a € [ao(6,p),ac), 0 € (¥(p,d), 1)

Q@ Horizontal segments correspond to 8 = Y¥(p, d)

Q@ Hardy’s inequality: the above symmetry region is contained in 6 > (1 — abi)2

C

Alternatively, we could prove the symmetry by the moving planes method
In the same region
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Summary (1/2): Existence for (CKN)

9A1

(1)

3)

A\

0 Qe

The zones in which existence is known are:

(1) extremals are achieved among radial functions, by the Schwarz
symmetrization method

(1)+(2) this follows from the explicit a priori estimates; A; = (a. — a1)?

(1)+(2)+(3) this follows by comparison of the optimal constant for (CKN)
with the optimal constant in the corresponding
Gagliardo-Nirenberg-Sobolev inequality
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Summary (2/2). Symmetry and symmetry breaking for (CKN)

The zone of symmetry breaking contains:
(1) by linearization around radial extremals
(1)+(2) by comparison with the Gagliardo-Nirenberg-Sobolev inequality

In (3) it is not known whether symmetry holds or if there is symmetry
breaking, while in (4), that is, for ag < a < a., Symmetry holds by the
Schwarz symmetrization

9A1

(1) (4)

(2)
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| One bound state
Lieb-Thirring inequalities and
symmetry

Joint work with Maria J. Esteban and M. Loss
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Symmetry:: a new quantitative approach

d(d—1)+4d(a—a.)’
bula) = 6(d—1)+8(a— a.)? e de.

Theorem 12. Letd > 2. Whena < Oand by (a) < b < a + 1, the extremals of the
Caffarelli-Kohn-Nirenberg inequality with & = 1 are radial and

p2 6p | T (L 1
cl, — |Sd_1|p772[(a—ac)2(p—2)2} = { p2 H 4 } F e

p+2 2p(a—ac)? | | p+2
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The symmetry region

Symmetry|region

Y

Symmetry breaking region

Svmmetrv and svmmetrv breakina of extremal functions in some interpolation ineaualities:an overview — p. 35/40



The symmetry result on the cylinder

(d—1) (6 —p)
4(p—2)
dw : the uniform probability measure on S¢—!

L?: the Laplace-Beltrami operator on S¢—1

Theorem 13. Letd > 2 and let u be a non-negative function on C = R x S%~! that
satisfies

Ay (p) ‘=

—0%u — L*u+ Au = uP™?

and consider the symmetric solution u,. Assume that

/|u(s,w)|pdsdw§/|u*(s)|pds
C R

for some 2 < p < 6 satisfying p < ;Td FA < A, (p), thenfora.e. w € S ! and

2
s € R, we have u(s,w) = u4(s — sg) for some constant s
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The one-bound state version of the Lieb-Thirring inequalit Yy

Let K(A,p,d) := C?, and
Ag(,u) .= inf {A >0 pu2+ =1/K(A,p, d)}
Lemma 14. Foranyy € (2,00)ifd =1, orforany v € (1,00) such thaty > 41 if

1
d > 2, if V is a non-negative potential in L7 2 (C) , then the operator —9% — L? — V
has at least one negative eigenvalue, and its lowest eigenvalue, — A1 (V) satisfies

;

(V) < AdG0) win o= (V)= ( [V dsd)

Moreover, equality is achieved if and only if the eigenfunction u corresponding to A1 (V)
satisfies u = V' (27=1)/4 and u is optimal for (CKN)

Symmetry < A(u) =AL(1)p
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The generalized Poincaré inequality

Theorem 15. [Bidaut-Véron, Véron] (M, g) is a compact Riemannian manifold of
dimension d — 1 > 2, without boundary, A is the Laplace Beltrami operator on M, the

Ricci tensor I? and the metric tensor g satisfy I? > (q — 1) A g in the sense of
quadratic forms, withg > 1, A > O and ¢ < d+1 . Moreover, one of these two

inequalities is strict if (M, g) is S4=1 with the standard metric.

If u is a positive solution of
Aju—Au+u?=0

then u is constant with value A1/ (21 Moreover if vol(M) = 1 and
D(M, q) := max{\ >0 : R > 2=2 (¢ — 1) A g} is positive, then

1 'y
V’U2—|—/ v22</ fuq+1) VoeWht(m
D(M’q)/w = w (M)

Applied to M = §4-1: D(S¢-1, q) = <=L

[
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The case: 0 < 1

2—p(1-6)

p+ 2) (2 efJ{)QerQ 2 _ D (1 _ (9) 2 (26—1) p+2
(20—-1)p+2

C(p,0) := (

p (2?9(—191_)?9)4-2 20p (229(—p1_)i)+2
(F(pz)> (F(pg)>
' 0 2
I'(;2%) I'(;2%%)

Notice that €(p,#) > 1 and &(p,#) =1 ifandonly if 0 =1

Theorem 16. With the above notations, for any d > 3, any p € (2,2*) and any
0 € [¥(p,d), 1), we have the estimate

(260—1) p+2

CEKN (‘97 CL,p) < CCKN (‘97 CL,p) < CEKN (‘97 a,,p) Q:(p, ‘9) ok

under the condition

,_(d-1) (20-3)p+6
B Q:(p, (9) 4(]9_2)

(a — ag)
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Thank you !
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