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Formulation of the problem:

1) Given a convex bounded set E ⊂ Rn set with finite measure
(i.e. |E | < +∞) find f : R+ → R+ ”optimal” such that it holds

λK (E ) ≤ f (δ(E ))

where

λK (E ) = minx0∈Rn{dK(E , x0+rK ) : |K |rn = |E |} anisotropic deviation

δ(E ) =
PerK (E )− n|K |rn−1

n|K |rn−1
anisotropic perimeter deficit

Rem. all quantities suitably defined in order to be scaling invariant.

2) extend the estimate to a proper class of sets with finite measure
(i.e. |E | < +∞)



Interpretation and main motivation

Recall that

dK (E ,F ) = max{max
x∈E

distK(x ,F ),max
y∈F

dist(y ,E )}

λH(E ) ≈ computes the best way to cover uniformly E with
a Wulff shape of same measure

δ(E ) ≈ computes the oscillation in perimeter

Two-folded goal:
• applications to models in phase transitions
• estimate of higher order terms for set functions along

stationary points in the anisotropic case
• applications to problems in Convex analysis



the conjectured optimal form of f depending on n:

Convex case:

f (t) =


c2(K )t

1
2 for n = 2
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cn(K )t
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n−1 for n ≥ 4.
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General case:

f (t) =


c ′2(K )t
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c ′n(K )t
1

n−1 for n ≥ 4.
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Results avalaible in this setting

I Bonnesen, (1924) isop. ineq. n=2

I Osserman, (1979) Bonnesen type ineq. for convex sets

I Fuglede, (1989) nearly convex domains

I Fusco, Maggi, Pratelli, (2008) quantitative isop. ineq. in the
euclidean case

I Figalli, Maggi, Pratelli, (2010) anisotropic case

I Figalli, Maggi (2010) application to liquid drops

I Fusco, G., Pisante (2010) (euclidean case with Hausdorff
asymmetry)



Features of the problem in the anisotropic case :

Drawbacks for the general case:

I validity expected in a proper subclass of sets with finite
perimeter

I need of selection of good representative in both topological
and measure sense

I counterexamples also under regularity hypotheses

I no sufficiency of connectedness or indecomposability
hypotheses

I no easy continuity property inherited by λK (·)

↪→ look for a special class of sets for which the result holds

Aims for the convex case:

1. find the best exponent α(n) so that f (t) = c(n)tα(n)

2. estimate the asymptotic behaviour of c(n)



Result in the euclidean case

Assume K is the unitary ball and denote
λH(E ) the spherical deviation
D(E ) the standard perimeter deficit
CR the class of sets with an interior cone property of radius R

Theorem[Fusco-G.-Pisante] For any R > 0 there exist 0 < δR < 1
and a constant C = C (R, n) depending only on R and n such that
for any E ∈ CR with D(E ) < δR it holds

λH(E ) ≤ C


D(E )
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D(E )
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n−1 for n ≥ 4.
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Selection of a special class of sets

In order to avoid tiny connected comp. and thin tentacles
we need strong structure properties:

quantitative and qualitative geometry

⇒ interior cone property

Analytic consequences of the interior cone property

1. boundedness of the diameter under a volume constraint
(⇒ compactness in BV and in dK );

2. continuity of λK (E ) with respect to δ(E );

3. closeness in dK of the optimal Wulff shapes w.r.t. the L1 and
Hausdorff distance resp. (⇒ we can reduce to estimate
dK (E ,K1)).



Possible strategy of the proof

Step 1. Establish a functional inequality
a) rephrase the desired estimate as a functional inequality in W 1,∞;
b) prove it on bounded sets of W 1,∞ taking advantage of an

integral condition;
c) select at the same time the ”optimal” f in the estimate;

Remark. f would depend on the bound on K and ‖u‖W 1,∞ .

Step 2. Reduction to a special structure of the boundary
a) ”deal” with interior holes;
b) use the cone property to rule out the presence of ”tentacles”;
c) deduce some graph property of the boundary+Lipschitz

regularity;
d) use the cone property to infer a uniform bound on the

W 1,∞-norm of the graph.



Related functional inequality in the euclidean case

Let Σ denote the unit sphere in Rn equipped with the surface
measure σ suitably normalized and for u : Σ→ (−1,+∞) set

∆(u) =

∫
Σ

(1 + u)n−1
√

1 + (1 + u)−2|∇u|2 dσ − 1

Theorem 1[Fusco-G.-Pisante] For any M > 0 there exist
constants c1(M, n) > 0, C2(M, n) > 0 such that for any
u ∈W 1,∞(Σ) with∫

Σ
(1 + u(z))n dσ = 1 ‖u‖1 ≤ c ′1

√
∆(u)

‖u‖∞ ≤ c1(M, n) ‖∇u‖∞ ≤ M

it holds ∫
Σ
|∇u|2 ≤ C2(M, n)∆(u).



Theorem 2 For any M > 0 there exist constants c1(M, n) > 0,
C2(M, n) > 0 such that for any u ∈W 1,∞(Σ) with∫

Σ
(1 + u(z))n dσ = 1 ‖u‖1 ≤ c ′1

√
∆(u)

‖u‖∞ ≤ c1(M, n) ‖∇u‖∞ ≤ M

it holds

‖u‖n−1
∞ ≤ C2(M, n)



∆(u)
1
2 for n = 2

∆(u)
(

log 1
∆(u)

)
for n = 3

∆(u) for n ≥ 4.

Analogously for the convex case up to refine the exponent for
n ≥ 4.


