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Inequalities for the eigenvalues: I

λ1 (Faber–Krahn)

The Faber–Krahn inequality says that

λ1(E ) ≥ λ1(B) .

To show the inequality, it suffices to define the spherical rearrangement
u∗ of u, and apply the Polya–Szegő inequality to get that (for |E | = 1)

λ1(E ) =

∫
E |Du|2∫

E u2
≥
∫
B |Du∗|2∫

B u∗2
≥ λ1(B) .
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Inequalities for the eigenvalues: II

λ2 (Krahn–Szego)

The Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ) ,

where Θ = B1 ∪ B2 is a disjoint union of two balls of volume 1/2.
Moreover, equality holds iff E is such a disjoint union.
To show this inequality, define

E+ :=
{
u2 > 0} , E− :=

{
u2 < 0} .

One has easily λ2(E ) = λ1(E+) = λ1(E−).
Then by Faber–Krahn (and |E | = 1)

λ2(E ) ≥ λ1(B+) ∨ λ1(B−) ≥ λ2(Θ) .
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Inequalities for the eigenvalues: III

and IV

µ1 (trivial)

It is enough to take v1 ≡ 1. . . Hence, µ1(E ) = 0 for any set E .

µ2 (Szegő–Weinberger)

The Szegő–Weinberger inequality says that

µ2(E )

≤≤

µ2(B) .

The proof is quite technical, and relies on Bessel functions.
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Quantitative Faber–Krahn

Some results are known about a quantitative version of Faber–Krahn.
For any dimension n,

A(E ) ≤ C (n)
(
λ1(E )− λ1(B)

)1/4

(Fusco–Maggi–P.). The exponent 1/4 is surely not sharp, should be 1/2.
For the dimension n = 2, Bhattacharya showed that

A(E ) ≤ C (n)
(
λ1(E )− λ1(B)

)1/3
.
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Quantitative Krahn–Szego

(claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the

quantitative version of

Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ)

+c(n)A2(E )2(n+1)

.

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the

quantitative version of

Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ)

+c(n)A2(E )2(n+1)

.

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the

quantitative version of

Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ)

+c(n)A2(E )2(n+1)

.

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the

quantitative version of

Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ)

+c(n)A2(E )2(n+1)

.

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the

quantitative version of

Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ)

+c(n)A2(E )2(n+1)

.

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the

quantitative version of

Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ)

+c(n)A2(E )2(n+1)

.

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the quantitative version of Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ) +c(n)A2(E )2(n+1) .

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego (claim)

Let us define the 2−Fraenkel asymmetry,

A2(E ) := min
Θ=B1∪B2

∣∣E∆Θ
∣∣ ,

and the Krahn–Szego deficit

KS(E ) = λ2(E )− λ2(Θ) .

Then the quantitative version of Krahn–Szego inequality says that

λ2(E ) ≥ λ2(Θ) +c(n)A2(E )2(n+1) .

In other words, A2(E ) ≤ c(n)KS(E )
1

2(N+1) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 6 / 11



Quantitative Krahn–Szego

(sharpness)

A2(E ) .
(
A(E+) +A(E−) + ε

) 2
n+1

. KS(E )
1

2(n+1) .

• The exponent 1/2(n + 1) is surely not sharp, because the proof relies
on the non-sharp exponent for λ1.
• The exponent 2/(n + 1) is sharp, as two overlapping balls show.

In fact, our proof ensures the exponent 2κ
n+1 , where κ ∈ [1/4, 1/2] is the

sharp exponent for λ1.

• Is 2κ
n+1 sharp?

It has been obtained putting together two sharp estimates, but this is not
enough.
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Quantitative Szegő–Weinberger

(step 1)

Let us start with the classical proof by Weinberger.
It is known that µ2(B) has multiplicity n, and the eigenfunctions are

vi (x) = f (|x |) xi

|x |
.

f solves some ODE of Bessel type (and it is increasing).
Extend f to be constant out of B. Then

(up to a translation!)

µ2(E ) ≤
∫
E |Dvi |2∫

E v2
i

≤
∑

i

∫
E |Dvi |2∑
i

∫
E v2

i

=

∫
E g(|x |)∫
E f (|x |)2

.

Thanks to the Bessel equation, g is decreasing. Hence,

µ2(E ) ≤
∫
E g(|x |)∫
E f (|x |)2

≤
∫
B g(|x |)∫
B f (|x |)2

= µ2(B) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 8 / 11
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Quantitative Szegő–Weinberger (step 1)

Let us start with the classical proof by Weinberger.
It is known that µ2(B) has multiplicity n, and the eigenfunctions are

vi (x) = f (|x |) xi

|x |
.

f solves some ODE of Bessel type (and it is increasing).
Extend f to be constant out of B. Then (up to a translation!)

µ2(E ) ≤
∫
E |Dvi |2∫

E v2
i

≤
∑

i

∫
E |Dvi |2∑
i

∫
E v2

i

=

∫
E g(|x |)∫
E f (|x |)2

.

Thanks to the Bessel equation, g is decreasing. Hence,

µ2(E ) ≤
∫
E g(|x |)∫
E f (|x |)2

≤
∫
B g(|x |)∫
B f (|x |)2

= µ2(B) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 8 / 11



Quantitative Szegő–Weinberger (step 1)

Let us start with the classical proof by Weinberger.
It is known that µ2(B) has multiplicity n, and the eigenfunctions are

vi (x) = f (|x |) xi

|x |
.

f solves some ODE of Bessel type (and it is increasing).
Extend f to be constant out of B. Then (up to a translation!)

µ2(E ) ≤
∫
E |Dvi |2∫

E v2
i

≤
∑

i

∫
E |Dvi |2∑
i

∫
E v2

i

=

∫
E g(|x |)∫
E f (|x |)2

.

Thanks to the Bessel equation, g is decreasing. Hence,

µ2(E ) ≤
∫
E g(|x |)∫
E f (|x |)2

≤
∫
B g(|x |)∫
B f (|x |)2

= µ2(B) .

September 1, 2011 (Benasque) Open Session on G./F. inequalities PDEs, optimal design and numerics 8 / 11



Quantitative Szegő–Weinberger

(step 2)

We can be more precise in the above proof.

Define the set D := Bi ∪
(
Be \ B

)
. The proof before ensures that

µ2(E ) ≤
∫
E g(|x |)∫
E f (|x |)2

≤
∫
D g(|x |)∫
D f (|x |)2

≤ µ2(B)− c(n)A(E )2 .
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Quantitative Szegő–Weinberger

(sharpness)

What about the sharpness of the exponent 2 in quantitative SW ineq.?
One is always happy with exponent 2. . . But:
• The eigenvalue µ2 is not simple!
• The inequality is on the wrong side!!
• Ellipses has exponent 1!!!
Luckily, exponent 2 is sharp, but the example is quite involved.

One needs to use an iterative procedure together with a spectral
decomposition plus classical Calderon–Zygmund estimates, on an unknown
eigenfunction!
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Open problems

• Show the sharp exponent κ (= 2?) for the Faber–Krahn inequality for λ1.

• Find the sharp exponent (= 2κ
n+1 ?) for the Krahn–Szego inequality for λ2.

• There are a lot of other open spectral inequalities!
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