Asymptotic behavior of degenerate logistic equations

Aníbal Rodríguez-Bernal

Departamento de Matemática Aplicada UNIVERSIDAD COMPLUTENSE DE MADRID

Instituto de Ciencias Matemáticas (ICMAT) CSIC-UAM-UC3M-UCM

Benasque, 2011

Joint work with J.M. Arrieta and R. Pardo, UCM Madrid (in progress)

$$\left\{ \begin{array}{rrrr} u_t - \Delta u &=& \lambda u - n(x) u^\rho & \mathrm{in} & \Omega \\ u &=& 0 & \mathrm{on} & \Gamma \\ u(0) &=& u_0 \geq 0 \end{array} \right.$$

- $\Omega \subset \mathbb{R}^N$ bounded domain.
- $n(x) \ge 0$ in Ω is a continuous function not identically zero.
- $\bullet \rho > 1, \ \lambda \in \mathbb{R}.$
- $0 \le u_0 \in L^1(\Omega)$ and the solution, which will be denoted $u(t; u_0)$, becomes classical for t > 0.

$$\left\{ \begin{array}{rrrr} u_t - \Delta u &=& \lambda u - n(x) u^\rho & \mathrm{in} & \Omega \\ u &=& 0 & \mathrm{on} & \Gamma \\ u(0) &=& u_0 \geq 0 \end{array} \right.$$

- $\Omega \subset I\!\!R^N$ bounded domain.
- $n(x) \ge 0$ in Ω is a continuous function not identically zero.
- $\bullet \rho > 1, \ \lambda \in \mathbb{R}.$
- $0 \le u_0 \in L^1(\Omega)$ and the solution, which will be denoted $u(t; u_0)$, becomes classical for t > 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

$$\left\{ \begin{array}{rrrr} u_t - \Delta u &=& \lambda u - n(x) u^\rho & \mathrm{in} & \Omega \\ u &=& 0 & \mathrm{on} & \Gamma \\ u(0) &=& u_0 \geq 0 \end{array} \right.$$

- $\Omega \subset \mathbb{R}^N$ bounded domain.
- $n(x) \ge 0$ in Ω is a continuous function not identically zero.
- $\bullet \rho > 1, \ \lambda \in \mathbb{R}.$
- $0 \le u_0 \in L^1(\Omega)$ and the solution, which will be denoted $u(t; u_0)$, becomes classical for t > 0.

(日) (日) (日) (日) (日) (日) (日)

$$\left\{ \begin{array}{rrrr} u_t - \Delta u &=& \lambda u - n(x) u^\rho & \mathrm{in} & \Omega \\ u &=& 0 & \mathrm{on} & \Gamma \\ u(0) &=& u_0 \geq 0 \end{array} \right.$$

•
$$\Omega \subset \mathbb{R}^N$$
 bounded domain.

- $n(x) \ge 0$ in Ω is a continuous function not identically zero.
- $\bullet \rho > 1, \ \lambda \in \mathbb{R}.$
- $0 \le u_0 \in L^1(\Omega)$ and the solution, which will be denoted $u(t; u_0)$, becomes classical for t > 0.

$$\left\{ \begin{array}{rrrr} u_t - \Delta u &=& \lambda u - n(x) u^\rho & \mathrm{in} & \Omega \\ u &=& 0 & \mathrm{on} & \Gamma \\ u(0) &=& u_0 \geq 0 \end{array} \right.$$

•
$$\Omega \subset \mathbb{R}^N$$
 bounded domain.

- $n(x) \ge 0$ in Ω is a continuous function not identically zero.
- $\bullet \ \rho > 1, \ \lambda \in I\!\!R.$
- $0 \le u_0 \in L^1(\Omega)$ and the solution, which will be denoted $u(t; u_0)$, becomes classical for t > 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

The equation degenerates to a linear equation in the set

$$K_0 = \{x \in \Omega : n(x) = 0\}$$

which is a compact set in Ω (does not touch the boundary).

(the case of a smooth set K_0 has been studied by López Gómez et al. using the concept of "Metasolutions".

The equation degenerates to a linear equation in the set

$$K_0 = \{x \in \Omega : n(x) = 0\}$$

which is a compact set in Ω (does not touch the boundary).

(the case of a smooth set K_0 has been studied by López Gómez et al. using the concept of "Metasolutions".

Proposition (ARB and A. Vidal-López, JDE, 244:2983-3030, 2008

i) Suppose either $n(x) \ge \gamma > 0$ in $\overline{\Omega}$ or $1/n \in L^{s}(\Omega)$, $s > N/2\rho$. Then for any $\lambda \in \mathbb{R}$ there exists a unique globally asymptotically stable nonegative equilibria φ : for every $u_0 \ge 0$ and nonzero in Ω

 $\lim_{t\to\infty}u(t,x;u_0)=\varphi(x)$

uniformly in $x \in \Omega$. Moreover if $\lambda \leq \lambda_1(\Omega)$ then $\varphi = 0$, while if $\lambda > \lambda_1(\Omega)$ then $\varphi(x) > 0$ in Ω . ii) Let $K_0 = \{x \in \Omega : n(x) = 0\}$ and Ω_{δ} be a neighborhood of K_0 such that $n(x) \geq \delta > 0$ for all $x \in \Omega \setminus \overline{\Omega}_{\delta}$. Denote by $\lambda_1(\Omega_{\delta})$ first signal of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} .

Then, if $\lambda < \lambda_1(\Omega_\delta)$, the above applies.

Proposition (ARB and A. Vidal-López, JDE, 244:2983–3030, 2008

i) Suppose either $n(x) \ge \gamma > 0$ in $\overline{\Omega}$ or $1/n \in L^{s}(\Omega)$, $s > N/2\rho$. Then for any $\lambda \in \mathbb{R}$ there exists a unique globally asymptotically stable nonegative equilibria φ : for every $u_0 \ge 0$ and nonzero in Ω ,

 $\lim_{t\to\infty}u(t,x;u_0)=\varphi(x)$

uniformly in $x \in \overline{\Omega}$. Moreover if $\lambda \leq \lambda_1(\Omega)$ then $\varphi = 0$, while if $\lambda > \lambda_1(\Omega)$ then $\varphi(x) > 0$ in Ω . ii) Let $K_0 = \{x \in \Omega : n(x) = 0\}$ and Ω_{δ} be a neighborhood of K_0 such that $n(x) \geq \delta > 0$ for all $x \in \Omega \setminus \overline{\Omega}_{\delta}$. Denote by $\lambda_1(\Omega_{\delta})$ first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then, if $\lambda < \lambda_1(\Omega_{\delta})$, the above applies.

Proposition (ARB and A. Vidal-López, JDE, 244:2983–3030, 2008

i) Suppose either $n(x) \ge \gamma > 0$ in $\overline{\Omega}$ or $1/n \in L^{s}(\Omega)$, $s > N/2\rho$. Then for any $\lambda \in \mathbb{R}$ there exists a unique globally asymptotically stable nonegative equilibria φ : for every $u_0 \ge 0$ and nonzero in Ω ,

 $\lim_{t\to\infty}u(t,x;u_0)=\varphi(x)$

uniformly in $x \in \overline{\Omega}$. Moreover if $\lambda \leq \lambda_1(\Omega)$ then $\varphi = 0$, while if $\lambda > \lambda_1(\Omega)$ then $\varphi(x) > 0$ in Ω .

ii) Let $K_0 = \{x \in \Omega : n(x) = 0\}$ and Ω_{δ} be a neighborhood of K_0 such that $n(x) \ge \delta > 0$ for all $x \in \Omega \setminus \overline{\Omega}_{\delta}$. Denote by $\lambda_1(\Omega_{\delta})$ first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then, if $\lambda < \lambda_1(\Omega_{\delta})$, the above applies.

Proposition (ARB and A. Vidal-López, JDE, 244:2983–3030, 2008

i) Suppose either $n(x) \ge \gamma > 0$ in $\overline{\Omega}$ or $1/n \in L^{s}(\Omega)$, $s > N/2\rho$. Then for any $\lambda \in \mathbb{R}$ there exists a unique globally asymptotically stable nonegative equilibria φ : for every $u_0 \ge 0$ and nonzero in Ω ,

$$\lim_{t\to\infty}u(t,x;u_0)=\varphi(x)$$

uniformly in $x \in \overline{\Omega}$. Moreover if $\lambda \leq \lambda_1(\Omega)$ then $\varphi = 0$, while if $\lambda > \lambda_1(\Omega)$ then $\varphi(x) > 0$ in Ω . ii) Let $K_0 = \{x \in \Omega : n(x) = 0\}$ and Ω_{δ} be a neighborhood of K_0 such that $n(x) \geq \delta > 0$ for all $x \in \Omega \setminus \overline{\Omega}_{\delta}$. Denote by $\lambda_1(\Omega_{\delta})$ first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then, if $\lambda < \lambda_1(\Omega_{\delta})$, the above applies.

Proposition (ARB and A. Vidal-López, JDE, 244:2983–3030, 2008

i) Suppose either $n(x) \ge \gamma > 0$ in $\overline{\Omega}$ or $1/n \in L^{s}(\Omega)$, $s > N/2\rho$. Then for any $\lambda \in \mathbb{R}$ there exists a unique globally asymptotically stable nonegative equilibria φ : for every $u_0 \ge 0$ and nonzero in Ω ,

$$\lim_{t\to\infty}u(t,x;u_0)=\varphi(x)$$

uniformly in $x \in \overline{\Omega}$. Moreover if $\lambda \leq \lambda_1(\Omega)$ then $\varphi = 0$, while if $\lambda > \lambda_1(\Omega)$ then $\varphi(x) > 0$ in Ω .

ii) Let $K_0 = \{x \in \Omega : n(x) = 0\}$ and Ω_{δ} be a neighborhood of K_0 such that $n(x) \ge \delta > 0$ for all $x \in \Omega \setminus \overline{\Omega}_{\delta}$. Denote by $\lambda_1(\Omega_{\delta})$ first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} .

Then, if $\lambda < \lambda_1(\Omega_\delta)$, the above applies.

Proposition (ARB and A. Vidal-López, JDE, 244:2983–3030, 2008

i) Suppose either $n(x) \ge \gamma > 0$ in $\overline{\Omega}$ or $1/n \in L^{s}(\Omega)$, $s > N/2\rho$. Then for any $\lambda \in \mathbb{R}$ there exists a unique globally asymptotically stable nonegative equilibria φ : for every $u_0 \ge 0$ and nonzero in Ω ,

$$\lim_{t\to\infty}u(t,x;u_0)=\varphi(x)$$

uniformly in $x \in \overline{\Omega}$. Moreover if $\lambda \leq \lambda_1(\Omega)$ then $\varphi = 0$, while if $\lambda > \lambda_1(\Omega)$ then $\varphi(x) > 0$ in Ω . ii) Let $K_0 = \{x \in \Omega : n(x) = 0\}$ and Ω_{δ} be a neighborhood of K_0 such that $n(x) \geq \delta > 0$ for all $x \in \Omega \setminus \overline{\Omega}_{\delta}$. Denote by $\lambda_1(\Omega_{\delta})$ first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then, if $\lambda < \lambda_1(\Omega_{\delta})$, the above applies. Now consider $\delta \to 0$ and assume Ω_{δ} are decreasing. Then $\mathcal{K}_0 = \bigcap_{\delta > 0} \Omega_{\delta}$ and the first eigenvalue of $-\Delta$ with Dirichlet BC in $\Omega_{\delta}, \lambda_1(\Omega_{\delta})$, is increasing in δ . Then

$$\lambda_1(\Omega) < \lambda_0({\mathcal K}_0) = \lim_{\delta o 0} \lambda_1(\Omega_\delta) \le \infty$$

Hence we get the following

Corollary

With the notations above, for any

 $\lambda < \lambda_0(K_0) \leq \infty$

there exists a unique globally asymptotically stable nonegative equilibria φ_{λ} . Also, $\varphi_{\lambda} = 0$ for $\lambda \leq \lambda_1(\Omega)$ and $\varphi_{\lambda} > 0$ for $\lambda > \lambda_1(\Omega)$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Now consider $\delta \to 0$ and assume Ω_{δ} are decreasing. Then $\mathcal{K}_0 = \bigcap_{\delta > 0} \Omega_{\delta}$ and the first eigenvalue of $-\Delta$ with Dirichlet BC in $\Omega_{\delta}, \lambda_1(\Omega_{\delta})$, is increasing in δ . Then

$$\lambda_1(\Omega) < \lambda_0({\sf K}_0) = \lim_{\delta o 0} \lambda_1(\Omega_\delta) \le \infty$$

Hence we get the following

Corollary

With the notations above, for any

 $\lambda < \lambda_0(K_0) \leq \infty$

there exists a unique globally asymptotically stable nonegative equilibria φ_{λ} . Also, $\varphi_{\lambda} = 0$ for $\lambda \leq \lambda_1(\Omega)$ and $\varphi_{\lambda} > 0$ for $\lambda > \lambda_1(\Omega)$.

Now consider $\delta \to 0$ and assume Ω_{δ} are decreasing. Then $K_0 = \bigcap_{\delta > 0} \Omega_{\delta}$ and the first eigenvalue of $-\Delta$ with Dirichlet BC in Ω_{δ} , $\lambda_1(\Omega_{\delta})$, is increasing in δ . Then

$$\lambda_1(\Omega) < \lambda_0(\mathcal{K}_0) = \lim_{\delta \to 0} \lambda_1(\Omega_\delta) \le \infty$$

Hence we get the following

Corollary

With the notations above, for any

 $\lambda < \lambda_0(K_0) \leq \infty$

there exists a unique globally asymptotically stable nonegative equilibria $\varphi_{\lambda}.$

Also, $\varphi_{\lambda} = 0$ for $\lambda \leq \lambda_1(\Omega)$ and $\varphi_{\lambda} > 0$ for $\lambda > \lambda_1(\Omega)$.

Now consider $\delta \to 0$ and assume Ω_{δ} are decreasing. Then $\mathcal{K}_0 = \bigcap_{\delta > 0} \Omega_{\delta}$ and the first eigenvalue of $-\Delta$ with Dirichlet BC in Ω_{δ} , $\lambda_1(\Omega_{\delta})$, is increasing in δ . Then

$$\lambda_1(\Omega) < \lambda_0(\mathcal{K}_0) = \lim_{\delta \to 0} \lambda_1(\Omega_\delta) \le \infty$$

Hence we get the following

Corollary

With the notations above, for any

 $\lambda < \lambda_0(K_0) \leq \infty$

there exists a unique globally asymptotically stable nonegative equilibria φ_{λ} . Also, $\varphi_{\lambda} = 0$ for $\lambda \leq \lambda_1(\Omega)$ and $\varphi_{\lambda} > 0$ for $\lambda > \lambda_1(\Omega)$.

Now, without assuming any regularity in K_0 , we want to consider the case $\lambda_0(K_0) < \infty$ and

- What happens to equilibria φ_{λ} as $\lambda \to \lambda_0(K_0)$?
- When $\lambda \ge \lambda_0(K_0)$ what do solutions do as $t \to \infty$? (they become unbounded)
- How and where they become unbounded? Is there a Imiting "profile"? ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Now, without assuming any regularity in K_0 , we want to consider the case $\lambda_0(K_0) < \infty$ and

• What happens to equilibria φ_{λ} as $\lambda \to \lambda_0(K_0)$?

• When $\lambda \ge \lambda_0(K_0)$ what do solutions do as $t \to \infty$? (they become unbounded)

 How and where they become unbounded? Is there a Imiting "profile"? ...

Now, without assuming any regularity in K_0 , we want to consider the case $\lambda_0(K_0) < \infty$ and

• What happens to equilibria φ_{λ} as $\lambda \to \lambda_0(\mathcal{K}_0)$?

• When $\lambda \ge \lambda_0(K_0)$ what do solutions do as $t \to \infty$? (they become unbounded)

• How and where they become unbounded? Is there a Imiting "profile"? ...

Now, without assuming any regularity in K_0 , we want to consider the case $\lambda_0(K_0) < \infty$ and

- What happens to equilibria φ_{λ} as $\lambda \to \lambda_0(\mathcal{K}_0)$?
- When $\lambda \geq \lambda_0(K_0)$ what do solutions do as $t \to \infty$? (they become unbounded)

• How and where they become unbounded? Is there a lmiting "profile"? ...

(日) (日) (日) (日) (日) (日) (日)

Now, without assuming any regularity in K_0 , we want to consider the case $\lambda_0(K_0) < \infty$ and

- What happens to equilibria φ_{λ} as $\lambda \to \lambda_0(K_0)$?
- When $\lambda \geq \lambda_0(K_0)$ what do solutions do as $t \to \infty$? (they become unbounded)
- How and where they become unbounded? Is there a Imiting "profile"? ...

(日) (日) (日) (日) (日) (日) (日)

If $K \subset \mathbb{R}^N$ is a compact set, consider a decreasing family of smooth open sets Ω_{δ} such that

$$K = \cap_{\delta > 0} \Omega_{\delta}.$$

Then for each $\delta > 0$ consider

$$\lambda_1(\Omega_\delta) = \inf_{u\in H^1_0(\Omega_\delta)} rac{\int_{\Omega_\delta} |
abla u|^2}{\int_{\Omega_\delta} u^2} > 0,$$

the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then $\lambda_1(\Omega_{\delta})$ is increasing in δ and we can define the monotonic limit

$$\lambda_0(K) = \lim_{\delta \to 0} \lambda_1(\Omega_\delta) \le \infty$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

If $K \subset \mathbb{R}^N$ is a compact set, consider a decreasing family of smooth open sets Ω_{δ} such that

$$K = \cap_{\delta > 0} \Omega_{\delta}.$$

Then for each $\delta > 0$ consider

$$\lambda_1(\Omega_\delta) = \inf_{u\in H^1_0(\Omega_\delta)} rac{\int_{\Omega_\delta} |
abla u|^2}{\int_{\Omega_\delta} u^2} > 0,$$

the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then $\lambda_1(\Omega_{\delta})$ is increasing in δ and we can define the monotonic limit

$$\lambda_0(K) = \lim_{\delta \to 0} \lambda_1(\Omega_\delta) \le \infty$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

If $K \subset \mathbb{R}^N$ is a compact set, consider a decreasing family of smooth open sets Ω_{δ} such that

$$K = \cap_{\delta > 0} \Omega_{\delta}.$$

Then for each $\delta > 0$ consider

$$\lambda_1(\Omega_\delta) = \inf_{u\in H^1_0(\Omega_\delta)} rac{\int_{\Omega_\delta} |
abla u|^2}{\int_{\Omega_\delta} u^2} > 0,$$

the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω_{δ} . Then $\lambda_1(\Omega_{\delta})$ is increasing in δ and we can define the monotonic limit

$$\lambda_0(K) = \lim_{\delta o 0} \lambda_1(\Omega_\delta) \le \infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Then we have the following

Definition

A compact set $K \subset \mathbb{R}^N$ is **thick** iff $\lambda_1(\Omega_{\delta})$ is bounded in δ , or equivalently iff

 $0<\lambda_0(K)<\infty.$

Otherwise, $\lambda_0(K) = \infty$ and K is said **thin**.

(independent of the decreasing family Ω_{δ} , which can be assumed to be C^{∞} –smooth)

Then we have the following

Definition

A compact set $K \subset \mathbb{R}^N$ is **thick** iff $\lambda_1(\Omega_{\delta})$ is bounded in δ , or equivalently iff

 $0 < \lambda_0(K) < \infty.$

Otherwise, $\lambda_0(K) = \infty$ and K is said **thin**.

(independent of the decreasing family Ω_{δ} , which can be assumed to be C^{∞} -smooth)

Then we have the following

Definition

A compact set $K \subset \mathbb{R}^N$ is **thick** iff $\lambda_1(\Omega_{\delta})$ is bounded in δ , or equivalently iff

 $0 < \lambda_0(K) < \infty.$

Otherwise, $\lambda_0(K) = \infty$ and K is said **thin**.

(independent of the decreasing family Ω_{δ} , which can be assumed to be C^{∞} -smooth)

Then we have the following

Definition

A compact set $K \subset \mathbb{R}^N$ is **thick** iff $\lambda_1(\Omega_{\delta})$ is bounded in δ , or equivalently iff

$$0 < \lambda_0(K) < \infty.$$

Otherwise, $\lambda_0(K) = \infty$ and K is said **thin**.

(independent of the decreasing family Ω_{δ} , which can be assumed to be C^{∞} -smooth)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Then we have the following result.

Proposition

i) If $K_1 \subset K_2$ are compact sets, then $\lambda_0(K_2) \leq \lambda_0(K_1)$. ii) If $K = \overline{\Omega_0}$ where Ω_0 is a bounded open set, then

 $\lambda_0(K) = \lambda_1(\Omega_0),$

the first eigenvalue of $-\Delta$ (Dirichlet b.c) in Ω_0 . iii) If $K = K_1 \cup K_2$ are separated compact sets, $K_1 \cap K_2 = \emptyset$, then $\lambda_0(K) = \min\{\lambda_0(K_1), \lambda_0(K_2)\}.$

イロン 不良 とくほど 不良 とう

Then we have the following result.

Proposition

i) If $K_1 \subset K_2$ are compact sets, then $\lambda_0(K_2) \leq \lambda_0(K_1)$. ii) If $K = \overline{\Omega_0}$ where Ω_0 is a bounded open set, then

 $\lambda_0(K) = \lambda_1(\Omega_0),$

the first eigenvalue of $-\Delta$ (Dirichlet b.c) in Ω_0 . iii) If $K = K_1 \cup K_2$ are separated compact sets, $K_1 \cap K_2 = \emptyset$, then

 $\lambda_0(K) = \min\{\lambda_0(K_1), \lambda_0(K_2)\}.$

Then we have the following result.

Proposition

i) If $K_1 \subset K_2$ are compact sets, then $\lambda_0(K_2) \leq \lambda_0(K_1)$. ii) If $K = \overline{\Omega_0}$ where Ω_0 is a bounded open set, then

 $\lambda_0(K) = \lambda_1(\Omega_0),$

the first eigenvalue of $-\Delta$ (Dirichlet b.c) in Ω_0 . iii) If $K = K_1 \cup K_2$ are separated compact sets, $K_1 \cap K_2 = \emptyset$, then $\lambda_0(K) = \min\{\lambda_0(K_1), \lambda_0(K_2)\}.$

Then we have the following result.

Proposition

i) If $K_1 \subset K_2$ are compact sets, then $\lambda_0(K_2) \leq \lambda_0(K_1)$. ii) If $K = \overline{\Omega_0}$ where Ω_0 is a bounded open set, then

 $\lambda_0(K) = \lambda_1(\Omega_0),$

the first eigenvalue of $-\Delta$ (Dirichlet b.c) in Ω_0 . iii) If $K = K_1 \cup K_2$ are separated compact sets, $K_1 \cap K_2 = \emptyset$, then $\lambda_0(K) = \min\{\lambda_0(K_1), \lambda_0(K_2)\}.$

Corollary. Decomposition of compact sets

For any compact set $K \subset \mathbb{R}^N$, there exist a (non necessarily unique) decomposition on pairwise separated connected components

$$K = K_1 \cup \ldots \cup K_n \cup K_{n+1} \cup \ldots \cup K_m$$

such that

$$K_{n+1}, \ldots, K_m$$
 are thin

and

$$K_1, \ldots, K_n$$
 are thick

in decreasing thickness, that is,

$$\lambda_0(K_1) \leq \cdots \leq \lambda_0(K_n).$$

Then $\lambda_0(K) = \min\{\lambda_0(K_1), \ldots, \lambda_0(K_n)\} = \lambda_0(K_1).$
i) Any superset of a thick set is thick.

ii) If K contains a ball, then it is thick. iii) If the Lebesgue measure of K is |K| = 0 then K is thin. iv) There exists thick sets of empty interior and with arbitrary positive measure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

i) Any superset of a thick set is thick.
ii) If K contains a ball, then it is thick.
iii) If the Lebesgue measure of K is |K| = 0 then K is thin.
iv) There exists thick sets of empty interior and with arbitrary positive measure.

A.Rodríguez-Bernal, UCM. Degenerate logistic equation

i) Any superset of a thick set is thick.
ii) If K contains a ball, then it is thick.
iii) If the Lebesgue measure of K is |K| = 0 then K is thin.
iv) There exists thick sets of empty interior and with arbitrary positive measure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

i) Any superset of a thick set is thick.

ii) If K contains a ball, then it is thick.

iii) If the Lebesgue measure of K is |K| = 0 then K is thin.

iv) There exists thick sets of empty interior and with arbitrary positive measure.

i) K is thick iff

 $H^1_0(K) := \{ \xi \in H^1(I\!\!R^N), \quad \xi(x) = 0 \quad \text{a.e. } x \in I\!\!R^N \setminus K \}$

is a nontrivial (closed) linear subspace of $H^1(\mathbb{R}^N)$. ii) If K is thick, then

$$\lambda_0(K) = \inf\{rac{\int_{R^N} |
abla \xi|^2}{\int_{R^N} |\xi|^2}, \quad \xi \in H^1_0(K), \ \xi
eq 0\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

i) K is thick iff

$$H^1_0(\mathcal{K}) := \{\xi \in H^1(I\!\!R^N), \quad \xi(x) = 0 \quad \text{a.e. } x \in I\!\!R^N \setminus \mathcal{K}\}$$

is a nontrivial (closed) linear subspace of $H^1(\mathbb{R}^N)$. ii) If K is thick, then

$$\lambda_0(K) = \inf\{rac{\int_{R^N} |
abla \xi|^2}{\int_{R^N} |\xi|^2}, \quad \xi \in H^1_0(K), \; \xi
eq 0\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Positive equilibria

Recall

$$K_0 = \{x \in \Omega : n(x) = 0\} \subset \Omega$$

_emma

i) Assume that the logistic equation has a nonnegative stationary solution in $L^1(\Omega)$. Then

 $\lambda < \lambda_0(K_0).$

ii) For $\lambda_1(\Omega) < \lambda < \lambda_0(K_0)$ the positive equilibria φ_{λ} is a smooth and increasing function of λ . Even more, as $\lambda \to \lambda_0(K_0)$, we have

 $\|\varphi_{\lambda}\|_{L^{\infty}(\Omega)} \to \infty, \quad even \quad \|\varphi_{\lambda}\|_{L^{1}(\Omega)} \to \infty$

Positive equilibria

Recall

$$K_0 = \{x \in \Omega : n(x) = 0\} \subset \Omega$$

Lemma

i) Assume that the logistic equation has a nonnegative stationary solution in $L^1(\Omega)$. Then

 $\lambda < \lambda_0(K_0).$

ii) For $\lambda_1(\Omega) < \lambda < \lambda_0(K_0)$ the positive equilibria φ_{λ} is a smooth and increasing function of λ . Even more, as $\lambda \to \lambda_0(K_0)$, we have

 $\|\varphi_{\lambda}\|_{L^{\infty}(\Omega)} \to \infty, \quad even \quad \|\varphi_{\lambda}\|_{L^{1}(\Omega)} \to \infty$

Positive equilibria

Recall

$$K_0 = \{x \in \Omega : n(x) = 0\} \subset \Omega$$

Lemma

i) Assume that the logistic equation has a nonnegative stationary solution in $L^1(\Omega)$. Then

 $\lambda < \lambda_0(K_0).$

ii) For $\lambda_1(\Omega) < \lambda < \lambda_0(K_0)$ the positive equilibria φ_{λ} is a smooth and increasing function of λ . Even more, as $\lambda \to \lambda_0(K_0)$, we have

 $\|\varphi_{\lambda}\|_{L^{\infty}(\Omega)} \to \infty, \quad even \quad \|\varphi_{\lambda}\|_{L^{1}(\Omega)} \to \infty$

$$\lambda = \mu_1(-\Delta + n(x)u^{\rho-1}, \Omega),$$

(the first eigenvalue of the operator $-\Delta + n(x)u^{\rho-1}$ in Ω , with Dirichlet BC).

Take a decreasing family Ω_{δ} with $n(x) \leq \delta$ in Ω_{δ} . Then, for some p > N/2, $\|nu^{\rho-1}\|_{L^{p}(\Omega_{\delta})} \leq \delta \|u\|_{L^{s}(\Omega_{\delta})} \to 0$. This and the monotonicity with respect to the domain of this eigenvalue gives

$$\lambda < \mu_1(-\Delta + n(x)u^{\rho-1}, \Omega_{\delta}) \rightarrow \lambda_0(K_0).$$

Monotonicity in λ follows from the equation satisfied by $\frac{\partial \varphi_{\lambda}}{\partial \lambda}$.

$$\lambda = \mu_1(-\Delta + n(x)u^{\rho-1}, \Omega),$$

(the first eigenvalue of the operator $-\Delta + n(x)u^{\rho-1}$ in Ω , with Dirichlet BC).

Take a decreasing family Ω_{δ} with $n(x) \leq \delta$ in Ω_{δ} . Then, for some p > N/2, $\|nu^{\rho-1}\|_{L^{p}(\Omega_{\delta})} \leq \delta \|u\|_{L^{s}(\Omega_{\delta})} \to 0$.

This and the monotonicity with respect to the domain of this eigenvalue gives

$$\lambda < \mu_1(-\Delta + n(x)u^{\rho-1}, \Omega_{\delta}) \rightarrow \lambda_0(K_0).$$

Monotonicity in λ follows from the equation satisfied by $\frac{\partial \varphi_{\lambda}}{\partial \lambda}$.

$$\lambda = \mu_1(-\Delta + n(x)u^{\rho-1}, \Omega),$$

(the first eigenvalue of the operator $-\Delta + n(x)u^{\rho-1}$ in Ω , with Dirichlet BC).

Take a decreasing family Ω_{δ} with $n(x) \leq \delta$ in Ω_{δ} . Then, for some p > N/2, $\|nu^{\rho-1}\|_{L^{p}(\Omega_{\delta})} \leq \delta \|u\|_{L^{s}(\Omega_{\delta})} \to 0$. This and the monotonicity with respect to the domain of this

eigenvalue gives

$$\lambda < \mu_1(-\Delta + n(x)u^{\rho-1},\Omega_\delta) \rightarrow \lambda_0(K_0).$$

Monotonicity in λ follows from the equation satisfied by $\frac{\partial \varphi_{\lambda}}{\partial \lambda}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

$$\lambda = \mu_1(-\Delta + n(x)u^{\rho-1}, \Omega),$$

(the first eigenvalue of the operator $-\Delta + n(x)u^{\rho-1}$ in Ω , with Dirichlet BC).

Take a decreasing family Ω_{δ} with $n(x) \leq \delta$ in Ω_{δ} . Then, for some p > N/2, $\|nu^{\rho-1}\|_{L^{p}(\Omega_{\delta})} \leq \delta \|u\|_{L^{s}(\Omega_{\delta})} \to 0$. This and the monotonicity with respect to the domain of this

eigenvalue gives

$$\lambda < \mu_1(-\Delta + n(x)u^{\rho-1},\Omega_\delta) \rightarrow \lambda_0(K_0).$$

Monotonicity in λ follows from the equation satisfied by $\frac{\partial \varphi_{\lambda}}{\partial \lambda}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

• For $\lambda > \lambda_1(\Omega)$, u = 0 is unstable.

• If $\lambda > \lambda_0(K_0)$ and $u_0 \ge 0$ then $u(t; u_0)$ is globally defined but can not be bounded in Ω (if it was, using compactness, there would exist a bounded stationary solution).

Therefore

$$\limsup_{t\to\infty} \|u(t;u_0)\|_{L^{\infty}(\Omega)} = \infty$$

even

$$\limsup_{t\to\infty} \|u(t;u_0)\|_{L^1(\Omega)} = \infty.$$

Where and how solutions become unbounded?

• For $\lambda > \lambda_1(\Omega)$, u = 0 is unstable.

• If $\lambda > \lambda_0(K_0)$ and $u_0 \ge 0$ then $u(t; u_0)$ is globally defined but can not be bounded in Ω (if it was, using compactness, there would exist a bounded stationary solution).

Therefore

$$\limsup_{t\to\infty} \|u(t;u_0)\|_{L^{\infty}(\Omega)} = \infty$$

even

$$\limsup_{t\to\infty} \|u(t;u_0)\|_{L^1(\Omega)} = \infty.$$

Where and how solutions become unbounded?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- For $\lambda > \lambda_1(\Omega)$, u = 0 is unstable.
- If $\lambda > \lambda_0(K_0)$ and $u_0 \ge 0$ then $u(t; u_0)$ is globally defined but can not be bounded in Ω (if it was, using compactness, there would exist a bounded stationary solution).

Therefore

$$\limsup_{t\to\infty}\|u(t;u_0)\|_{L^\infty(\Omega)}=\infty$$

even

$$\limsup_{t\to\infty} \|u(t;u_0)\|_{L^1(\Omega)} = \infty.$$

Where and how solutions become unbounded?

- For $\lambda > \lambda_1(\Omega)$, u = 0 is unstable.
- If $\lambda > \lambda_0(K_0)$ and $u_0 \ge 0$ then $u(t; u_0)$ is globally defined but can not be bounded in Ω (if it was, using compactness, there would exist a bounded stationary solution).

Therefore

$$\limsup_{t\to\infty}\|u(t;u_0)\|_{L^{\infty}(\Omega)}=\infty$$

even

$$\limsup_{t\to\infty}\|u(t;u_0)\|_{L^1(\Omega)}=\infty.$$

Where and how solutions become unbounded?

- For $\lambda > \lambda_1(\Omega)$, u = 0 is unstable.
- If $\lambda > \lambda_0(K_0)$ and $u_0 \ge 0$ then $u(t; u_0)$ is globally defined but can not be bounded in Ω (if it was, using compactness, there would exist a bounded stationary solution).

Therefore

$$\limsup_{t\to\infty}\|u(t;u_0)\|_{L^{\infty}(\Omega)}=\infty$$

even

$$\limsup_{t\to\infty}\|u(t;u_0)\|_{L^1(\Omega)}=\infty.$$

Where and how solutions become unbounded?

Using Garcia-Melian et al. ARMA, 145, 261-289 (1998),

_emma

Assume $\rho > 1$ and $\lambda, \beta > 0$ and consider

$$\begin{cases} -\Delta z = \lambda z - \beta z^{\rho} & \text{in } B(0, a) \\ z = \infty & \text{on } \partial B(0, a) \end{cases}$$

Then

i) There exists a unique positive radial solution, $z_a(x)$. ii) The solution satisfies

$$\left(\frac{\lambda}{\beta}\right)^{\frac{1}{\rho-1}} \leq z_a(0) = \inf_{B(0,a)} z_a(x) \leq \left(\frac{\lambda(\rho+1)}{2\beta} + \frac{B}{\beta a^2}\right)^{\frac{1}{\rho-1}}$$

for some constant
$$B > 0$$
.

A.Rodríguez-Bernal, UCM. Degenerate logistic equation

Using Garcia-Melian et al. ARMA, 145, 261-289 (1998),

Lemma

Assume $\rho > 1$ and $\lambda, \beta > 0$ and consider

$$egin{cases} -\Delta z = \lambda z - eta z^
ho & ext{in } B(0,a) \ z = \infty & ext{on } \partial B(0,a) \end{cases}$$

Then

i) There exists a unique positive radial solution, $z_a(x)$. ii) The solution satisfies

$$\left(\frac{\lambda}{\beta}\right)^{\frac{1}{\rho-1}} \leq z_a(0) = \inf_{B(0,a)} z_a(x) \leq \left(\frac{\lambda(\rho+1)}{2\beta} + \frac{B}{\beta a^2}\right)^{\frac{1}{\rho-1}}$$

for some constant
$$B > 0$$
.

Using Garcia-Melian et al. ARMA, 145, 261-289 (1998),

Lemma

Assume $\rho > 1$ and $\lambda, \beta > 0$ and consider

$$egin{pmatrix} -\Delta z = \lambda z - eta z^
ho & ext{in } B(0,a) \ z = \infty & ext{on } \partial B(0,a) \end{cases}$$

Then

i) There exists a unique positive radial solution, $z_a(x)$. ii) The solution satisfies

$$\left(\frac{\lambda}{\beta}\right)^{\frac{1}{\rho-1}} \leq z_{a}(0) = \inf_{B(0,a)} z_{a}(x) \leq \left(\frac{\lambda(\rho+1)}{2\beta} + \frac{B}{\beta a^{2}}\right)^{\frac{1}{\rho-1}}$$

for some constant
$$B > 0$$
.

A.Rodríguez-Bernal, UCM. Degenerate logistic equation

Using Garcia-Melian et al. ARMA, 145, 261-289 (1998),

Lemma

Assume $\rho > 1$ and $\lambda, \beta > 0$ and consider

$$egin{pmatrix} -\Delta z = \lambda z - eta z^
ho & ext{in } B(0,a) \ z = \infty & ext{on } \partial B(0,a) \end{cases}$$

Then

i) There exists a unique positive radial solution, $z_a(x)$. ii) The solution satisfies

$$\left(\frac{\lambda}{\beta}\right)^{\frac{1}{\rho-1}} \leq z_a(0) = \inf_{B(0,a)} z_a(x) \leq \left(\frac{\lambda(\rho+1)}{2\beta} + \frac{B}{\beta a^2}\right)^{\frac{1}{\rho-1}}$$

for some constant B > 0.

Solutions remain bounded out of K_0

As a consequence

Proposition

Let $x_0 \in \Omega \setminus K_0$ and let $u_0 \ge 0$ be a bounded initial data. Then for any given $\lambda \ge \lambda_0(K_0)$ there exists b > 0 and M > 0 such that

 $0 \le u(t, x; u_0) \le M, \quad x \in B(x_0, b), \quad t \ge 0.$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うらぐ

Solutions remain bounded out of K_0

As a consequence

Proposition

Let $x_0 \in \Omega \setminus K_0$ and let $u_0 \ge 0$ be a bounded initial data. Then for any given $\lambda \ge \lambda_0(K_0)$ there exists b > 0 and M > 0 such that

 $0 \le u(t, x; u_0) \le M, \quad x \in B(x_0, b), \quad t \ge 0.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Solutions remain bounded out of K_0

As a consequence

Proposition

Let $x_0 \in \Omega \setminus K_0$ and let $u_0 \ge 0$ be a bounded initial data. Then for any given $\lambda \ge \lambda_0(K_0)$ there exists b > 0 and M > 0 such that

 $0 \leq u(t,x;u_0) \leq M, \quad x \in B(x_0,b), \quad t \geq 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We can assume

$$K_0 = K_1 \cup \ldots \cup K_n \cup K_{n+1} \cup \ldots \cup K_m$$

a decomposition in pairwise separated components, and such that

$$K_{n+1}, \ldots, K_m$$
 are thin

and

$$K_1, \ldots, K_n$$
 are thick

in decreasing thickness, that is,

$$\lambda_0(K_1) \leq \cdots \leq \lambda_0(K_n).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ □ 車 □ りへで

Theorem

i) For any $\lambda \in \mathbb{R}$ all solution are bounded in $K_{n+1} \cup \ldots \cup K_m$. ii) If for some $j = 1, \ldots, n-1$

 $\lambda_0(K_j) \leq \lambda < \lambda_0(K_{j+1})$

Theorem

i) For any $\lambda \in \mathbb{R}$ all solution are bounded in $K_{n+1} \cup \ldots \cup K_m$. ii) If for some $j = 1, \ldots, n-1$

$\lambda_0(K_j) \leq \lambda < \lambda_0(K_{j+1})$

Theorem

i) For any $\lambda \in \mathbb{R}$ all solution are bounded in $K_{n+1} \cup \ldots \cup K_m$. ii) If for some $j = 1, \ldots, n-1$

$$\lambda_0(K_j) \leq \lambda < \lambda_0(K_{j+1})$$

Theorem

i) For any $\lambda \in \mathbb{R}$ all solution are bounded in $K_{n+1} \cup \ldots \cup K_m$. ii) If for some $j = 1, \ldots, n-1$

$$\lambda_0(K_j) \leq \lambda < \lambda_0(K_{j+1})$$

Theorem

i) For any $\lambda \in \mathbb{R}$ all solution are bounded in $K_{n+1} \cup \ldots \cup K_m$. ii) If for some $j = 1, \ldots, n-1$

$$\lambda_0(K_j) \leq \lambda < \lambda_0(K_{j+1})$$

$$egin{array}{rcl} z_t - \Delta z &=& \lambda z & ext{in} & \Omega_\delta \ z &=& M & ext{on} & \partial \Omega_\delta \ z(0) &=& u_0 \geq 0 & ext{in} & \Omega_\delta \end{array}$$

is a supersolution for u(x,t) on Ω_{δ} and then $u(x,t) \leq z(x,t)$.

If $\lambda < \lambda_0(K)$ then for δ small enough we have $\lambda < \lambda_1(\Omega_{\delta})$ and then z is bounded on Ω_{δ} . This proves i) and the boundedness part in ii)

$$\left(egin{array}{cccc} z_t - \Delta z &=& \lambda z & ext{in} & \Omega_\delta \ z &=& M & ext{on} & \partial \Omega_\delta \ z(0) &=& u_0 \geq 0 & ext{in} & \Omega_\delta \end{array}
ight.$$

is a supersolution for u(x,t) on Ω_{δ} and then $u(x,t) \leq z(x,t)$.

If $\lambda < \lambda_0(K)$ then for δ small enough we have $\lambda < \lambda_1(\Omega_{\delta})$ and then *z* is bounded on Ω_{δ} . This proves i) and the boundedness part in ii).

$$\left\{ \begin{array}{rrrr} z_t - \Delta z &=& \lambda z & \text{ in } \quad \Omega_\delta \\ z &=& M & \text{ on } \quad \partial \Omega_\delta \\ z(0) &=& u_0 \geq 0 & \text{ in } \quad \Omega_\delta \end{array} \right.$$

is a supersolution for u(x, t) on Ω_{δ} and then $u(x, t) \leq z(x, t)$.

If $\lambda < \lambda_0(K)$ then for δ small enough we have $\lambda < \lambda_1(\Omega_{\delta})$ and then z is bounded on Ω_{δ} . This proves i) and the boundedness part in ii).

$$\left\{ egin{array}{rll} z_t - \Delta z &=& \lambda z & ext{ in } & \Omega_\delta \ z &=& M & ext{ on } & \partial \Omega_\delta \ z(0) &=& u_0 \geq 0 & ext{ in } & \Omega_\delta \end{array}
ight.$$

is a supersolution for u(x, t) on Ω_{δ} and then $u(x, t) \leq z(x, t)$.

If $\lambda < \lambda_0(K)$ then for δ small enough we have $\lambda < \lambda_1(\Omega_{\delta})$ and then z is bounded on Ω_{δ} . This proves i) and the boundedness part in ii)

This proves i) and the boundedness part in ii).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0
Take a decreasing family Ω_{δ} for K such that $0 \le n(x) \le \delta$ in Ω_{δ} , since n(x) is continuous. Then, given $\varepsilon > 0$, for δ small enough, we have

 $0 \le n(x)u^{\rho-1} \le \delta M^{\rho-1} \le \varepsilon$

in Ω_{δ} and for all times.

Then the the solution of

$$egin{array}{rcl} z_t - \Delta z &=& (\lambda - arepsilon) z & ext{in} & \Omega_\delta \ z &=& 0 & ext{on} & \partial \Omega_\delta \ z(0) &=& z_0 \geq 0 \end{array}$$

with $z_0 \leq u_0$ in Ω_{δ} is a subsolution for u(x, t) on Ω_{δ} and then $u(x, t) \geq z(x, t)$. If $\lambda \geq \lambda_0(K)$ then for δ small enough we have $\lambda > \lambda_1(\Omega_{\delta})$ and then z is unbounded on Ω_{δ} .

Take a decreasing family Ω_{δ} for K such that $0 \le n(x) \le \delta$ in Ω_{δ} , since n(x) is continuous. Then, given $\varepsilon > 0$, for δ small enough, we have

$$0 \le n(x)u^{
ho-1} \le \delta M^{
ho-1} \le \varepsilon$$

in Ω_{δ} and for all times.

Then the the solution of

$$egin{array}{rcl} (z_t - \Delta z &=& (\lambda - arepsilon) z & ext{in} & \Omega_\delta \ z &=& 0 & ext{on} & \partial\Omega_\delta \ z(0) &=& z_0 \geq 0 \end{array}$$

with $z_0 \leq u_0$ in Ω_{δ} is a subsolution for u(x, t) on Ω_{δ} and then $u(x, t) \geq z(x, t)$. If $\lambda \geq \lambda_0(K)$ then for δ small enough we have $\lambda > \lambda_1(\Omega_{\delta})$ and then z is unbounded on Ω_{δ} .

Take a decreasing family Ω_{δ} for K such that $0 \le n(x) \le \delta$ in Ω_{δ} , since n(x) is continuous. Then, given $\varepsilon > 0$, for δ small enough, we have

$$0 \le n(x)u^{\rho-1} \le \delta M^{\rho-1} \le \varepsilon$$

in Ω_{δ} and for all times.

Then the the solution of

$$\left\{ egin{array}{rll} z_t - \Delta z &=& (\lambda - arepsilon) z & ext{in} & \Omega_\delta \ z &=& 0 & ext{on} & \partial \Omega_\delta \ z(0) &=& z_0 \geq 0 \end{array}
ight.$$

with $z_0 \leq u_0$ in Ω_{δ} is a subsolution for u(x, t) on Ω_{δ} and then $u(x, t) \geq z(x, t)$.

If $\lambda \geq \lambda_0(K)$ then for δ small enough we have $\lambda > \lambda_1(\Omega_{\delta})$ and then z is unbounded on Ω_{δ} .

A.Rodríguez-Bernal, UCM. Degenerate logistic equation

Take a decreasing family Ω_{δ} for K such that $0 \le n(x) \le \delta$ in Ω_{δ} , since n(x) is continuous. Then, given $\varepsilon > 0$, for δ small enough, we have

$$0 \le n(x)u^{\rho-1} \le \delta M^{\rho-1} \le \varepsilon$$

in Ω_{δ} and for all times.

Then the the solution of

$$\left\{ egin{array}{rll} z_t - \Delta z &=& (\lambda - arepsilon) z & ext{in} & \Omega_\delta \ z &=& 0 & ext{on} & \partial \Omega_\delta \ z(0) &=& z_0 \geq 0 \end{array}
ight.$$

with $z_0 \leq u_0$ in Ω_{δ} is a subsolution for u(x, t) on Ω_{δ} and then $u(x, t) \geq z(x, t)$. If $\lambda \geq \lambda_0(K)$ then for δ small enough we have $\lambda > \lambda_1(\Omega_{\delta})$ and then z is unbounded on Ω_{δ} .

A.Rodríguez-Bernal, UCM. Degenerate logistic equation

Take a decreasing family Ω_{δ} for K such that $0 \le n(x) \le \delta$ in Ω_{δ} , since n(x) is continuous. Then, given $\varepsilon > 0$, for δ small enough, we have

$$0 \le n(x)u^{\rho-1} \le \delta M^{\rho-1} \le \varepsilon$$

in Ω_{δ} and for all times.

Then the the solution of

$$\left\{ egin{array}{rll} z_t - \Delta z &=& (\lambda - arepsilon) z & ext{in} & \Omega_\delta \ z &=& 0 & ext{on} & \partial \Omega_\delta \ z(0) &=& z_0 \geq 0 \end{array}
ight.$$

with $z_0 \leq u_0$ in Ω_{δ} is a subsolution for u(x, t) on Ω_{δ} and then $u(x, t) \geq z(x, t)$. If $\lambda \geq \lambda_0(K)$ then for δ small enough we have $\lambda > \lambda_1(\Omega_{\delta})$ and

then z is unbounded on Ω_{δ} .

iii) This part is immediate. п

A.Rodríguez-Bernal, UCM. Degenerate logistic equation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Where in a thick component is a solution bounded?

A thick component of K_0 .

Improved universal bound

Lemma

For any solution there exists a constant $A = A(u_0, \lambda)$ such that

$$0 \le u(t, x; u_0) \le h(x) = \left(\frac{A}{\varepsilon^2(x) \inf_{B(x, \varepsilon(x))} n}\right)^{\frac{1}{p-1}}, \quad x \in \Omega$$

with $\varepsilon(x) = C \operatorname{dist}(x, K_0)$, with 0 < C < 1.

Note that $h(x) \to \infty$ as $x \to K_0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Improved universal bound

Lemma

For any solution there exists a constant $A = A(u_0, \lambda)$ such that

$$0 \le u(t, x; u_0) \le h(x) = \left(\frac{A}{\varepsilon^2(x) \inf_{B(x, \varepsilon(x))} n}\right)^{\frac{1}{p-1}}, \quad x \in \Omega$$

with $\varepsilon(x) = C \operatorname{dist}(x, K_0)$, with 0 < C < 1.

Note that $h(x) \to \infty$ as $x \to K_0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Estimates on transversal sections

Definition. Transversal section

Let S be a bounded closed regular piece of a hyperplane in \mathbb{R}^N . That is, $S = \overline{S_0}$ with S_0 a bounded open set in the hyperplane.

We say *S* is **transversal** to the compact set *K*, if $K \not\subset S$, $K_S = K \cap S \neq \emptyset$ and for $x \in S$

 $dist_S(x, K_S) \sim dist(x, K)$

where $dist_S$ denotes the N-1 dimensional distance on the hyperplane containing S.

Estimates on transversal sections

Definition. Transversal section

Let S be a bounded closed regular piece of a hyperplane in \mathbb{R}^N . That is, $S = \overline{S_0}$ with S_0 a bounded open set in the hyperplane.

We say S is **transversal** to the compact set K, if $K \not\subset S$, $K_S = K \cap S \neq \emptyset$ and for $x \in S$

 $dist_S(x, K_S) \sim dist(x, K)$

where $dist_S$ denotes the N-1 dimensional distance on the hyperplane containing S.

Estimates on transversal sections

Definition. Transversal section

Let S be a bounded closed regular piece of a hyperplane in \mathbb{R}^N . That is, $S = \overline{S_0}$ with S_0 a bounded open set in the hyperplane.

We say S is **transversal** to the compact set K, if $K \not\subset S$, $K_S = K \cap S \neq \emptyset$ and for $x \in S$

$$dist_S(x, K_S) \sim dist(x, K)$$

where $dist_S$ denotes the N-1 dimensional distance on the hyperplane containing S.

Assume S is transversal to K and for $x \in S$, close enough to K, and for $\varepsilon(x) = C \operatorname{dist}(x, K)$, with 0 < C < 1, we have

 $\inf_{B(x,\varepsilon(x))} n \ge n^*(dist(x,K))$

with n^* , continuous and $n^*(s) > 0$ if s > 0, $n^*(0) = 0$.

Furthermore we assume $j(s) = s^2 n^*(s)$ is increasing in $s \ge 0$.

Finally assume that the N - 1 fractal dimension of $K_S = K \cap S$ is $0 \le d^* < N - 1$; that is, the fractal dimension of K_S as a subset of \mathbb{R}^{N-1} .

Note that $B(x, \epsilon(x))$ is N–dimensional ball. This condition gives information in the way n(x) vanishes, as $x \in S$ approaches K

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへの

Assume S is transversal to K and for $x \in S$, close enough to K, and for $\varepsilon(x) = C \operatorname{dist}(x, K)$, with 0 < C < 1, we have

 $\inf_{B(x,\varepsilon(x))} n \ge n^*(dist(x,K))$

with n^* , continuous and $n^*(s) > 0$ if s > 0, $n^*(0) = 0$.

Furthermore we assume $j(s) = s^2 n^*(s)$ is increasing in $s \ge 0$.

Finally assume that the N - 1 fractal dimension of $K_S = K \cap S$ is $0 \le d^* < N - 1$; that is, the fractal dimension of K_S as a subset of \mathbb{R}^{N-1} .

Note that $B(x, \epsilon(x))$ is N–dimensional ball. This condition gives information in the way n(x) vanishes, as $x \in S$ approaches K

・ロト ・母 ト ・ヨト ・ヨー うへの

Assume S is transversal to K and for $x \in S$, close enough to K, and for $\varepsilon(x) = C \operatorname{dist}(x, K)$, with 0 < C < 1, we have

$$\inf_{B(x,\varepsilon(x))} n \ge n^*(dist(x,K))$$

with n^* , continuous and $n^*(s) > 0$ if s > 0, $n^*(0) = 0$.

Furthermore we assume $j(s) = s^2 n^*(s)$ is increasing in $s \ge 0$.

Finally assume that the N - 1 fractal dimension of $K_S = K \cap S$ is $0 \le d^* < N - 1$; that is, the fractal dimension of K_S as a subset of \mathbb{R}^{N-1} .

Note that $B(x, \varepsilon(x))$ is *N*–dimensional ball. This condition gives information in the way n(x) vanishes, as $x \in S$ approaches K

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Assume S is transversal to K and for $x \in S$, close enough to K, and for $\varepsilon(x) = C \operatorname{dist}(x, K)$, with 0 < C < 1, we have

$$\inf_{B(x,\varepsilon(x))} n \ge n^*(dist(x,K))$$

with n^* , continuous and $n^*(s) > 0$ if s > 0, $n^*(0) = 0$.

Furthermore we assume $j(s) = s^2 n^*(s)$ is increasing in $s \ge 0$.

Finally assume that the N - 1 fractal dimension of $K_S = K \cap S$ is $0 \le d^* < N - 1$; that is, the fractal dimension of K_S as a subset of \mathbb{R}^{N-1} .

Note that $B(x, \varepsilon(x))$ is *N*-dimensional ball. This condition gives information in the way n(x) vanishes, as $x \in S$ approaches *K*

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ▲日 > ▲

Assume S is transversal to K and for $x \in S$, close enough to K, and for $\varepsilon(x) = C \operatorname{dist}(x, K)$, with 0 < C < 1, we have

$$\inf_{B(x,\varepsilon(x))} n \ge n^*(dist(x,K))$$

with n^* , continuous and $n^*(s) > 0$ if s > 0, $n^*(0) = 0$.

Furthermore we assume $j(s) = s^2 n^*(s)$ is increasing in $s \ge 0$.

Finally assume that the N-1 fractal dimension of $K_S = K \cap S$ is $0 \le d^* < N-1$; that is, the fractal dimension of K_S as a subset of \mathbb{R}^{N-1} .

Note that $B(x, \varepsilon(x))$ is *N*-dimensional ball. This condition gives information in the way n(x) vanishes, as $x \in S$ approaches *K*

Assume S is transversal to K and for $x \in S$, close enough to K, and for $\varepsilon(x) = C \operatorname{dist}(x, K)$, with 0 < C < 1, we have

$$\inf_{B(x,\varepsilon(x))} n \ge n^*(dist(x,K))$$

with n^* , continuous and $n^*(s) > 0$ if s > 0, $n^*(0) = 0$.

Furthermore we assume $j(s) = s^2 n^*(s)$ is increasing in $s \ge 0$.

Finally assume that the N-1 fractal dimension of $K_S = K \cap S$ is $0 \le d^* < N-1$; that is, the fractal dimension of K_S as a subset of \mathbb{R}^{N-1} .

Note that $B(x, \varepsilon(x))$ is *N*-dimensional ball. This condition gives information in the way n(x) vanishes, as $x \in S$ approaches *K*

If $r \geq 1$ is such that

$$\int^{\infty} \left(j^{-1} (\frac{1}{s^{\frac{\rho-1}{r}}}) \right)^{N-1-d^*} ds < \infty$$

then for any solution there exists $h \in L^{r}(S)$ such that

 $0 \le u(x,t) \le h(x)$, for all $t \ge 0$ and $x \in S$.

In particular, if

$$\rho > 1 + \frac{2}{N-1}$$

and $n^*(s) = Cs^{\gamma}$ with $\gamma > 0$, then the above condition is satisfied, provided γ, d^* and r satisfy

$$1 \le r < \frac{(\rho - 1)(N - 1 - d^*)}{\gamma + 2}.$$

If $r \geq 1$ is such that

$$\int^{\infty} \left(j^{-1} (\frac{1}{s^{\frac{\rho-1}{r}}}) \right)^{N-1-d^*} ds < \infty$$

then for any solution there exists $h \in L^r(S)$ such that

 $0 \le u(x,t) \le h(x)$, for all $t \ge 0$ and $x \in S$.

In particular, if

$$\rho > 1 + \frac{2}{N-1}$$

and $n^*(s) = Cs^{\gamma}$ with $\gamma > 0$, then the above condition is satisfied, provided γ, d^* and r satisfy

$$1 \le r < \frac{(\rho - 1)(N - 1 - d^*)}{\gamma + 2}.$$

If $r \geq 1$ is such that

$$\int^{\infty} \left(j^{-1} (\frac{1}{s^{\frac{\rho-1}{r}}}) \right)^{N-1-d^*} ds < \infty$$

then for any solution there exists $h \in L^r(S)$ such that

 $0 \le u(x,t) \le h(x)$, for all $t \ge 0$ and $x \in S$.

In particular, if

$$\rho > 1 + \frac{2}{N-1}$$

and $n^*(s) = Cs^{\gamma}$ with $\gamma > 0$, then the above condition is satisfied, provided γ, d^* and r satisfy

$$1 \le r < \frac{(\rho - 1)(N - 1 - d^*)}{\gamma + 2}.$$

Remark

Both the "size" of the section K_S (in terms on its fractal dimension) and the way n(x) vanishes near K_S , intervene in the result above.

These are local properties of K near S.

Remark

Both the "size" of the section K_S (in terms on its fractal dimension) and the way n(x) vanishes near K_S , intervene in the result above.

These are local properties of K near S.

Remark

The result also holds without assuming that S is a piece of a hyperplane. It is enough that $S = F(S^*)$ where F is a bi–Lipschitz diffeomorphism in \mathbb{R}^{N-1} as long as

 $dist_S(x, K_S) \sim dist(x, K)$

Note that now $dist_S$ denotes the geodesic distance on S. Also, we require that $K_S = F(K^*)$ where $K^* \subset \mathbb{R}^{N-1}$ has fractal dimension $0 \le d^* < N - 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

A sufficient condition for boundedness in a part of a thick component

Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$.

Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

A natural question is wether or not the solutions of the logistic equation become unbounded first on K_1 than in K_2 .

A sufficient condition for boundedness in a part of a thick component

Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

A natural question is wether or not the solutions of the logistic equation become unbounded first on K_1 than in K_2 .

A sufficient condition for boundedness in a part of a thick component

Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

A natural question is wether or not the solutions of the logistic equation become unbounded first on K_1 than in K_2 .

We will assume estimates on a suitable transversal section

i) Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

ii) Assume *B* is an "isolation box", for K_2 , that is, an open bounded set *B* such that $\overline{B} \supset K_2$, $K_1 \cap B = \emptyset$ and $K_1 \cap \overline{B} = K_1 \cap K_2$.

iii) Moreover, assume one of the "faces" of its boundary, say $S \subset \partial B$, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension of $K_S = K \cap S$ for the estimate on the transversal section.

Then if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$, any solution of the logistic equation remains bounded in K_2 although it is unbounded in K, hence in K_1

i) Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

ii) Assume B is an "isolation box", for K_2 , that is, an open bounded set B such that $\overline{B} \supset K_2$, $K_1 \cap B = \emptyset$ and $K_1 \cap \overline{B} = K_1 \cap K_2$.

iii) Moreover, assume one of the "faces" of its boundary, say $S \subset \partial B$, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension of $K_S = K \cap S$ for the estimate on the transversal section.

Then if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$, any solution of the logistic equation remains bounded in K_2 although it is unbounded in K, hence in K_1 .

i) Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

ii) Assume B is an "isolation box", for K_2 , that is, an open bounded set B such that $\overline{B} \supset K_2$, $K_1 \cap B = \emptyset$ and $K_1 \cap \overline{B} = K_1 \cap K_2$.

iii) Moreover, assume one of the "faces" of its boundary, say $S \subset \partial B$, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension of $K_S = K \cap S$ for the estimate on the transversal section.

Then if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$, any solution of the logistic equation remains bounded in K_2 although it is unbounded in K, hence in K_1 .

i) Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

ii) Assume B is an "isolation box", for K_2 , that is, an open bounded set B such that $\overline{B} \supset K_2$, $K_1 \cap B = \emptyset$ and $K_1 \cap \overline{B} = K_1 \cap K_2$.

iii) Moreover, assume one of the "faces" of its boundary, say $S \subset \partial B$, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension of $K_S = K \cap S$ for the estimate on the transversal section.

Then if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$, any solution of the logistic equation remains bounded in K_2 although it is unbounded in K, hence in K_1 .

i) Assume K is a thick component of K_0 , and $K = K_1 \cup K_2$ where $K_1 \cap K_2 \neq \emptyset$. Assume also K is thicker than K_2 , that is, $\lambda_0(K) < \lambda_0(K_2)$.

ii) Assume B is an "isolation box", for K_2 , that is, an open bounded set B such that $\overline{B} \supset K_2$, $K_1 \cap B = \emptyset$ and $K_1 \cap \overline{B} = K_1 \cap K_2$.

iii) Moreover, assume one of the "faces" of its boundary, say $S \subset \partial B$, is transversal to K.

iv) Finally assume the conditions on n(x) and the fractal dimension of $K_S = K \cap S$ for the estimate on the transversal section.

Then if $\lambda_0(K) \le \lambda < \lambda_0(K_2)$, any solution of the logistic equation remains bounded in K_2 although it is unbounded in K, hence in K_1 .

イロト 不得 トイヨト イヨト 二日

An isolation box

Proof On $\partial B \setminus S$ we have L^{∞} bounds on any given solution. By the estimate on the transversal section $u(x, t) \leq h(x)$ for $x \in S$, $t \geq 0$ and $h \in L^{r}(S)$, for $r \geq 1$ and we extend h to the rest of ∂B by a suitable constant. We denote by $\tilde{h} \in L^{r}(\partial B)$, this extension. Thus, the solution of

$$egin{array}{rcl} U_t - \Delta U &=& \lambda U & ext{in} & B \ U &=& ilde{h}(x) & ext{on} & \partial B \ U(0) &=& u_0 \geq 0 & ext{in} & B \end{array}$$

with becomes a supersolution, of u(x, t) in B. Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink B to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of B. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in K, hence in K_1 .

イロン イロン イヨン イヨン 二油

Proof On $\partial B \setminus S$ we have L^{∞} bounds on any given solution. By the estimate on the transversal section $u(x,t) \leq h(x)$ for $x \in S$, $t \geq 0$ and $h \in L^r(S)$, for $r \geq 1$ and we extend h to the rest of ∂B by a suitable constant. We denote by $\tilde{h} \in L^r(\partial B)$, this extension. Thus, the solution of

$$egin{array}{rcl} U_t - \Delta U &=& \lambda U & ext{in} & B \ U &=& ilde{h}(x) & ext{on} & \partial B \ U(0) &=& u_0 \geq 0 & ext{in} & B \end{array}$$

with becomes a supersolution, of u(x, t) in B. Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink B to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of B. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in K, hence in K_1 .

イロン イロン イヨン イヨン 二油
$$\left(\begin{array}{ccc} U_t - \Delta U &= \lambda U & \text{in } B \\ U &= \tilde{h}(x) & \text{on } \partial B \\ U(0) &= u_0 \ge 0 & \text{in } B \end{array} \right)$$

with becomes a supersolution, of u(x, t) in B. Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink B to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of B. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in K, hence in K_1 .

(日) (圖) (E) (E) (E)

$$\left\{ egin{array}{cccc} U_t - \Delta U &=& \lambda U & ext{in} & B \ U &=& ilde{h}(x) & ext{on} & \partial B \ U(0) &=& u_0 \geq 0 & ext{in} & B \end{array}
ight.$$

with becomes a supersolution, of u(x, t) in B.

Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink *B* to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of *B*. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in *K*, hence in K_1 .

$$\begin{cases} U_t - \Delta U &= \lambda U & \text{in } B \\ U &= \tilde{h}(x) & \text{on } \partial B \\ U(0) &= u_0 \ge 0 & \text{in } B \end{cases}$$

with becomes a supersolution, of u(x, t) in B. Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink B to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of B. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in K, hence in K_1 .

$$\begin{cases} U_t - \Delta U &= \lambda U & \text{in } B \\ U &= \tilde{h}(x) & \text{on } \partial B \\ U(0) &= u_0 \ge 0 & \text{in } B \end{cases}$$

with becomes a supersolution, of u(x, t) in B. Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink B to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of B. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in K, hence in K_1 .

$$\begin{cases} U_t - \Delta U &= \lambda U & \text{in } B \\ U &= \tilde{h}(x) & \text{on } \partial B \\ U(0) &= u_0 \ge 0 & \text{in } B \end{cases}$$

with becomes a supersolution, of u(x, t) in B. Now, if $\lambda_0(K) \leq \lambda < \lambda_0(K_2)$ we can shrink B to be close enough to K_2 such that $\lambda < \lambda_1(B) < \lambda_0(K_2)$. Then, standard parabolic regularity gives L^{∞} bounds for U(x, t) for all times, on compact subsets of B. Hence, u(x, t) remains bounded in K_2 while we know that it does become unbounded in K, hence in K_1 .

An example: a hairy component

Here N = 2, $d^* = 0$ and assuming $n^*(s) = s^{\gamma}$ we have the condition $\rho + 1 > \gamma$, as long as $\rho > 3$. This always holds for $\gamma < 4$.

Again, "size" of K and "rate of vanishing" of n(x) play a role here.

An example: a hairy component

Here N = 2, $d^* = 0$ and assuming $n^*(s) = s^{\gamma}$ we have the condition $\rho + 1 > \gamma$, as long as $\rho > 3$. This always holds for $\gamma < 4$.

Again, "size" of K and "rate of vanishing" of n(x) play a role here.

Lemma

Assume $u_0 \ge 0$ and non zero and $\alpha > 0$. Then i) If $\alpha > 1$ $\alpha u(t, x; u_0) \ge u(t, x; \alpha u_0)$. ii) If $\alpha < 1$ $\alpha u(t, x; u_0) \le u(t, x; \alpha u_0)$.

Proof Note that $v(t) = \alpha u(t; u_0)$ satisfies $v(0) = \alpha u_0$

$$v_t - \Delta v = \lambda v - \frac{n(x)}{\alpha^{\rho-1}} v^{\rho}.$$

Lemma

Assume $u_0 \ge 0$ and non zero and $\alpha > 0$. Then i) If $\alpha > 1$ $\alpha u(t, x; u_0) \ge u(t, x; \alpha u_0)$. ii) If $\alpha < 1$ $\alpha u(t, x; u_0) \le u(t, x; \alpha u_0)$.

Proof Note that $v(t) = \alpha u(t; u_0)$ satisfies $v(0) = \alpha u_0$

$$v_t - \Delta v = \lambda v - \frac{n(x)}{\alpha^{\rho-1}} v^{\rho}.$$

Lemma

Assume $u_0 \ge 0$ and non zero and $\alpha > 0$. Then i) If $\alpha > 1$ $\alpha u(t, x; u_0) \ge u(t, x; \alpha u_0)$. ii) If $\alpha < 1$

$$\alpha u(t,x;u_0) \leq u(t,x;\alpha u_0).$$

Proof Note that $v(t) = \alpha u(t; u_0)$ satisfies $v(0) = \alpha u_0$

$$v_t - \Delta v = \lambda v - \frac{n(x)}{\alpha^{\rho-1}} v^{\rho}.$$

Lemma

Assume $u_0 \ge 0$ and non zero and $\alpha > 0$. Then i) If $\alpha > 1$ $\alpha u(t, x; u_0) \ge u(t, x; \alpha u_0)$. ii) If $\alpha < 1$ $\alpha u(t, x; u_0) \le u(t, x; \alpha u_0)$.

Proof Note that $v(t) = \alpha u(t; u_0)$ satisfies $v(0) = \alpha u_0$

$$v_t - \Delta v = \lambda v - \frac{n(x)}{\alpha^{\rho-1}}v^{\rho}.$$

Lemma

Assume $u_0 \ge 0$ and non zero and $\alpha > 0$. Then i) If $\alpha > 1$ $\alpha u(t, x; u_0) \ge u(t, x; \alpha u_0)$. ii) If $\alpha < 1$ $\alpha u(t, x; u_0) \le u(t, x; \alpha u_0)$.

Proof Note that $v(t) = \alpha u(t; u_0)$ satisfies $v(0) = \alpha u_0$

$$v_t - \Delta v = \lambda v - \frac{n(x)}{\alpha^{\rho-1}}v^{\rho}.$$

Corollary

All solutions of the logistic equation become unbounded at the same rate and at the same points when $\lambda \ge \lambda_0(K_0)$.

Proof Fix any $C^1(\overline{\Omega})$, $u_0 > 0$ with strictly negative normal derivative at the boundary of Ω . Then for any other initial data v_0 we can assume there exists $\alpha < 1$ and $\beta > 1$ such that

 $\alpha u_0 \leq v_0 \leq \beta u_0.$

Otherwise replace v_0 by $u(\varepsilon; v_0)$ for any $\varepsilon > 0$. Then

 $\alpha u(t,x;u_0) \leq u(t,x;\alpha u_0) \leq u(t,x;v_0) \leq u(t,x;\beta u_0) \leq \beta u(t,x;u_0)$

Corollary

All solutions of the logistic equation become unbounded at the same rate and at the same points when $\lambda \ge \lambda_0(K_0)$.

Proof Fix any $C^1(\overline{\Omega})$, $u_0 > 0$ with strictly negative normal derivative at the boundary of Ω . Then for any other initial data v_0 we can assume there exists $\alpha < 1$ and $\beta > 1$ such that

 $\alpha u_0 \leq v_0 \leq \beta u_0.$

Otherwise replace v_0 by $u(\varepsilon; v_0)$ for any $\varepsilon > 0$. Then

 $\alpha u(t,x;u_0) \leq u(t,x;\alpha u_0) \leq u(t,x;v_0) \leq u(t,x;\beta u_0) \leq \beta u(t,x;u_0)$

Corollary

All solutions of the logistic equation become unbounded at the same rate and at the same points when $\lambda \ge \lambda_0(K_0)$.

Proof Fix any $C^1(\overline{\Omega})$, $u_0 > 0$ with strictly negative normal derivative at the boundary of Ω . Then for any other initial data v_0 we can assume there exists $\alpha < 1$ and $\beta > 1$ such that

$$\alpha u_0 \leq v_0 \leq \beta u_0.$$

Otherwise replace v_0 by $u(\varepsilon; v_0)$ for any $\varepsilon > 0$. Then

 $\alpha u(t,x;u_0) \le u(t,x;\alpha u_0) \le u(t,x;v_0) \le u(t,x;\beta u_0) \le \beta u(t,x;u_0)$

Corollary

All solutions of the logistic equation become unbounded at the same rate and at the same points when $\lambda \ge \lambda_0(K_0)$.

Proof Fix any $C^1(\overline{\Omega})$, $u_0 > 0$ with strictly negative normal derivative at the boundary of Ω . Then for any other initial data v_0 we can assume there exists $\alpha < 1$ and $\beta > 1$ such that

$$\alpha u_0 \leq v_0 \leq \beta u_0.$$

Otherwise replace v_0 by $u(\varepsilon; v_0)$ for any $\varepsilon > 0$. Then

$$\alpha u(t,x;u_0) \leq u(t,x;\alpha u_0) \leq u(t,x;v_0) \leq u(t,x;\beta u_0) \leq \beta u(t,x;u_0)$$