Open session on "Geometrical and Functional Inequalities" (some quantitative spectral inequalities)

"Workshop on "Partial differential equations, optimal design and numerics"

Aldo Pratelli (Pavia)

Benasque, September 1, 2011

Inequalities for the eigenvalues: I

 λ_1 (Faber–Krahn)

Inequalities for the eigenvalues: I

 λ_1 (Faber–Krahn)

The Faber-Krahn inequality says that

 $\lambda_1(E) \geq \lambda_1(B)$.

Inequalities for the eigenvalues: I λ_1 (Faber–Krahn)

The Faber-Krahn inequality says that

 $\lambda_1(E) \geq \lambda_1(B).$

To show the inequality, it suffices to define the spherical rearrangement u^* of u, and apply the Polya–Szegő inequality to get that (for |E| = 1)

Inequalities for the eigenvalues: I λ_1 (Faber–Krahn)

The Faber–Krahn inequality says that

 $\lambda_1(E) \geq \lambda_1(B).$

To show the inequality, it suffices to define the spherical rearrangement u^* of u, and apply the Polya–Szegő inequality to get that (for |E| = 1)

$$\lambda_1(E) = \frac{\int_E |Du|^2}{\int_E u^2} \geq \frac{\int_B |Du^*|^2}{\int_B u^{*2}} \geq \lambda_1(B).$$

A ►

The Krahn–Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta)$,

where $\Theta = B_1 \cup B_2$ is a disjoint union of two balls of volume 1/2.

通 ト イヨ ト イヨ ト

The Krahn–Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta)$,

where $\Theta = B_1 \cup B_2$ is a disjoint union of two balls of volume 1/2. Moreover, equality holds iff *E* is such a disjoint union.

• • = • • = •

The Krahn–Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta)$,

where $\Theta = B_1 \cup B_2$ is a disjoint union of two balls of volume 1/2. Moreover, equality holds iff *E* is such a disjoint union. To show this inequality, define

$$E^+ := \{ u_2 > 0 \}, \qquad \qquad E^- := \{ u_2 < 0 \}.$$

通 ト イヨ ト イヨ ト

The Krahn–Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta)$,

where $\Theta = B_1 \cup B_2$ is a disjoint union of two balls of volume 1/2. Moreover, equality holds iff *E* is such a disjoint union. To show this inequality, define

$$E^+ := \{u_2 > 0\}, \qquad E^- := \{u_2 < 0\}.$$

One has easily $\lambda_2(E) = \lambda_1(E^+) = \lambda_1(E^-)$.

通 ト イヨ ト イヨ ト

The Krahn–Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta)$,

where $\Theta = B_1 \cup B_2$ is a disjoint union of two balls of volume 1/2. Moreover, equality holds iff *E* is such a disjoint union. To show this inequality, define

$$E^+ := \{u_2 > 0\}, \qquad E^- := \{u_2 < 0\}.$$

One has easily $\lambda_2(E) = \lambda_1(E^+) = \lambda_1(E^-)$. Then by Faber–Krahn (and |E| = 1)

伺下 イヨト イヨト

The Krahn–Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta)$,

where $\Theta = B_1 \cup B_2$ is a disjoint union of two balls of volume 1/2. Moreover, equality holds iff *E* is such a disjoint union. To show this inequality, define

$$E^+ := \{ u_2 > 0 \}, \qquad \qquad E^- := \{ u_2 < 0 \}.$$

One has easily $\lambda_2(E) = \lambda_1(E^+) = \lambda_1(E^-)$. Then by Faber–Krahn (and |E| = 1)

$$\lambda_2(E) \geq \lambda_1(B^+) \lor \lambda_1(B^-) \geq \lambda_2(\Theta)$$
 .

伺下 イヨト イヨト

Inequalities for the eigenvalues: III

 μ_1 (trivial)

September 1, 2011 (Benasque) Open Session on G./F. inequa

Open Session on G./F. inequalities PDEs, optimal design and numerics 4 / 11

A ►

글 > - + 글 >

It is enough to take $v_1 \equiv 1...$ Hence, $\mu_1(E) = 0$ for any set E.

3

通 ト イヨ ト イヨ ト

It is enough to take $v_1 \equiv 1...$ Hence, $\mu_1(E) = 0$ for any set E.

 μ_2 (Szegő–Weinberger)

3

通 と く ヨ と く ヨ と

It is enough to take $v_1 \equiv 1...$ Hence, $\mu_1(E) = 0$ for any set E.

μ_2 (Szegő–Weinberger)

The Szegő–Weinberger inequality says that

 $\mu_2(E) \leq \mu_2(B).$

It is enough to take $v_1 \equiv 1...$ Hence, $\mu_1(E) = 0$ for any set E.

μ_2 (Szegő–Weinberger)

The Szegő–Weinberger inequality says that

 $\mu_2(E) \leq \mu_2(B).$

It is enough to take $v_1 \equiv 1...$ Hence, $\mu_1(E) = 0$ for any set E.

μ_2 (Szegő–Weinberger)

The Szegő–Weinberger inequality says that

 $\mu_2(E) \leq \mu_2(B) \, .$

The proof is quite technical, and relies on Bessel functions.

4月 とうきょう ちょう

PDEs, optimal design and numerics 5 / 11

くほと くほと くほと

Some results are known about a quantitative version of Faber-Krahn.

Some results are known about a quantitative version of Faber–Krahn. For any dimension n,

$$\mathcal{A}(E) \leq C(n) \Big(\lambda_1(E) - \lambda_1(B)\Big)^{1/4}$$

(Fusco-Maggi-P.). The exponent 1/4 is surely not sharp, should be 1/2.

向下 イヨト イヨト

Some results are known about a quantitative version of Faber–Krahn. For any dimension n,

$$\mathcal{A}(E) \leq C(n) \Big(\lambda_1(E) - \lambda_1(B)\Big)^{1/4}$$

(Fusco-Maggi-P.). The exponent 1/4 is surely not sharp, should be 1/2. For the dimension n = 2, Bhattacharya showed that

$$\mathcal{A}(E) \leq C(n) \Big(\lambda_1(E) - \lambda_1(B)\Big)^{1/3}$$

Quantitative Krahn–Szego

September 1, 2011 (Benasque)

Open Session on G./F. inequalities

PDEs, optimal design and numerics 6 / 11

A B A A B A

ም.

Let us define the 2-Fraenkel asymmetry,

Let us define the 2-Fraenkel asymmetry,

$$\mathcal{A}_2(E) := \min_{\Theta = B_1 \cup B_2} \left| E \Delta \Theta \right|,$$

Let us define the 2-Fraenkel asymmetry,

$$\mathcal{A}_2(E) := \min_{\Theta = B_1 \cup B_2} \left| E \Delta \Theta \right|,$$

and the Krahn–Szego deficit

Let us define the 2-Fraenkel asymmetry,

$$\mathcal{A}_2(E) := \min_{\Theta=B_1\cup B_2} |E\Delta\Theta|,$$

and the Krahn–Szego deficit

$$KS(E) = \lambda_2(E) - \lambda_2(\Theta).$$

Let us define the 2-Fraenkel asymmetry,

$$\mathcal{A}_2(E) := \min_{\Theta=B_1\cup B_2} |E\Delta\Theta|,$$

and the Krahn–Szego deficit

$$KS(E) = \lambda_2(E) - \lambda_2(\Theta).$$

Then the

Krahn–Szego inequality says that

.

$$\lambda_2(E) \geq \lambda_2(\Theta)$$

Let us define the 2-Fraenkel asymmetry,

$$\mathcal{A}_2(E) := \min_{\Theta=B_1\cup B_2} |E\Delta\Theta|,$$

and the Krahn–Szego deficit

$$KS(E) = \lambda_2(E) - \lambda_2(\Theta).$$

Then the quantitative version of Krahn-Szego inequality says that

 $\lambda_2(E) \geq \lambda_2(\Theta) + c(n)\mathcal{A}_2(E)^{2(n+1)}$.

Let us define the 2-Fraenkel asymmetry,

$$\mathcal{A}_2(E) := \min_{\Theta=B_1\cup B_2} |E\Delta\Theta|,$$

and the Krahn–Szego deficit

$$KS(E) = \lambda_2(E) - \lambda_2(\Theta).$$

Then the quantitative version of Krahn-Szego inequality says that

$$\lambda_2(E) \geq \lambda_2(\Theta) + c(n)\mathcal{A}_2(E)^{2(n+1)}$$

In other words, $\mathcal{A}_2(E) \leq c(n) \mathcal{KS}(E)^{\frac{1}{2(N+1)}}$.

Quantitative Krahn–Szego

September 1, 2011 (Benasque)

A B F A B F PDEs, optimal design and numerics 7 / 11

A 10

$$egin{aligned} \mathcal{A}_2(E) \lesssim \left(\mathcal{A}(E^+) + \mathcal{A}(E^-) + arepsilon
ight)^{rac{2}{n+1}} \ \lesssim \mathcal{KS}(E)^{rac{1}{2(n+1)}} \,. \end{aligned}$$

 → Ξ → PDEs, optimal design and numerics 7 / 11

- N

$$\mathcal{A}_2(E) \lesssim \left(\mathcal{A}(E^+) + \mathcal{A}(E^-) + \varepsilon\right)^{rac{2}{n+1}} \ \lesssim \mathcal{KS}(E)^{rac{1}{2(n+1)}}.$$

• The exponent 1/2(n+1) is surely not sharp, because the proof relies on the non-sharp exponent for λ_1 .

通 ト イヨ ト イヨト

$$egin{aligned} \mathcal{A}_2(E) \lesssim \left(\mathcal{A}(E^+) + \mathcal{A}(E^-) + arepsilon
ight)^{rac{2}{n+1}} \ \lesssim \mathcal{KS}(E)^{rac{1}{2(n+1)}} \,. \end{aligned}$$

• The exponent 1/2(n+1) is surely not sharp, because the proof relies on the non-sharp exponent for λ_1 .

• The exponent 2/(n+1) is sharp, as two overlapping balls show.

$$egin{aligned} \mathcal{A}_2(E) \lesssim \left(\mathcal{A}(E^+) + \mathcal{A}(E^-) + arepsilon
ight)^{rac{2}{n+1}} \ \lesssim \mathcal{KS}(E)^{rac{1}{2(n+1)}} \,. \end{aligned}$$

• The exponent 1/2(n+1) is surely not sharp, because the proof relies on the non-sharp exponent for λ_1 .

• The exponent 2/(n+1) is sharp, as two overlapping balls show.

In fact, our proof ensures the exponent $\frac{2\kappa}{n+1}$, where $\kappa \in [1/4, 1/2]$ is the sharp exponent for λ_1 .

通 ト イヨ ト イヨ ト 二 ヨ

$$egin{aligned} \mathcal{A}_2(E) \lesssim \left(\mathcal{A}(E^+) + \mathcal{A}(E^-) + arepsilon
ight)^{rac{2}{n+1}} \ \lesssim \mathcal{KS}(E)^{rac{1}{2(n+1)}} \,. \end{aligned}$$

• The exponent 1/2(n+1) is surely not sharp, because the proof relies on the non-sharp exponent for λ_1 .

• The exponent 2/(n+1) is sharp, as two overlapping balls show.

In fact, our proof ensures the exponent $\frac{2\kappa}{n+1}$, where $\kappa \in [1/4, 1/2]$ is the sharp exponent for λ_1 .

• Is $\frac{2\kappa}{n+1}$ sharp?

通 ト イヨ ト イヨ ト 二 ヨ

Quantitative Krahn–Szego (sharpness)

$$egin{aligned} \mathcal{A}_2(E) \lesssim \left(\mathcal{A}(E^+) + \mathcal{A}(E^-) + arepsilon
ight)^{rac{2}{n+1}} \ \lesssim \mathcal{KS}(E)^{rac{1}{2(n+1)}} \,. \end{aligned}$$

• The exponent 1/2(n+1) is surely not sharp, because the proof relies on the non-sharp exponent for λ_1 .

• The exponent 2/(n+1) is sharp, as two overlapping balls show.

In fact, our proof ensures the exponent $\frac{2\kappa}{n+1}$, where $\kappa \in [1/4, 1/2]$ is the sharp exponent for λ_1 .

• Is $\frac{2\kappa}{n+1}$ sharp?

It has been obtained putting together two sharp estimates, but this is not enough.

Quantitative Szegő–Weinberger

September 1, 2011 (Benasque)

Open Session on G./F. inequalities

 >
 →
 ≥
 >
 ≥
 >
 >
 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

Let us start with the classical proof by Weinberger.

September 1, 2011 (Benasque)

Open Session on G./F. inequalities

PDEs, optimal design and numerics 8 / 11

Let us start with the classical proof by Weinberger. It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

$$v_i(x) = f(|x|) \frac{x_i}{|x|}.$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

$$v_i(x) = f(|x|) \frac{x_i}{|x|}.$$

f solves some ODE of Bessel type (and it is increasing).

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

$$v_i(x) = f(|x|) \frac{x_i}{|x|}.$$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then

$$\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2}$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

 $\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2}$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2} \leq \frac{\sum_i \int_E |Dv_i|^2}{\sum_i \int_E v_i^2}$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2} \leq \frac{\sum_i \int_E |Dv_i|^2}{\sum_i \int_E v_i^2} = \frac{\int_E g(|x|)}{\int_E f(|x|)^2}$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2} \leq \frac{\sum_i \int_E |Dv_i|^2}{\sum_i \int_E v_i^2} = \frac{\int_E g(|x|)}{\int_E f(|x|)^2}$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2} \leq \frac{\sum_i \int_E |Dv_i|^2}{\sum_i \int_E v_i^2} = \frac{\int_E g(|x|)}{\int_E f(|x|)^2}$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_2(E) \leq \frac{\int_E |Dv_i|^2}{\int_E v_i^2} \leq \frac{\sum_i \int_E |Dv_i|^2}{\sum_i \int_E v_i^2} = \frac{\int_E g(|x|)}{\int_E f(|x|)^2}$$

$$\mu_2(E) \leq \frac{\int_E g(|x|)}{\int_E f(|x|)^2}$$

Let us start with the classical proof by Weinberger.

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_{2}(E) \leq \frac{\int_{E} |Dv_{i}|^{2}}{\int_{E} v_{i}^{2}} \leq \frac{\sum_{i} \int_{E} |Dv_{i}|^{2}}{\sum_{i} \int_{E} v_{i}^{2}} = \frac{\int_{E} g(|x|)}{\int_{E} f(|x|)^{2}}.$$

$$\mu_2(E) \leq \frac{\int_E g(|x|)}{\int_E f(|x|)^2} \leq \frac{\int_B g(|x|)}{\int_B f(|x|)^2}$$

Let us start with the classical proof by Weinberger. It is known that $u_2(B)$ has multiplicity n and the eigenfunc

It is known that $\mu_2(B)$ has multiplicity *n*, and the eigenfunctions are

 $v_i(x) = f(|x|) \frac{x_i}{|x|}.$

f solves some ODE of Bessel type (and it is increasing). Extend f to be constant out of B. Then (up to a translation!)

$$\mu_{2}(E) \leq \frac{\int_{E} |Dv_{i}|^{2}}{\int_{E} v_{i}^{2}} \leq \frac{\sum_{i} \int_{E} |Dv_{i}|^{2}}{\sum_{i} \int_{E} v_{i}^{2}} = \frac{\int_{E} g(|x|)}{\int_{E} f(|x|)^{2}}.$$

$$\mu_2(E) \leq \frac{\int_E g(|x|)}{\int_E f(|x|)^2} \leq \frac{\int_B g(|x|)}{\int_B f(|x|)^2} = \mu_2(B).$$

Quantitative Szegő–Weinberger

September 1, 2011 (Benasque)

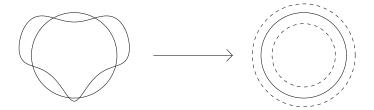
Open Session on G./F. inequalities

 →
 →
 ≡
 →
 ≡
 →

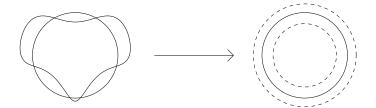
 PDEs, optimal design and numerics 9 / 11

We can be more precise in the above proof.

We can be more precise in the above proof.



We can be more precise in the above proof.



Define the set $D := B_i \cup (B_e \setminus B)$.

We can be more precise in the above proof.



Define the set $D := B_i \cup (B_e \setminus B)$. The proof before ensures that

We can be more precise in the above proof.

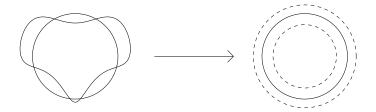


Define the set $D := B_i \cup (B_e \setminus B)$. The proof before ensures that

 $\mu_2(E) \leq \frac{\int_E g(|x|)}{\int_E f(|x|)^2}$

September 1, 2011 (Benasque)

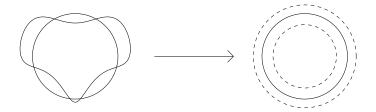
We can be more precise in the above proof.



Define the set $D := B_i \cup (B_e \setminus B)$. The proof before ensures that

$$\mu_2(E) \leq \frac{\int_E g(|x|)}{\int_E f(|x|)^2} \leq \frac{\int_D g(|x|)}{\int_D f(|x|)^2}$$

We can be more precise in the above proof.



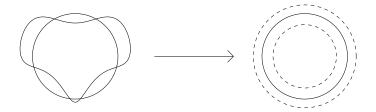
Define the set $D := B_i \cup (B_e \setminus B)$. The proof before ensures that

$$\mu_{2}(E) \leq \frac{\int_{E} g(|x|)}{\int_{E} f(|x|)^{2}} \leq \frac{\int_{D} g(|x|)}{\int_{D} f(|x|)^{2}} \leq \mu_{2}(B)$$

September 1, 2011 (Benasque)

PDEs, optimal design and numerics 9 / 11

We can be more precise in the above proof.



Define the set $D := B_i \cup (B_e \setminus B)$. The proof before ensures that

$$\mu_2(E) \leq \frac{\int_E g(|x|)}{\int_E f(|x|)^2} \leq \frac{\int_D g(|x|)}{\int_D f(|x|)^2} \leq \mu_2(B) - c(n)\mathcal{A}(E)^2.$$

September 1, 2011 (Benasque)

PDEs, optimal design and numerics 9 / 11

Quantitative Szegő–Weinberger

September 1, 2011 (Benasque)

A B M A B M PDEs, optimal design and numerics 10 / 11

A ►

What about the sharpness of the exponent 2 in quantitative SW ineq.?

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2...

周下 イモト イモト

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

通 ト イヨ ト イヨト

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

• The eigenvalue μ_2 is not simple!

< 回 ト < 三 ト < 三 ト

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

- The eigenvalue μ_2 is not simple!
- The inequality is on the *wrong* side!!

通 ト イヨ ト イヨト

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

- The eigenvalue μ_2 is not simple!
- The inequality is on the *wrong* side!!
- Ellipses has exponent 1!!!

通 ト イヨ ト イヨト

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

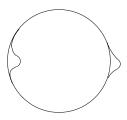
- The eigenvalue μ_2 is not simple!
- The inequality is on the *wrong* side!!
- Ellipses has exponent 1!!!

Luckily, exponent 2 is sharp, but the example is quite involved.

What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

- The eigenvalue μ_2 is not simple!
- The inequality is on the *wrong* side!!
- Ellipses has exponent 1!!!

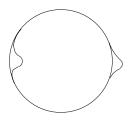
Luckily, exponent 2 is sharp, but the example is quite involved.



What about the sharpness of the exponent 2 in quantitative SW ineq.? One is always happy with exponent 2... But:

- The eigenvalue μ_2 is not simple!
- The inequality is on the *wrong* side!!
- Ellipses has exponent 1!!!

Luckily, exponent 2 is sharp, but the example is quite involved.



One needs to use an iterative procedure together with a spectral decomposition plus classical Calderon–Zygmund estimates, on an unknown eigenfunction!

September 1, 2011 (Benasque)

PDEs, optimal design and numerics 10 / 11

September 1, 2011 (Benasque)

Open Session on G./F. inequalities

PDEs, optimal design and numerics 11 / 11

3

(日) (周) (日) (日)

• Show the sharp exponent κ (= 2?) for the Faber–Krahn inequality for λ_1 .

• Show the sharp exponent κ (= 2?) for the Faber–Krahn inequality for λ_1 .

• Find the sharp exponent $(=\frac{2\kappa}{n+1}?)$ for the Krahn–Szego inequality for λ_2 .

伺下 イヨト イヨト

• Show the sharp exponent κ (= 2?) for the Faber–Krahn inequality for λ_1 .

• Find the sharp exponent $\left(=\frac{2\kappa}{n+1}\right)$ for the Krahn–Szego inequality for λ_2 .

• There are a lot of other open spectral inequalities!

過す イヨト イヨト