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Some slides related to this talk:

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/

A review of known results:
Jean Dolbeault and Maria J. Esteban
About existence, symmetry and symmetry breaking for extremal
functions of some interpolation functional inequalities

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/
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Introduction

Symmetry and symmetry breaking of extremal functions in some interpolation inequalities:an overview – p. 3/40



A symmetry breaking mechanism
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The energy point of view (ground state)
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Caffarelli-Kohn-Nirenberg
inequalities (Part I)

Joint work(s) with M. Esteban, M. Loss and G. Tarantello
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Caffarelli-Kohn-Nirenberg (CKN) inequalities

(
∫

Rd

|u|p
|x|b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

with a ≤ b ≤ a + 1 if d ≥ 3 , a < b ≤ a + 1 if d = 2 , and a 6= d−2
2 =: ac

p =
2 d

d − 2 + 2 (b − a)

Da,b :=
{

|x|−b u ∈ Lp(Rd, dx) : |x|−a |∇u| ∈ L2(Rd, dx)
}
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The symmetry issue

(
∫

Rd

|u|p
|x|b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

Ca,b = best constant for general functions u

C∗
a,b = best constant for radially symmetric functions u

C
∗
a,b ≤ Ca,b

Up to scalar multiplication and dilation, the optimal radial function is

u∗
a,b(x) = |x|a+ d

2
b−a

b−a+1

(

1 + |x|2
)− d−2+2(b−a)

2(1+a−b)

Questions: is optimality (equality) achieved ? do we have ua,b = u∗
a,b ?
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Known results

[Aubin, Talenti, Lieb, Chou-Chu, Lions, Catrina-Wang, ...]

Extremals exist for a < b < a + 1 and 0 ≤ a ≤ d−2
2 ,

for a ≤ b < a + 1 and a < 0 if d ≥ 2

Optimal constants are never achieved in the following cases
“critical / Sobolev” case: for b = a < 0, d ≥ 3

“Hardy” case: b = a + 1, d ≥ 2

If d ≥ 3, 0 ≤ a < d−2
2 and a ≤ b < a + 1, the extremal functions are

radially symmetric ... u(x) = |x|a v(x) + Schwarz symmetrization
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More results on symmetry

Radial symmetry has also been established for d ≥ 3, a < 0, |a| small
and 0 < b < a + 1: [Lin-Wang, Smets-Willem]

Schwarz foliated symmetry [Smets-Willem]

d = 3: optimality is achieved among solutions which depend only on
the “latitude" θ and on r. Similar results hold in higher dimensions
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Symmetry breaking

[Catrina-Wang, Felli-Schneider] if a < 0, a ≤ b < bFS(a), the extremal
functions ARE NOT radially symmetric !

bFS(a) =
d (d − 2 − 2a)

2
√

(d − 2 − 2a)2 + 4(d − 1)
− 1

2
(d − 2 − 2a)

[Catrina-Wang] As a → −∞, optimal functions look like some
decentered optimal functions for some Gagliardo-Nirenberg
interpolation inequalities (after some appropriate transformation)
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Approaching Onofri’s inequality ( d = 2)

[J.D., M. Esteban, G. Tarantello] A generalized Onofri inequality

On R
2, consider dµα = α+1

π
|x|2α dx

(1+|x|2 (α+1))2
with α > −1

log
(

∫

R2

ev dµα

)

−
∫

R2

v dµα ≤ 1

16 π (α + 1)
‖∇v‖2

L2(R2, dx)

For d = 2, radial symmetry holds if −η < a < 0 and −ε(η) a ≤ b < a + 1

Theorem 1. [J.D.-Esteban-Tarantello] For all ε > 0 ∃ η > 0 s.t. for a < 0, |a| < η

(i) if |a| > 2
p−ε (1 + |a|2), then

Ca,b > C∗
a,b ( symmetry breaking)

(ii) if |a| < 2
p+ε (1 + |a|2), then

s Ca,b = C∗
a,b and ua,b = u∗

a,b a

b
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A larger symetry region

For d ≥ 2, radial symmetry can be proved when b is close to a + 1

Theorem 2. [J.D.-Esteban-Loss-Tarantello] Let d ≥ 2. For every A < 0, there exists
ε > 0 such that the extremals are radially symmetric if a + 1 − ε < b < a + 1 and
a ∈ (A, 0). So they are given by u∗

a,b, up to a scalar multiplication and a dilation

a

b

d = 2 d ≥ 3
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Two regions and a curve

The symmetry and the symmetry breaking zones are simply connected
and separated by a continuous curve

Theorem 3. [J.D.-Esteban-Loss-Tarantello] For all d ≥ 2, there exists a continuous
function a∗: (2, 2∗)−→ (−∞, 0) such that limp→2∗

−

a∗(p) = 0,

limp→2+ a∗(p) = −∞ and

(i) If (a, p) ∈
(

a∗(p), d−2
2

)

× (2, 2∗), all extremals radially symmetric

(ii) If (a, p) ∈ (−∞, a∗(p)) × (2, 2∗), none of the extremals is radially symmetric

Open question. Do the curves obtained by Felli-Schneider and ours coincide ?
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Emden-Fowler transformation and the cylinder C = R × S
d−1

t = log |x| , ω =
x

|x| ∈ S
d−1 , w(t, ω) = |x|−a v(x) , Λ =

1

4
(d − 2 − 2a)2

Caffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become
standard interpolation inequalities of Gagliardo-Nirenberg type

‖w‖2
Lp(C) ≤ CΛ,p

[

‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

]

EΛ[w] := ‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

C−1
Λ,p := C

−1
a,b = inf

{

EΛ(w) : ‖w‖2
Lp(C) = 1

}

a < 0 =⇒ Λ > a2
c = 1

4 (d − 2)2

“critical / Sobolev” case: b − a → 0 ⇐⇒ p → 2d

d − 2

“Hardy” case: b − (a + 1) → 0 ⇐⇒ p → 2+
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Perturgative methods for proving symmetry

Euler-Lagrange equations
A priori estimates (use radial extremals)
Spectral analysis (gap away from the FS region of symmetry breaking)
Elliptic regularity
Argue by contradiction
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Scaling and consequences

A scaling property along the axis of the cylinder (d ≥ 2)
let wσ(t, ω) := w(σ t, ω) for any σ > 0

Fσ2Λ,p(wσ) = σ1+2/p FΛ,p(w) − σ−1+2/p (σ2 − 1)

∫

C |∇ωw|2 dy
(∫

C |w|p dy
)2/p

Lemma 4. [JD, Esteban, Loss, Tarantello] If d ≥ 2, Λ > 0 and p ∈ (2, 2∗)

(i) If Cd
Λ,p = C

d,∗
Λ,p, then Cd

λ,p = C
d,∗
λ,p and wλ,p = w∗

λ,p, for any λ ∈ (0, Λ)

(ii) If there is a non radially symmetric extremal wΛ,p, then Cd
λ,p > C

d,∗
λ,p for all λ > Λ
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A curve separates symmetry and symmetry breaking regions

Corollary 5. [JD, Esteban, Loss, Tarantello] Let d ≥ 2. For all p ∈ (2, 2∗),

Λ∗(p) ∈ (0, ΛFS(p)] and

(i) If λ ∈ (0, Λ∗(p)), then wλ,p = w∗
λ,p and clearly, Cd

λ,p = Cd,∗
λ,p

(ii) If λ = Λ∗(p), then Cd
λ,p = Cd,∗

λ,p

(iii) If λ > Λ∗(p), then Cd
λ,p > Cd,∗

λ,p

Upper semicontinuity
is easy to prove
For continuity,
a delicate spectral
analysis is needed
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Caffarelli-Kohn-Nirenberg
inequalities (Part II)

and
Logarithmic Hardy

inequalities
Joint work with M. del Pino, S. Filippas and A. Tertikas
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let 2∗ = ∞ if d = 1 or d = 2, 2∗ = 2d/(d − 2) if d ≥ 3 and define

ϑ(p, d) :=
d (p − 2)

2 p

Theorem 6. [Caffarelli-Kohn-Nirenberg-84] Let d ≥ 1. For any θ ∈ [ϑ(p, d), 1], with

p = 2 d
d−2+2 (b−a) , there exists a positive constant CCKN(θ, p, a) such that

(
∫

Rd

|u|p
|x|b p

dx

)
2
p

≤ CCKN(θ, p, a)

(
∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

In the radial case, with Λ = (a − ac)
2, the best constant when the

inequality is restricted to radial functions is C∗
CKN(θ, p, a) and

CCKN(θ, p, a) ≥ C
∗
CKN(θ, p, a) = C

∗
CKN(θ, p) Λ

p−2
2p −θ

C∗
CKN(θ, p) =

[

2 πd/2

Γ(d/2)

]2 p−1
p
[

(p−2)2

2+(2 θ−1) p

]

p−2
2 p
[

2+(2 θ−1) p
2 p θ

]θ [
4

p+2

]

6−p
2 p

[

Γ( 2
p−2+ 1

2 )√
π Γ( 2

p−2 )

]

p−2
p
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Weighted logarithmic Hardy inequalities (WLH)

A “logarithmic Hardy inequality”

Theorem 7. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 3. There exists a constant

CLH ∈ (0, S] such that, for all u ∈ D1,2(Rd) with
∫

Rd

|u|2
|x|2 dx = 1, we have

∫

Rd

|u|2
|x|2 log

(

|x|d−2|u|2
)

dx ≤ d

2
log

[

CLH

∫

Rd

|∇u|2 dx

]

A “weighted logarithmic Hardy inequality” (WLH)

Theorem 8. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 1. Suppose that a < (d − 2)/2,

γ ≥ d/4 and γ > 1/2 if d = 2. Then there exists a positive constant CWLH such that,

for any u ∈ D1,2
a (Rd) normalized by

∫

Rd

|u|2
|x|2 (a+1) dx = 1, we have

∫

Rd

|u|2
|x|2 (a+1)

log
(

|x|d−2−2 a |u|2
)

dx ≤ 2 γ log

[

CWLH

∫

Rd

|∇u|2
|x|2 a

dx

]
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Weighted logarithmic Hardy inequalities: radial case

Theorem 9. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 1, a < (d − 2)/2 and γ ≥ 1/4.

If u = u(|x|) ∈ D1,2
a (Rd) is radially symmetric, and

∫

Rd

|u|2
|x|2 (a+1) dx = 1, then

∫

Rd

|u|2
|x|2 (a+1)

log
(

|x|d−2−2 a |u|2
)

dx ≤ 2 γ log

[

C
∗
WLH

∫

Rd

|∇u|2
|x|2 a

dx

]

C∗
WLH = 1

γ

[Γ( d
2 )]

1
2 γ

(8 πd+1 e)
1

4 γ

(

4 γ−1
(d−2−2 a)2

)

4 γ−1
4 γ

if γ > 1
4

C∗
WLH = 4

[Γ( d
2 )]

2

8 πd+1 e
if γ = 1

4

If γ > 1
4 , equality is achieved by the function

u =
ũ

∫

Rd

|ũ|2
|x|2 dx

where ũ(x) = |x|− d−2−2 a
2 exp

(

− (d−2−2a)2

4 (4 γ−1)

[

log |x|
]2
)
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Extremal functions for
Caffarelli-Kohn-Nirenberg

and logarithmic Hardy
inequalities

Joint work with Maria J. Esteban
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First existence result: the sub-critical case

Theorem 10. [J.D. Esteban] Let d ≥ 2 and assume that a ∈ (−∞, ac)

(i) For any p ∈ (2, 2∗) and any θ ∈ (ϑ(p, d), 1), the Caffarelli-Kohn-Nirenberg
inequality (CKN)

(
∫

Rd

|u|p
|x|b p

dx

)
2
p

≤ C(θ, p, a)

(
∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

admits an extremal function in D1,2
a (Rd)

Critical case: there exists a continuous function a∗ : (2, 2∗) → (−∞, ac) such

that the inequality also admits an extremal function in D1,2
a (Rd) if θ = ϑ(p, d) and

a ∈ (a∗(p), ac)

(ii) For any γ > d/4, the weighted logarithmic Hardy inequality (WLH)

∫

Rd

|u|2
|x|2 (a+1)

log
(

|x|d−2−2 a |u|2
)

dx ≤ 2 γ log

[

CWLH

∫

Rd

|∇u|2
|x|2 a

dx

]

admits an extremal function in D1,2
a (Rd)

Critical case: idem if γ = d/4, d ≥ 3 and a ∈ (a⋆, ac) for some a⋆ ∈ (−∞, ac)
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Existence for CKN

a

b

a

b

d = 3, θ = 1 d = 3, θ = 0.8
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Second existence result: the critical case

Let

a⋆ := ac −
√

(d − 1) e (2d+1 π)−1/(d−1) Γ(d/2)2/(d−1)

Theorem 11 (Critical cases). [J.D. Esteban]

(i) if θ = ϑ(p, d) and CGN(p) < CCKN(θ, p, a), then (CKN) admits an extremal

function in D1,2
a (Rd),

(ii) if γ = d/4, d ≥ 3, and CLS < CWLH(γ, a), then (WLH) admits an extremal

function in D1,2
a (Rd)

If a ∈ (a⋆, ac) then

CLS < CWLH(d/4, a)
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Radial symmetry and
symmetry breaking

Joint work with
M. del Pino, S. Filippas and A. Tertikas (symmetry breaking)
Maria J. Esteban, Gabriella Tarantello and Achilles Tertikas
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Implementing the method of Catrina-Wang / Felli-Schneider

Among functions w ∈ H1(C) which depend only on s, the minimum of

J [w] :=

Z

C

`

|∇w|2 + 1
4

(d − 2 − 2 a)2 |w|2
´

dy − [C∗(θ, p, a)]−
1
θ

`R

C
|w|p dy

´

2
p θ

`R

C
|w|2 dy

´

1−θ
θ

is achieved by w(y) :=
ˆ

cosh(λ s)
˜−

2
p−2 , y = (s, ω) ∈ R × Sd−1 = C with

λ := 1
4

(d − 2 − 2 a) (p − 2)
q

p+2
2 p θ−(p−2)

as a solution of

λ2 (p − 2)2 w′′ − 4 w + 2 p |w|p−2 w = 0

Spectrum of L := −∆ + κ wp−2 + µ is given for
p

1 + 4 κ/λ2 ≥ 2 j + 1 by

λi,j = µ + i (d + i − 2) − λ2

4

“
q

1 + 4 κ
λ2 − (1 + 2 j)

”2
∀ i , j ∈ N

The eigenspace of L corresponding to λ0,0 is generated by w

The eigenfunction φ(1,0) associated to λ1,0 is not radially symmetric and such that
R

C
w φ(1,0) dy = 0 and

R

C
wp−1 φ(1,0) dy = 0

If λ1,0 < 0, optimal functions for (CKN) cannot be radially symmetric and

C(θ, p, a) > C
∗(θ, p, a)
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Schwarz’ symmetrization

With u(x) = |x|a v(x), (CKN) is then equivalent to

‖|x|a−b v‖2
Lp(RN ) ≤ CCKN(θ, p, Λ) (A− λB)

θ B1−θ

with A := ‖∇v‖2
L2(RN ), B := ‖|x|−1 v‖2

L2(RN ) and λ := a (2 ac − a). We

observe that the function B 7→ h(B) := (A− λB)θ B1−θ satisfies

h′(B)

h(B)
=

1 − θ

B − λ θ

A− λB

By Hardy’s inequality (d ≥ 3), we know that

A− λB ≥ inf
a>0

(

A− a (2 ac − a)B
)

= A− a2
c B > 0

and so h′(B) ≤ 0 if (1 − θ)A < λB ⇐⇒ A/B < λ/(1 − θ)
By interpolation A/B is small if ac − a > 0 is small enough, for θ > ϑ(p, d)
and d ≥ 3
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Regions in which Schwarz’ symmetrization holds

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

Here d = 5, ac = 1.5 and p = 2.1, 2.2, . . . 3.2

Symmetry holds if a ∈ [a0(θ, p), ac), θ ∈ (ϑ(p, d), 1)

Horizontal segments correspond to θ = ϑ(p, d)

Hardy’s inequality: the above symmetry region is contained in θ > (1 − a
ac

)2

Alternatively, we could prove the symmetry by the moving planes method
in the same region
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Summary (1/2): Existence for (CKN)

a

θ

ac0

1

(1)

(2)

(3)

The zones in which existence is known are:

(1) extremals are achieved among radial functions, by the Schwarz
symmetrization method

(1)+(2) this follows from the explicit a priori estimates; Λ1 = (ac − a1)
2

(1)+(2)+(3) this follows by comparison of the optimal constant for (CKN)
with the optimal constant in the corresponding
Gagliardo-Nirenberg-Sobolev inequality
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Summary (2/2): Symmetry and symmetry breaking for (CKN)

The zone of symmetry breaking contains:

(1) by linearization around radial extremals

(1)+(2) by comparison with the Gagliardo-Nirenberg-Sobolev inequality

In (3) it is not known whether symmetry holds or if there is symmetry
breaking, while in (4), that is, for a0 ≤ a < ac, symmetry holds by the
Schwarz symmetrization

a

θ

ac0

1

(1)

(2)
(3)

(4)

(3)
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One bound state
Lieb-Thirring inequalities and

symmetry
Joint work with Maria J. Esteban and M. Loss
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Symmetry:: a new quantitative approach

b⋆(a) :=
d (d − 1) + 4 d (a − ac)

2

6 (d − 1) + 8 (a − ac)2
+ a − ac .

Theorem 12. Let d ≥ 2 . When a < 0 and b⋆(a) ≤ b < a + 1 , the extremals of the

Caffarelli-Kohn-Nirenberg inequality with θ = 1 are radial and

Cd
a,b = |Sd−1|

p−2
p

[

(a−ac)
2 (p−2)2

p+2

]

p−2
2 p
[

p+2
2 p (a−ac)2

][

4
p+2

]

6−p
2 p





Γ
(

2
p−2 + 1

2

)

√
π Γ

(

2
p−2

)





p−2
p
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The symmetry region

a

b

0

−1 −

1

2

1

b = a + 1

b = a

b = bFS(a)

Symmetry region

Symmetry breaking region

−2

2
= 1

2

b = b⋆(a) d
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The symmetry result on the cylinder

Λ⋆(p) :=
(d − 1) (6 − p)

4 (p − 2)

dω : the uniform probability measure on S
d−1

L2: the Laplace-Beltrami operator on S
d−1

Theorem 13. Let d ≥ 2 and let u be a non-negative function on C = R × S
d−1 that

satisfies

−∂2
su − L2u + Λ u = up−1

and consider the symmetric solution u∗. Assume that

∫

C
|u(s, ω)|p ds dω ≤

∫

R

|u∗(s)|p ds

for some 2 < p < 6 satisfying p ≤ 2 d
d−2 . If Λ ≤ Λ⋆(p), then for a.e. ω ∈ S

d−1 and

s ∈ R , we have u(s, ω) = u∗(s − s0) for some constant s0
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The one-bound state version of the Lieb-Thirring inequalit y

Let K(Λ, p, d) := Cd
a,b and

Λd
γ(µ) := inf

{

Λ > 0 : µ
2 γ

2 γ+1 = 1/K(Λ, p, d)
}

Lemma 14. For any γ ∈ (2,∞) if d = 1 , or for any γ ∈ (1,∞) such that γ ≥ d−1
2 if

d ≥ 2 , if V is a non-negative potential in Lγ+ 1
2 (C) , then the operator −∂2 − L2 − V

has at least one negative eigenvalue, and its lowest eigenvalue, −λ1(V ) satisfies

λ1(V ) ≤ Λd
γ(µ) with µ = µ(V ) :=

(
∫

C
V γ+ 1

2 ds dω

)
1
γ

Moreover, equality is achieved if and only if the eigenfunction u corresponding to λ1(V )

satisfies u = V (2 γ−1)/4 and u is optimal for (CKN)

Symmetry ⇐⇒ Λd
γ(µ) = Λd

γ(1) µ
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The generalized Poincaré inequality

Theorem 15. [Bidaut-Véron, Véron] (M, g) is a compact Riemannian manifold of
dimension d − 1 ≥ 2, without boundary, ∆g is the Laplace-Beltrami operator on M, the

Ricci tensor R and the metric tensor g satisfy R ≥ d−2
d−1 (q − 1) λ g in the sense of

quadratic forms, with q > 1, λ > 0 and q ≤ d+1
d−3 . Moreover, one of these two

inequalities is strict if (M, g) is S
d−1 with the standard metric.

If u is a positive solution of

∆g u − λu + uq = 0

then u is constant with value λ1/(q−1) Moreover, if vol(M) = 1 and

D(M, q) := max{λ > 0 : R ≥ N−2
N−1 (q − 1) λ g} is positive, then

1

D(M, q)

∫

M
|∇v|2 +

∫

M
|v|2 ≥

(
∫

M
|v|q+1

)
2

q+1

∀ v ∈ W 1,1(M)

Applied to M = S
d−1: D(Sd−1, q) = q−1

d−1
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The case: θ < 1

C(p, θ) :=
(p + 2)

p+2
(2 θ−1) p+2

(2 θ − 1) p + 2

(

2 − p (1 − θ)

2

)2 2−p (1−θ)
(2 θ−1) p+2

·
(

Γ( p
p−2 )

Γ( θ p
p−2 )

)

4 (p−2)
(2 θ−1) p+2

(

Γ( 2 θ p
p−2 )

Γ( 2 p
p−2 )

)

2 (p−2)
(2 θ−1) p+2

Notice that C(p, θ) ≥ 1 and C(p, θ) = 1 if and only if θ = 1

Theorem 16. With the above notations, for any d ≥ 3 , any p ∈ (2, 2∗) and any

θ ∈ [ϑ(p, d), 1) , we have the estimate

C
∗
CKN(θ, a, p) ≤ CCKN(θ, a, p) ≤ C

∗
CKN(θ, a, p) C(p, θ)

(2 θ−1) p+2
2 p

under the condition

(a − ac)
2 ≤ (d − 1)

C(p, θ)

(2 θ − 3) p + 6

4 (p − 2)
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Thank you !
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