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Logistic equations

The problem: a logistic equation

ur—Au = du—n(x)v” in Q
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m Q C RN bounded domain.
m n(x) > 0in Q is a continuous function not identically zero.
mp>1 ) eR.

m 0 < up € L}(Q) and the solution, which will be denoted
u(t; up), becomes classical for t > 0.
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Logistic equations

The equation degenerates to a linear equation in the set
Ko ={x€Q: n(x)=0}

which is a compact set in Q (does not touch the boundary).

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Logistic equations

The equation degenerates to a linear equation in the set
Ko ={x€Q: n(x)=0}

which is a compact set in Q (does not touch the boundary).

(the case of a smooth set Ky has been studied by Lépez Gémez et
al. using the concept of “Metasolutions”.
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Previous results

Previous results

Proposition (ARB and A. Vidal-Lépez, JDE, 244:2983-3030, 2008

i) Suppose either n(x) >~ > 0in Qor 1/n € L5(Q), s > N/2p.
Then for any A € R there exists a unique globally asymptotically
stable nonegative equilibria ¢: for every ug > 0 and nonzero in €2,

Jim u(t, x; uo) = ()

uniformly in x € Q.
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Previous results

Proposition (ARB and A. Vidal-Lépez, JDE, 244:2983-3030, 2008

i) Suppose either n(x) >~ > 0in Qor 1/n € L5(Q), s > N/2p.
Then for any A € R there exists a unique globally asymptotically
stable nonegative equilibria ¢: for every ug > 0 and nonzero in €2,

Jim u(t, x; uo) = ()

uniformly in x € Q. Moreover if A < \;(Q) then ¢ = 0, while if
A > A1(Q) then ¢(x) > 0in Q.
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Previous results

Proposition (ARB and A. Vidal-Lépez, JDE, 244:2983-3030, 2008

i) Suppose either n(x) >~ > 0in Qor 1/n € L5(Q), s > N/2p.
Then for any A € R there exists a unique globally asymptotically
stable nonegative equilibria ¢: for every ug > 0 and nonzero in €2,

Jim u(t, x; uo) = ()

uniformly in x € Q. Moreover if A < \;(Q) then ¢ = 0, while if
A > A1(Q) then ¢(x) > 0in Q.

i) Let Ko = {x € Q: n(x) =0} and Qs be a neighborhood of Kj
such that n(x) > & > 0 for all x € Q\ Q.
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Previous results

Proposition (ARB and A. Vidal-Lépez, JDE, 244:2983-3030, 2008

i) Suppose either n(x) >~ > 0in Qor 1/n € L5(Q), s > N/2p.
Then for any A € R there exists a unique globally asymptotically
stable nonegative equilibria ¢: for every ug > 0 and nonzero in €2,

Jim u(t, x; uo) = ()

uniformly in x € Q. Moreover if A < \;(Q) then ¢ = 0, while if

A > A1(Q) then ¢(x) > 0in Q.

i) Let Ko = {x € Q: n(x) =0} and Qs be a neighborhood of Kj
such that n(x) > § > 0 for all x € Q\ Qs. Denote by \1(Qs) first
eigenvalue of —A with Dirichlet boundary conditions in ;.
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Previous results

Proposition (ARB and A. Vidal-Lépez, JDE, 244:2983-3030, 2008

i) Suppose either n(x) >~ > 0in Qor 1/n € L5(Q), s > N/2p.
Then for any A € R there exists a unique globally asymptotically
stable nonegative equilibria ¢: for every ug > 0 and nonzero in €2,

Jim u(t, x; uo) = ()

uniformly in x € Q. Moreover if A < \;(Q) then ¢ = 0, while if

A > A1(Q) then ¢(x) > 0in Q.

i) Let Ko = {x € Q: n(x) =0} and Qs be a neighborhood of Kj
such that n(x) > § > 0 for all x € Q\ Qs. Denote by \1(Qs) first
eigenvalue of —A with Dirichlet boundary conditions in ;.

Then, if A < A1(Qs), the above applies.
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Previous results

Now consider § — 0 and assume €25 are decreasing. Then
Ko = N§>082s and the first eigenvalue of —A with Dirichlet BC in
Qs, A\1(€s), is increasing in §. Then

)\1(9) < )\o(Ko) = gl_nl) /\1(95) < o0
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Previous results

Now consider § — 0 and assume €25 are decreasing. Then
Ko = N§>082s and the first eigenvalue of —A with Dirichlet BC in
Qs, A\1(€s), is increasing in §. Then

)\1(9) < )\o(Ko) = gl_nl) )\1(95) < o0

Hence we get the following

Corollary
With the notations above, for any

A< )\o(Ko) < oo
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Corollary
With the notations above, for any

A< )\o(Ko) < oo

there exists a unique globally asymptotically stable nonegative
equilibria ).
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Previous results

Corollary

With the notations above, for any
A< )\o(Ko) < oo

there exists a unique globally asymptotically stable nonegative
equilibria ).
Also, ¢y =0 for A < A1(2) and ¢y > 0 for A > A\1(9Q).
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Main questions

Now, without assuming any regularity in Ky, we want to consider
the case A\o(Kp) < oo and
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Now, without assuming any regularity in Ky, we want to consider
the case A\o(Kp) < oo and

e What happens to equilibria ¢ as A — A\o(Kp)?
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Now, without assuming any regularity in Ky, we want to consider
the case A\o(Kp) < oo and

e What happens to equilibria ¢ as A — A\o(Kp)?

e When A > A\o(Kp) what do solutions do as t — co? (they
become unbounded)
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Main questions

Main questions

Now, without assuming any regularity in Ky, we want to consider
the case A\o(Kp) < oo and

e What happens to equilibria ¢ as A — A\o(Kp)?

e When A > A\o(Kp) what do solutions do as t — co? (they
become unbounded)

e How and where they become unbounded? Is there a Imiting
“profile”? ...
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Thick and thin sets

If K € RN is a compact set, consider a decreasing family of
smooth open sets {25 such that

K= ﬂ5>oQ5.
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Thick and thin sets

Thick and thin sets

If K € RN is a compact set, consider a decreasing family of
smooth open sets {25 such that

K= ﬂ5>oQ5.

Then for each § > 0 consider

Vul?
M(Q) = inf f%'iz,' >0,
UEH fQé u
the first eigenvalue of —A with Dirichlet boundary conditions in

Q.
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Thick and thin sets

Thick and thin sets

If K € RN is a compact set, consider a decreasing family of
smooth open sets {25 such that

K= ﬂ5>oQ5.

Then for each § > 0 consider

Vul?
(%)= inf Ja, VoF

>0
UEH fQé U2 ’

the first eigenvalue of —A with Dirichlet boundary conditions in
Q5. Then A\1(Qs) is increasing in § and we can define the
monotonic limit

)\o(K) = gl_r% )\1(95) < oo
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Thick and thin sets

Thick and thin sets

Then we have the following
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Thick and thin sets

Thick and thin sets

Then we have the following

A compact set K C RN is thick iff A\;(Qs) is bounded in &, or
equivalently iff

0< )\o(K) < 00.
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Thick and thin sets

Thick and thin sets

Definition
A compact set K C RN is thick iff A\;(Qs) is bounded in &, or
equivalently iff

0< )\o(K) < 00.

Otherwise, A\g(K) = oo and K is said thin.
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Thick and thin sets

Thick and thin sets

Then we have the following

Definition

A compact set K C RN is thick iff A\;(Qs) is bounded in &, or
equivalently iff
0< )\o(K) < 00.

Otherwise, A\g(K) = oo and K is said thin.

(independent of the decreasing family Qs, which can be assumed
to be C*°—smooth)
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Thick and thin sets

Thick and thin sets

Then we have the following result.

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Thick and thin sets

Thick and thin sets

Then we have the following result.

i) If K1 C Ky are compact sets, then A\g(K2) < Ao(K1).
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Thick and thin sets

Thick and thin sets

Proposition

i) If K1 C Kp are compact sets, then A\o(K2) < Ao(K1).
i) If K = Qg where Qg is a bounded open set, then

Mo(K) = M1(o),

the first eigenvalue of —A (Dirichlet b.c) in Q.
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Thick and thin sets

Thick and thin sets

Proposition

i) If K1 C Kp are compact sets, then A\o(K2) < Ao(K1).
i) If K = Qg where Qg is a bounded open set, then

Mo(K) = M1(o),

the first eigenvalue of —A (Dirichlet b.c) in Q.
iii) If K = K1 U K are separated compact sets, K1 N Kz = (), then

)\o(K) = min{)\o(Kl), )\o(Kz)}
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Thick and thin sets So

Corollary. Decomposition of compact sets

For any compact set K C RV, there exist a (non necessarily
unique) decomposition on pairwise separated connected

components
K=KiU...UK,UKp1U...UKp
such that
Knt1,-..,Kn are thin
and

Ki,...,K, are thick

in decreasing thickness, that is,

Ao(K1) < -+ < Xo(Kn)-

Then )\o(K) = min{)\o(Kl), coo ,)\o(Kn)} = )\O(Kl)- )



Thick and thin sets

i) Any superset of a thick set is thick.
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Thick and thin sets

i) Any superset of a thick set is thick.
ii) If K contains a ball, then it is thick.
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Thick and thin sets

Proposition

i) Any superset of a thick set is thick.
ii) If K contains a ball, then it is thick.
iii) If the Lebesgue measure of K is |K| = 0 then K is thin.
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Thick and thin sets

Proposition

i) Any superset of a thick set is thick.

ii) If K contains a ball, then it is thick.

iii) If the Lebesgue measure of K is |K| = 0 then K is thin.
iv) There exists thick sets of empty interior and with arbitrary
positive measure.

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Logistic equations Previous results Main questions Thick and thin sets Solutions for A < A\g(Kp) Solutions for

i) K is thick iff
Hi(K) :={¢ € HY(R"), €&(x)=0 ae xec RV\K}

is a nontrivial (closed) linear subspace of H!(RR").
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Logistic equations Previous results Main questions Thick and thin sets Solutions for A < A\g(Kp) Solutions for

Proposition
i) K is thick iff

Hi(K) :={¢ € HY(R"), €&(x)=0 ae xec RV\K}

is a nontrivial (closed) linear subspace of H!(RR").
ii) If K is thick, then

/ Ve
Mo(K) = inf{=B—— ¢ € H}(K), £ # 0}

/RNW ’

A.Rodriguez—Bernal, UCM. Degenerate logistic equation 13/42



Solutions for A < Xo(Kp)

Positive equilibria

Recall
Ko={xeQ: n(x)=0}CQ
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Solutions for A < A\g(Kp)

Positive equilibria

Recall
Ko={xeQ: n(x)=0}CQ

Lemma

i) Assume that the logistic equation has a nonnegative stationary
solution in L1(2). Then

A< )\o(Ko).
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Solutions for A < A\g(Kp)

Positive equilibria

Lemma

i) Assume that the logistic equation has a nonnegative stationary
solution in L1(2). Then

A< )\o(Ko).
ii) For A\1(2) < A < A\o(Kp) the positive equilibria ¢, is a smooth

and increasing function of \.
Even more, as A — Ao(Kp), we have

loallLoo(@) — 00, even |lpalli@) — o
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Solutions for A < A\g(Kp)

Proof If u is such stationary solution, then v € L*(2) with
s> J(p—1) and then

A= (=D + n(x)u™Q),

(the first eigenvalue of the operator —A + n(x)u”~1 in Q, with
Dirichlet BC).
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Solutions for A < A\g(Kp)

Proof If u is such stationary solution, then v € L*(2) with
s> J(p—1) and then

A= (=D + n(x)u™Q),

(the first eigenvalue of the operator —A + n(x)u”~1 in Q, with
Dirichlet BC).

Take a decreasing family Q5 with n(x) < § in Q5. Then, for some
p > N/2, |Inu= o) < dllullis(ay) — 0.
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Solutions for A < A\g(Kp)

Proof If u is such stationary solution, then v € L*(2) with
s> J(p—1) and then

A= (=D + n(x)u™Q),

(the first eigenvalue of the operator —A + n(x)u”~1 in Q, with
Dirichlet BC).

Take a decreasing family Q5 with n(x) < § in Q5. Then, for some
p > N2, ([0 1ogay) < Olluliay) — O.

This and the monotonicity with respect to the domain of this
eigenvalue gives

A< ,ul(—A + n(x)up_l, Q(;) — )\0(K0)
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Solutions for A < A\g(Kp)

Proof If u is such stationary solution, then v € L*(2) with
s> J(p—1) and then

A= (=D + n(x)u™Q),

(the first eigenvalue of the operator —A + n(x)u”~1 in Q, with
Dirichlet BC).

Take a decreasing family Q5 with n(x) < § in Q5. Then, for some
p > N2, ([0 1ogay) < Olluliay) — O.

This and the monotonicity with respect to the domain of this
eigenvalue gives

A < (A + n(x)uP™ Qs) — Mo(Ko).

Monotonicity in A follows from the equation satisfied by %L/\A.D
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Solutions for A < A\g(Kp)

(D)

AléQ) Mo (Ko) A

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Solutions for A > Xg(Kp)

Solutions for A > Ao(Ko)
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Solutions for A > Xg(Kp)

Solutions for A > Ao(Ko)

e For A > \1(Q2), u =0 is unstable.
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Solutions for A > Xg(Kp)

Solutions for A > Ao(Ko)

e For A > \1(Q2), u =0 is unstable.

o If A > \o(Kp) and up > 0 then u(t; up) is globally defined but
can not be bounded in Q (if it was, using compactness, there
would exist a bounded stationary solution).
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Solutions for A > Xg(Kp)

Solutions for A > Ao(Ko)

e For A > \1(Q2), u =0 is unstable.

o If A > \o(Kp) and up > 0 then u(t; up) is globally defined but
can not be bounded in Q (if it was, using compactness, there
would exist a bounded stationary solution).

Therefore

lim sup ||u(t; uo)|| Lo (@) = o0
t—oo

even
limsup [|u(t; o)l 2 (q) = oo
t—o0o
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Solutions for A > Xg(Kp)

Solutions for A > Ao(Ko)

e For A > \1(Q2), u =0 is unstable.

o If A > \o(Kp) and up > 0 then u(t; up) is globally defined but
can not be bounded in Q (if it was, using compactness, there
would exist a bounded stationary solution).

Therefore

lim sup ||u(t; uo)|| Lo (@) = o0
t—oo

even
limsup [|u(t; o)l 2 (q) = oo
t—o0o

Where and how solutions become unbounded?
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Solutions for A > Xg(Kp)

Upper universal bounds

Using Garcia-Melian et al. ARMA, 145, 261-289 (1998),
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Solutions for A > Xg(Kp)

Upper universal bounds

Using Garcia-Melian et al. ARMA, 145, 261-289 (1998),

Lemma

Assume p > 1 and A, 3 > 0 and consider

—Az =Xz — 3z in B(0,a)
zZ=00 on 9B(0, a).
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Solutions for A > Xg(Kp)

Upper universal bounds

Lemma

Assume p > 1 and A, 3 > 0 and consider

—Az =Xz — 3z in B(0,a)
zZ=00 on 9B(0, a).

Then
i) There exists a unique positive radial solution, z,(x).
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Solutions for A > Xg(Kp)

Upper universal bounds

Lemma

Assume p > 1 and A, 8 > 0 and consider

—Az =Xz — 3z in B(0,a)
zZ=00 on 9B(0, a).

Then
i) There exists a unique positive radial solution, z,(x).
ii) The solution satisfies

L _ AMp+1 B L.
(3)7 <200 = gt 509 < (G2 + )

for some constant B > 0.
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Solutions for A > Xg(Kp)

Solutions remain bounded out of Kj

As a consequence
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Solutions for A > Xg(Kp)

Solutions remain bounded out of Kj

As a consequence

Let xp € Q\ Kp and let ug > 0 be a bounded initial data.
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Solutions for A > Xg(Kp)

Solutions remain bounded out of Kj

Proposition

Let xp € Q\ Kp and let ug > 0 be a bounded initial data. Then for
any given A > A\g(Kp) there exists b > 0 and M > 0 such that

0<u(t,x;up) <M, x¢€B(xp,b), t>0.
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Solutions for A > Xg(Kp)

Solutions become unbounded first on the thicker parts of
Ko.

We can assume
Ko=KiU...UK,UKpr1U...UKp
a decomposition in pairwise separated components, and such that
Knt1, ..., Km are thin

and
Ki,...,K, are thick

in decreasing thickness, that is,

Ao(K1) < -+ < Xo(Kn)-
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Solutions for A > Xg(Kp)

Solutions become unbounded first on the thicker parts of
Ko.

i) For any A € R all solution are bounded in K11 U...U K.
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Solutions for A > Xg(Kp)

Solutions become unbounded first on the thicker parts of
Ko.

i) For any A € R all solution are bounded in K11 U...U K.
ii) If forsome j=1,...,n—1

Ao(Kj) < A < Xo(Kjt1)
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Solutions for A > Xg(Kp)

Solutions become unbounded first on the thicker parts of
Ko.

Theorem

i) For any A € R all solution are bounded in K11 U...U K.
ii) If forsome j=1,...,n—1

Ao(Kj) < A < Xo(Kjt1)

then all solution are bounded in Kj; 1 U... UK.
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Solutions for A > Xg(Kp)

Solutions become unbounded first on the thicker parts of
Ko.

Theorem

i) For any A € R all solution are bounded in K11 U...U K.
ii) If forsome j=1,...,n—1

Ao(Kj) < A < Xo(Kjt1)

then all solution are bounded in Kj; 1 U... UK.
Moreover, all solutions are unbounded in each Ki,..., K;.
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Solutions for A > Xg(Kp)

Solutions become unbounded first on the thicker parts of
Ko.

Theorem

i) For any A € R all solution are bounded in K11 U...U K.
ii) If forsome j=1,...,n—1

Ao(Kj) < A < Xo(Kjt1)

then all solution are bounded in Kj; 1 U... UK.

Moreover, all solutions are unbounded in each Ki,..., K;.
i) If A > Ao(K,) then all solutions are unbounded in each
Ki,...,Ky.
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Solutions for A > Xg(Kp)

Proof Let K be any component of Ky in the decomposition above.
Take a decreasing family Q5 for K.
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Solutions for A > Xg(Kp)

Proof Let K be any component of Ky in the decomposition above.
Take a decreasing family Qg for K. For ¢ small enough u(x, t)
remains bounded on 0€25 by M.
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Solutions for A > Xg(Kp)

Proof Let K be any component of Ky in the decomposition above.
Take a decreasing family Qg for K. For ¢ small enough u(x, t)
remains bounded on 025 by M. Then the the solution of

zz— Az = Az in Qs
z M on 09
z(0) = w>0 in Qs

is a supersolution for u(x, t) on Q5 and then u(x,t) < z(x, t).
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Solutions for A > Xg(Kp)

Proof Let K be any component of Ky in the decomposition above.
Take a decreasing family Qg for K. For ¢ small enough u(x, t)
remains bounded on 025 by M. Then the the solution of

zz— Az = Az in Qs
z M on 09
z(0) = w=>0 in Qs

is a supersolution for u(x, t) on Q5 and then u(x,t) < z(x, t).

If A < \o(K) then for § small enough we have A\ < A\1(€s) and
then z is bounded on Q.
This proves i) and the boundedness part in ii).
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Solutions for A > Xg(Kp)

Let K be any of the thick components Ki,..., K, and assume a
solution, u(x, t), remains bounded on a neighborhood of K for all

time.
Take a decreasing family Qs for K such that 0 < n(x) < § in Qs,

since n(x) is continuous.
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Solutions for A > Xg(Kp)

Let K be any of the thick components Ki,..., K, and assume a
solution, u(x, t), remains bounded on a neighborhood of K for all
time.

Take a decreasing family Qs for K such that 0 < n(x) < § in Qs,
since n(x) is continuous. Then, given € > 0, for § small enough,
we have

0< n(x)u”_:l < SMP Ll < ¢

in Qs and for all times.
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Solutions for A > Xg(Kp)

Let K be any of the thick components Ki,..., K, and assume a
solution, u(x, t), remains bounded on a neighborhood of K for all
time.

Take a decreasing family Qs for K such that 0 < n(x) < § in Qs,
since n(x) is continuous. Then, given € > 0, for § small enough,
we have
0< n(x)u”_:l < SMP Ll < ¢

in Qs and for all times.
Then the the solution of

zz—Az = (A—¢)z in Qs
0 on 0
z(0) = z>0

with zg < g in Qs is a subsolution for u(x, t) on Qs and then
u(x, t) > z(x,t).

N
I
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Solutions for A > Xg(Kp)

Let K be any of the thick components Ki,..., K, and assume a
solution, u(x, t), remains bounded on a neighborhood of K for all
time.

Take a decreasing family Qs for K such that 0 < n(x) < § in Qs,
since n(x) is continuous. Then, given € > 0, for § small enough,
we have
0< n(x)u”_:l < SMP Ll < ¢
in Qs and for all times.
Then the the solution of
zz—Az = (A—¢)z in Qs
z =0 on 0
z(0) = z>0
with zg < g in Qs is a subsolution for u(x, t) on Qs and then
u(x, t) > z(x,t).
If A > X\o(K) then for § small enough we have X\ > A\1(€s) and
then z is unbounded on 5.
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Solutions for A > Xg(Kp)

Let K be any of the thick components Ki,..., K, and assume a
solution, u(x, t), remains bounded on a neighborhood of K for all
time.

Take a decreasing family Qs for K such that 0 < n(x) < § in Qs,
since n(x) is continuous. Then, given € > 0, for § small enough,
we have
0< n(x)u”_:l < SMP Ll < ¢
in Qs and for all times.
Then the the solution of
zz—Az = (A—¢)z in Qs
z =0 on 0
z(0) = z>0

with zg < g in Qs is a subsolution for u(x, t) on Qs and then
u(x, t) > z(x,t).

If A > X\o(K) then for § small enough we have X\ > A\1(€s) and
then z is unbounded on 5.

i) This part is immediate. [
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Solutions for A > Xg(Kp)

Where in a thick component is a solution bounded?

A thick component of Kj.
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Solutions for A > Xg(Kp)

Improved universal bound

Lemma

For any solution there exists a constant A = A(ug, A) such that

_1
ST A ) o xeq
e2(x) infp(xe(x)) N

0 < u(t,x;up) < h(x) = (

with e(x) = Cdist(x, Kp), with 0 < C < 1.
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Solutions for A > Xg(Kp)

Improved universal bound

Lemma

For any solution there exists a constant A = A(ug, A) such that

_1
ST A ) o xeq
e2(x) infp(xe(x)) N

0 < u(t,x;up) < h(x) = (

with e(x) = Cdist(x, Kp), with 0 < C < 1.

Note that h(x) — oo as x — K.
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Solutions for A > Xg(Kp)

Estimates on transversal sections

Definition. Transversal section

Let S be a bounded closed regular piece of a hyperplane in RN
That is, S = Sp with Syp a bounded open set in the hyperplane.
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Solutions for A > Xg(Kp)

Estimates on transversal sections

Definition. Transversal section

Let S be a bounded closed regular piece of a hyperplane in RN
That is, S = Sp with Syp a bounded open set in the hyperplane.

We say S is transversal to the compact set K, if K ¢ S,
Ks=KNS #( and for xe S

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Solutions for A > Xg(Kp)

Estimates on transversal sections

Definition. Transversal section

Let S be a bounded closed regular piece of a hyperplane in RN
That is, S = Sp with Syp a bounded open set in the hyperplane.

We say S is transversal to the compact set K, if K ¢ S,
Ks=KNS #( and for xe S

diSts(X, Kg) ~ diSt(X, K)

where dists denotes the N — 1 dimensional distance on the
hyperplane containing S.
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Proposition. Estimate on transversal sections

Assume S is transversal to K
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Proposition. Estimate on transversal sections

Assume S is transversal to K and for x € S, close enough to K,
and for g(x) = Cdist(x, K), with 0 < C < 1, we have
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Logistic equations Previous results Main questions Thick and thin sets Solutions for A < X\o(Kp) Solutions for A > Ao (Kp)

Proposition. Estimate on transversal sections

Assume S is transversal to K and for x € S, close enough to K,
and for g(x) = Cdist(x, K), with 0 < C < 1, we have

inf n > n*(dist(x, K
L (dist(x, K))

with n*, continuous and n*(s) > 0 if s > 0, n*(0) = 0.
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Proposition. Estimate on transversal sections

Assume S is transversal to K and for x € S, close enough to K,
and for g(x) = Cdist(x, K), with 0 < C < 1, we have

inf n > n*(dist(x, K
L (dist(x, K))
with n*, continuous and n*(s) > 0 if s > 0, n*(0) = 0.

Furthermore we assume j(s) = s?n*(s) is increasing in s > 0.

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Logistic equations Previous results Main questions Thick and thin sets Solutions for A < X\o(Kp) Solutions for A > Ao (Kp)

Proposition. Estimate on transversal sections

Assume S is transversal to K and for x € S, close enough to K,
and for g(x) = Cdist(x, K), with 0 < C < 1, we have

inf n > n*(dist(x, K
L (dist(x, K))

with n*, continuous and n*(s) > 0 if s > 0, n*(0) = 0.
Furthermore we assume j(s) = s?n*(s) is increasing in s > 0.

Finally assume that the N — 1 fractal dimension of Ks = KNS is
0 < d* < N —1,; that is, the fractal dimension of Ks as a subset of
RN-1.
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Proposition. Estimate on transversal sections

Assume S is transversal to K and for x € S, close enough to K,
and for g(x) = Cdist(x, K), with 0 < C < 1, we have

inf n > n*(dist(x, K
L (dist(x, K))

with n*, continuous and n*(s) > 0 if s > 0, n*(0) = 0.
Furthermore we assume j(s) = s?n*(s) is increasing in s > 0.

Finally assume that the N — 1 fractal dimension of Ks = KNS is
0 < d* < N —1,; that is, the fractal dimension of Ks as a subset of
RN-1.

Note that B(x,e(x)) is N—dimensional ball. This condition gives
information in the way n(x) vanishes, as x € S approaches K
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/OO (j_l(sp%)) N ds < 00

then for any solution there exists h € L"(S) such that

0 < u(x,t) < h(x), forallt>0andxecS.
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If r > 1 is such that

/OO (j—l( ; )) N ds < 00

then for any solution there exists h € L"(S) such that

0 < u(x,t) < h(x), forallt>0andxecS.

In particular, if

>1+ 2
p N_

and n*(s) = Cs” with v > 0, then the above condition is satisfied,
provided v, d* and r satisfy
(r—(N—1-d")

v+2 '

1<r<

o
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Both the “size” of the section Ks (in terms on its fractal
dimension) and the way n(x) vanishes near Ks, intervene in the
result above.

A.Rodriguez—Bernal, UCM. Degenerate logistic equation



Solutions for A > Xg(Kp)

Both the “size” of the section Ks (in terms on its fractal
dimension) and the way n(x) vanishes near Ks, intervene in the
result above.

These are local properties of K near S.
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Remark

The result also holds without assuming that S is a piece of a
hyperplane. It is enough that S = F(S5*) where F is a bi-Lipschitz
diffeomorphism in RN~ as long as

dists(x, Ks) ~ dist(x, K)

Note that now dists denotes the geodesic distance on S.
Also, we require that Ks = F(K*) where K* ¢ RV=1 has fractal
dimension 0 < d* < N — 1.
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Solutions for A > Xg(Kp)

A sufficient condition for boundedness in a part of a thick
component

Assume K is a thick component of Ky, and K = K; U K> where
KiN Ky # 0.
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A sufficient condition for boundedness in a part of a thick
component

Assume K is a thick component of Ky, and K = K; U K> where
KiN Ky # 0.
Assume also K is thicker than K>, that is, A\g(K) < Ao(K2).
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Solutions for A > Xg(Kp)

A sufficient condition for boundedness in a part of a thick
component

Assume K is a thick component of Ky, and K = K; U K> where
KiN Ky # 0.
Assume also K is thicker than K>, that is, A\g(K) < Ao(K2).

A natural question is wether or not the solutions of the logistic
equation become unbounded first on Ky than in K.
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We will assume estimates on a suitable transversal section

Ki
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Theorem

i) Assume K is a thick component of Ky, and K = K; U K> where
K1 N Ky # (). Assume also K is thicker than K3, that is,
)\o(K) < )\o(Kz).
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Theorem

i) Assume K is a thick component of Ky, and K = K; U K> where
K1 N Ky # (). Assume also K is thicker than K3, that is,
)\o(K) < )\o(Kz).

ii) Assume B is an “isolati_on box", for K5, that is, an open
bounded set B such that B O Kz, K1 N B = {) and
KiNB=K;NK.
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Theorem

i) Assume K is a thick component of Ky, and K = K; U K> where
K1 N Ky # (). Assume also K is thicker than K3, that is,
)\o(K) < )\o(Kz).

ii) Assume B is an “isolati_on box", for K5, that is, an open
bounded set B such that B O Kz, K1 N B = {) and
KiNB=K;NK.

iii) Moreover, assume one of the “faces” of its boundary, say
S C 0B, is transversal to K.
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Theorem

i) Assume K is a thick component of Ky, and K = K; U K> where
K1 N Ky # (). Assume also K is thicker than K3, that is,
)\o(K) < )\o(Kz).

ii) Assume B is an “isolati_on box", for K5, that is, an open
bounded set B such that B O Kz, K1 N B = {) and
KiNB=K;NK.

iii) Moreover, assume one of the “faces” of its boundary, say
S C 0B, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension
of Ks = KNS for the estimate on the transversal section.
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Theorem

i) Assume K is a thick component of Ky, and K = K; U K> where
K1 N Ky # (). Assume also K is thicker than K3, that is,
)\o(K) < )\o(Kz).

ii) Assume B is an “isolati_on box", for K5, that is, an open
bounded set B such that B O Kz, K1 N B = {) and
KiNB=K;NK.

iii) Moreover, assume one of the “faces” of its boundary, say
S C 0B, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension
of Ks = KNS for the estimate on the transversal section.

Then if Ag(K) < A < Ag(K2), any solution of the logistic equation
remains bounded in K3 although it is unbounded in K, hence in Kj.
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An isolation box
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution.
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution. By
the estimate on the transversal section u(x, t) < h(x) for x € S,
t>0and he L'(S), forr >1
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution. By
the estimate on the transversal section u(x, t) < h(x) for x € S,
t>0and he L"(S), for r > 1 and we extend h to the rest of OB
by a suitable constant. We denote by h € L"(9B), this extension.
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution. By
the estimate on the transversal section u(x, t) < h(x) for x € S,
t>0and he L"(S), for r > 1 and we extend h to the rest of OB
by a suitable constant. We denote by h € L"(9B), this extension.
Thus, the solution of

U— AU = XU in B
U h(x) on OB
U(O) up > 0 in B

with becomes a supersolution, of u(x,t) in B.
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution. By
the estimate on the transversal section u(x, t) < h(x) for x € S,
t>0and he L"(S), for r > 1 and we extend h to the rest of OB
by a suitable constant. We denote by h € L"(9B), this extension.
Thus, the solution of

U— AU = XU in B
U = h(x) on 0B
U(O) = Up > 0 in B

with becomes a supersolution, of u(x,t) in B.
Now, if Ag(K) < A < Xo(K2) we can shrink B to be close enough
to Ky such that A < A\1(B) < Ao(K?2).
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution. By
the estimate on the transversal section u(x, t) < h(x) for x € S,
t>0and he L"(S), for r > 1 and we extend h to the rest of OB
by a suitable constant. We denote by h € L"(9B), this extension.
Thus, the solution of

U— AU = XU in B
U = h(x) on 0B
U(O) = Up > 0 in B

with becomes a supersolution, of u(x,t) in B.

Now, if Ag(K) < A < Xo(K2) we can shrink B to be close enough
to K such that A < A1(B) < A\o(K2). Then, standard parabolic
regularity gives L* bounds for U(x, t) for all times, on compact
subsets of B.
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Solutions for A > Xg(Kp)

Proof On 9B\ S we have L* bounds on any given solution. By
the estimate on the transversal section u(x, t) < h(x) for x € S,
t>0and he L"(S), for r > 1 and we extend h to the rest of OB
by a suitable constant. We denote by h € L"(9B), this extension.
Thus, the solution of

U— AU = XU in B
U = h(x) on 0B
U(O) = Up > 0 in B

with becomes a supersolution, of u(x,t) in B.

Now, if Ag(K) < A < Xo(K2) we can shrink B to be close enough
to K such that A < A1(B) < A\o(K2). Then, standard parabolic
regularity gives L* bounds for U(x, t) for all times, on compact
subsets of B. Hence, u(x,t) remains bounded in K, while we know
that it does become unbounded in K, hence in Ki.
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Solutions for A > Xg(Kp)

An example: a hairy component

Here N =2, d* = 0 and assuming n*(s) = s” we have the
condition p+1 > v, as long as p > 3.
This always holds for v < 4.
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Solutions for A > Xg(Kp)

An example: a hairy component

Here N =2, d* = 0 and assuming n*(s) = s” we have the
condition p+1 > v, as long as p > 3.
This always holds for v < 4.

Again, “size” of K and “rate of vanishing" of n(x) play a role here.
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Solutions for A > Xg(Kp)

A monotonicity argument

Lemma

Assume ug > 0 and non zero and o > 0. Then
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A monotonicity argument

Lemma

Assume ug > 0 and non zero and o > 0. Then
i)Ifa>1

au(t,x; ug) > u(t,x; aup).
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Solutions for A > Xg(Kp)

A monotonicity argument

Lemma

Assume ug > 0 and non zero and o > 0. Then
i)Ifa>1
au(t,x; ug) > u(t,x; aup).

i) If < 1

au(t, x; ug) < u(t,x; aup).
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Solutions for A > Xg(Kp)

A monotonicity argument

Lemma

Assume ug > 0 and non zero and o > 0. Then
i)Ifa>1

au(t,x; ug) > u(t,x; aup).

i) If < 1

au(t, x; ug) < u(t,x; aup).

Proof Note that v(t) = au(t; up) satisfies v(0) = aug

vi —Av = Av — n,(i?l vP.
a
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A monotonicity argument

Lemma

Assume ug > 0 and non zero and o > 0. Then
i)Ifa>1
au(t,x; ug) > u(t,x; aup).

i) If < 1

au(t, x; ug) < u(t,x; aup).

Proof Note that v(t) = au(t; up) satisfies v(0) = aug

vi —Av = Av — n,(i?l vP.
a

Hence, if a > 1 v is a supersolution with initial data aug, and a
subsolution if o < 1.
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Solutions for A > Xg(Kp)

In particular we get

All solutions of the logistic equation become unbounded at the
same rate and at the same points when A > A\g(Kp).
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Solutions for A > Xg(Kp)

In particular we get

All solutions of the logistic equation become unbounded at the
same rate and at the same points when A > A\g(Kp).

Proof Fix any C1(Q), up > 0 with strictly negative normal
derivative at the boundary of Q.
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Solutions for A > Xg(Kp)

In particular we get

All solutions of the logistic equation become unbounded at the
same rate and at the same points when A > A\g(Kp).

Proof Fix any C1(Q), up > 0 with strictly negative normal
derivative at the boundary of Q. Then for any other initial data v
we can assume there exists a < 1 and 8 > 1 such that

aug < vo < Bug.

Otherwise replace vy by u(e; vp) for any € > 0.
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Solutions for A > Xg(Kp)

In particular we get

All solutions of the logistic equation become unbounded at the
same rate and at the same points when A > A\g(Kp).

Proof Fix any C1(Q), up > 0 with strictly negative normal
derivative at the boundary of Q. Then for any other initial data v
we can assume there exists a < 1 and 8 > 1 such that

aug < vo < Bug.

Otherwise replace vy by u(e; vp) for any € > 0.
Then

au(t,x; up) < u(t,x; au) < u(t,x; vo) < u(t,x; Suo) < Bu(t,x; up)

O
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