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The route to dissipativity

The route to dissipativity

Consider an evolution sistem S(t) in a phase space X , a Banach
space (or even a complete metric space)

(initial state) u0 ∈ X 7−→ S(t)u0 ∈ X (state at time t)

Assume solutions are global:

u(t; u0) = S(t)u0, u0 ∈ X , t ≥ 0.
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The route to dissipativity

Uniform asymptotic estimates

Assume orbits of bounded sets are bounded:

{S(t)B , t ≥ 0} bounded in X for any bounded set B ⊂ X

Furthermore assume

ĺım sup
t→∞

‖u(t; u0)‖ ≤ K (independent of u0)

i.e the ball B0 := BX (0,K + 1) is absorbing.
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Absorbing sets

B

B0

Dissipative equations 4/11



The route to dissipativity

Absorbing sets

B

B0S(t)B

Dissipative equations 4/11



The route to dissipativity

Absorbing sets

B

B0

S(t)B

t ≥ T (B)
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The route to dissipativity

Asymptotic compactness

Finally, assume the asymptotic compactness:

for every bounded sequence {un
0} ⊂ X and tn → ∞, the set

{u(tn; u
n

0 )} has a converging subsequence.

This is satisfied if:
• X is a finite dimensional space, or
• For a bounded set B ⊂ X , {S(t)B , t ≥ tB} is bounded in Y

and Y ⊂ X is compact (Smoothing effect), or
• S(t) = L(t) + K (t) with

‖L(t)B‖ → 0 as t → ∞, for any bounded B ⊂ X

K (t) : X → X is compact
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The route to dissipativity

Limit sets

• Given u0 ∈ X define

ω(u0) = {z ∈ X , S(tn)u0 → z , tn → ∞}

Then
ω(u0) is compact, connected, invariant and

distX
(

S(t)u0, ω(u0)
)

→ 0, as t → ∞

• Given a bounded set B ⊂ X , define

ω(B) = {z ∈ X , S(tn)u
n

0 → z , tn → ∞, {un

0} ⊂ B}

is compact, invariant and

distX
(

S(t)B , ω(B)
)

→ 0, as t → ∞
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Limit sets

B

B0

S(t)B
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Limit sets

B

B0

S(t)B

ω(B)
t >> 1
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The route to dissipativity

The global Attractor

Theorem

There exists a global attractor, A ⊂ X , compact, connected,
invariant

distX
(

S(t)B ,A
)

→ 0, for all B ⊂ X , bounded.

Proof Define

A = {z ∈ X , S(tn)u
n

0 → z , tn → ∞, {un

0} ⊂ B0} = ω(B0)

i.e. all accumulation points of the orbit of the bounded absorbing
set B0.
Remark the set J is invariant if

S(t)J = J, t ≥ 0
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The global attractor

B0

S(t)B0
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The global attractor

B0

A
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The route to dissipativity

The global Attractor

The attractor contains:
• All equilibria: S(t)u0 = u0, for all t ≥ 0.
• All periodic solutions: u(t + T ) = u(t), for all t ≥ 0.
• All global and bounded solutions {u(t), t ∈ IR}.
• All bounded invariant sets J, S(t)J = J for all t ≥ 0. In
particular, all ω-limit sets
• All unstable sets of an equilibria u0

W
u(u0) = {z ∈ X , S(t)z is defined for t ≤ 0 and

S(t)z → u0 as t → −∞}

• All unstable sets of a bounded invariant set J

W
u(J) = {z ∈ X , S(t)z is defined for t ≤ 0 and

S(t)z → J as t → −∞}
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The route to dissipativity

Global versus fine dynamics

1) Global dynamics
• Show existence of attractors
• Determine mechanisms for dissipativity (e.g. competition
between diffusion, reaction, convection, damping, etc). Each
examples requieres its own analysis.
• Determine the structure of the global atractor. OPEN, only
known in case of gradient flows.
2) Fine dynamics
• Analyze equilibria and linear stability
• Prove finite dimensionality of asymptotic dynamics
• Tools for analyzing dynamics inside the attractor
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