Open session on GEOMETRIC AND FUNCTIONAL INEQUALITIES

Bonnesen type inequalities in the anisotropic case

Maria Stella Gelli Univ. of Pisa

PDE's, optimal design and numerics Centro de Ciencias Pedro Pascual, Benasque 2011

FORMULATION OF THE PROBLEM:

1) Given a convex bounded set $E \subset \mathbb{R}^n$ set with finite measure (i.e. $|E| < +\infty$) find $f : \mathbb{R}^+ \to \mathbb{R}^+$ "optimal" such that it holds

$\lambda_{\mathcal{K}}(E) \leq f(\delta(E))$

where

 $\lambda_{\mathcal{K}}(E) = \min_{x_0 \in \mathbb{R}^n} \{ d_{\mathcal{K}}(E, x_0 + r\mathcal{K}) : |\mathcal{K}| r^n = |E| \} \text{ anisotropic deviation}$

$$\delta(E) = \frac{\operatorname{Per}_{K}(E) - n|K|r^{n-1}}{n|K|r^{n-1}} \text{ anisotropic perimeter deficit}$$

Rem. all quantities suitably defined in order to be scaling invariant.

2) extend the estimate to a proper class of sets with finite measure (i.e. $|E| < +\infty$)

Interpretation and main motivation

Recall that

$$d_{\mathcal{K}}(\mathcal{E},\mathcal{F}) = \max\{\max_{x\in\mathcal{E}} \operatorname{dist}_{\mathrm{K}}(x,\mathcal{F}), \max_{y\in\mathcal{F}} \operatorname{dist}(y,\mathcal{E})\}$$

 $\lambda_{\mathcal{H}}(E) \approx \text{computes the best way to cover uniformly } E$ with a Wulff shape of same measure

 $\delta(E) \approx$ computes the oscillation in perimeter

Two-folded goal:

- applications to models in phase transitions
- estimate of higher order terms for set functions along stationary points in the anisotropic case
- applications to problems in Convex analysis

the conjectured optimal form of f depending on n:

Convex case:

$$f(t) = \begin{cases} c_2(K)t^{\frac{1}{2}} & \text{for } n = 2\\ c_3(K)t^{\frac{1}{2}} (\log \frac{1}{t})^{\frac{1}{2}} & \text{for } n = 3\\ c_n(K)t^{\frac{2}{n-1}} & \text{for } n \ge 4. \end{cases}$$
(1)

General case:

$$f(t) = \begin{cases} c'_{2}(K)t^{\frac{1}{2}} & \text{for } n = 2\\ c'_{3}(K)t^{\frac{1}{2}}\left(\log\frac{1}{t}\right)^{\frac{1}{2}} & \text{for } n = 3\\ c'_{n}(K)t^{\frac{1}{n-1}} & \text{for } n \ge 4. \end{cases}$$
(2)

RESULTS AVALAIBLE IN THIS SETTING

- ▶ Bonnesen, (1924) isop. ineq. n=2
- Osserman, (1979) Bonnesen type ineq. for convex sets
- Fuglede, (1989) nearly convex domains
- Fusco, Maggi, Pratelli, (2008) <u>quantitative isop. ineq. in the</u> euclidean case
- Figalli, Maggi, Pratelli, (2010) anisotropic case
- ► Figalli, Maggi (2010) <u>application to liquid drops</u>
- Fusco, G., Pisante (2010) (euclidean case with Hausdorff asymmetry)

Features of the problem in the anisotropic case :

Drawbacks for the general case:

- validity expected in a proper subclass of sets with finite perimeter
- need of selection of good representative in both topological and measure sense
- counterexamples also under regularity hypotheses
- no sufficiency of connectedness or indecomposability hypotheses
- no easy continuity property inherited by $\lambda_{\mathcal{K}}(\cdot)$

 \hookrightarrow look for a special class of sets for which the result holds

Aims for the convex case:

- 1. find the best exponent $\alpha(n)$ so that $f(t) = c(n)t^{\alpha(n)}$
- 2. estimate the asymptotic behaviour of c(n)

RESULT IN THE EUCLIDEAN CASE

Assume K is the unitary ball and denote $\lambda_{\mathcal{H}}(E)$ the spherical deviation D(E) the standard perimeter deficit C_R the class of sets with an interior cone property of radius R

Theorem[Fusco-G.-Pisante] For any R > 0 there exist $0 < \delta_R < 1$ and a constant C = C(R, n) depending only on R and n such that for any $E \in C_R$ with $D(E) < \delta_R$ it holds

$$\lambda_{\mathcal{H}}(E) \leq C \begin{cases} D(E)^{\frac{1}{2}} & \text{for } n = 2\\ D(E)^{\frac{1}{2}} \left(\log \frac{1}{D(E)} \right)^{\frac{1}{2}} & \text{for } n = 3\\ D(E)^{\frac{1}{n-1}} & \text{for } n \geq 4. \end{cases}$$
(3)

Selection of a special class of sets

In order to avoid tiny connected comp. and thin tentacles we need strong structure properties:

quantitative and qualitative geometry

 \Rightarrow interior cone property

Analytic consequences of the interior cone property

- 1. boundedness of the diameter under a volume constraint (\Rightarrow compactness in *BV* and in *d_K*);
- 2. continuity of $\lambda_{\mathcal{K}}(E)$ with respect to $\delta(E)$;
- 3. closeness in $d_{\mathcal{K}}$ of the optimal Wulff shapes w.r.t. the L^1 and Hausdorff distance resp. (\Rightarrow we can reduce to estimate $d_{\mathcal{K}}(E, \mathcal{K}_1)$).

Possible strategy of the proof

Step 1. Establish a functional inequality

a) rephrase the desired estimate as a functional inequality in $W^{1,\infty}$;

- b) prove it on bounded sets of $W^{1,\infty}$ taking advantage of an integral condition;
- c) select at the same time the "optimal" f in the estimate;

Remark. f would depend on the bound on K and $||u||_{W^{1,\infty}}$.

Step 2. Reduction to a special structure of the boundary

- a) "deal" with interior holes;
- b) use the cone property to rule out the presence of "tentacles";
- c) deduce some graph property of the boundary+Lipschitz regularity;
- d) use the cone property to infer a uniform bound on the $W^{1,\infty}$ -norm of the graph.

Related functional inequality in the euclidean case

Let Σ denote the unit sphere in \mathbb{R}^n equipped with the surface measure σ suitably normalized and for $u: \Sigma \to (-1, +\infty)$ set

$$\Delta(u) = \int_{\Sigma} (1+u)^{n-1} \sqrt{1+(1+u)^{-2}|\nabla u|^2} \, d\sigma - 1$$

Theorem 1[Fusco-G.-Pisante] For any M > 0 there exist constants $c_1(M, n) > 0$, $C_2(M, n) > 0$ such that for any $u \in W^{1,\infty}(\Sigma)$ with

$$\int_{\Sigma} (1+u(z))^n \, d\sigma = 1 \qquad \|u\|_1 \le c'_1 \sqrt{\Delta(u)} \\ \|u\|_{\infty} \le c_1(M,n) \qquad \|\nabla u\|_{\infty} \le M$$

it holds

$$\int_{\Sigma} |\nabla u|^2 \leq C_2(M, n) \Delta(u).$$

Theorem 2 For any M > 0 there exist constants $c_1(M, n) > 0$, $C_2(M, n) > 0$ such that for any $u \in W^{1,\infty}(\Sigma)$ with

$$\int_{\Sigma} (1+u(z))^n \, d\sigma = 1 \qquad \|u\|_1 \le c'_1 \sqrt{\Delta(u)} \\ \|u\|_{\infty} \le c_1(M,n) \qquad \|\nabla u\|_{\infty} \le M$$

it holds

$$\|u\|_{\infty}^{n-1} \leq C_2(M, n) \begin{cases} \Delta(u)^{\frac{1}{2}} & \text{for } n = 2\\ \Delta(u) \left(\log \frac{1}{\Delta(u)}\right) & \text{for } n = 3\\ \Delta(u) & \text{for } n \geq 4. \end{cases}$$

Analogously for the convex case up to refine the exponent for $n \ge 4$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <