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Consider an evolution sistem S(t) in a phase space X, a Banach
space (or even a complete metric space)

(initial state) ugp € X —— S(t)up € X (state at time t)
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The route to dissipativity

Consider an evolution sistem S(t) in a phase space X, a Banach
space (or even a complete metric space)

(initial state) ugp € X —— S(t)up € X (state at time t)

Assume solutions are global:

u(t; up) = S(t)up, we X, t=>0. J
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The route to dissipativity

Uniform asymptotic estimates

Assume orbits of bounded sets are bounded:

{S(t)B, t > 0} bounded in X for any bounded set B C X
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The route to dissipativity

Uniform asymptotic estimates

Assume orbits of bounded sets are bounded:

{S(t)B, t > 0} bounded in X for any bounded set B C X J

Furthermore assume

limsup ||u(t; wo)|| < K (independent of wp) J
t—00

i.e the ball By := Bx(0, K + 1) is absorbing.
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Absorbing sets

B

Bo
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The route to dissipativity

Asymptotic compactness

Finally, assume the asymptotic compactness:

for every bounded sequence {u{} C X and t, — oo, the set
{u(tn; uf)} has a converging subsequence.
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Asymptotic compactness

Finally, assume the asymptotic compactness:

for every bounded sequence {u{} C X and t, — oo, the set
{u(tn; uf)} has a converging subsequence.

This is satisfied if:

e X is a finite dimensional space, or

e For a bounded set B C X, {S(t)B, t > tg} is bounded in Y
and Y C X is compact (Smoothing effect), or

o 5(t) = L(t) + K(t) with

|L(t)B]| — 0 ast — oo, for any bounded B C X

K(t): X — X is compact
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The route to dissipativity

Limit sets

e Given ug € X define

w(w) ={z € X, S(ty)up — z, t, — oo}
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e Given ug € X define
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Then
w(up) is compact, connected, invariant and

distx (S(t)uo,w(ug)) — 0, as t — oo
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Limit sets

e Given ug € X define
w(w) ={z € X, S(ty)up — z, t, — oo}

Then
w(up) is compact, connected, invariant and

distx (S(t)uo,w(ug)) — 0, as t — oo

e Given a bounded set B C X, define
w(B)={z e X, S(ty)ug — z, t, — oo, {uj} C B}
is compact, invariant and

distx (S(t)B,w(B)) — 0, as t — 0
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Limit sets

Bo

Dissipative equations 7/11



The route to dissipativity

Limit sets

Dissipative equations 7/11



The route to dissipativity

The global Attractor

There exists a global attractor, A C X, compact, connected,
invariant

distx (S(t)B,A) — 0, forall BC X, bounded.
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The global Attractor

There exists a global attractor, A C X, compact, connected,
invariant

distx (S(t)B,A) — 0, forall BC X, bounded.

Proof Define
A={ze X, S(ty)ug — z, t, — o0, {ug} C Bo} = w(Bo)

i.e. all accumulation points of the orbit of the bounded absorbing
set Bp.
Remark the set J is invariant if

S(tyJ=J4, t>0
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The global Attractor

The attractor contains:

o All equilibria: S(t)up = wp, for all t > 0.

e All periodic solutions: u(t+ T) = u(t), for all t > 0.

e All global and bounded solutions {u(t), t € R}.

e All bounded invariant sets J, S(t)J = J for all t > 0. In
particular, all w-limit sets

e All unstable sets of an equilibria ug

WY (up) = {z € X, S(t)z is defined for t <0 and
S(t)z > up as t — —o0}
o All unstable sets of a bounded invariant set J
WHY(J) ={z € X, S(t)z is defined for t < 0 and
S(t)z— Jast— —o0}
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Global versus fine dynamics

1) Global dynamics

Dissipative equations 11/11



The route to dissipativity

Global versus fine dynamics

1) Global dynamics
e Show existence of attractors

Dissipative equations 11/11



The route to dissipativity

Global versus fine dynamics

1) Global dynamics

e Show existence of attractors

e Determine mechanisms for dissipativity (e.g. competition
between diffusion, reaction, convection, damping, etc). Each
examples requieres its own analysis.
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Global versus fine dynamics

1) Global dynamics

e Show existence of attractors

e Determine mechanisms for dissipativity (e.g. competition
between diffusion, reaction, convection, damping, etc). Each
examples requieres its own analysis.

e Determine the structure of the global atractor. OPEN, only
known in case of gradient flows.

2) Fine dynamics

e Analyze equilibria and linear stability

e Prove finite dimensionality of asymptotic dynamics

e Tools for analyzing dynamics inside the attractor
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