leas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Keller-Segel, Fast Diffusion and Functional Inequalities

J. A. Carrillo

ICREA - Universitat Autònoma de Barcelona

Benasque, Spain, 2011

deas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow
- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

- Concentration-Control Inequalities
- 3 A byproduct: A new proof of HLS inequalities
 - Log HLS via Fast Diffusion Flows
 - A New Proof of the HLS inequality with Equality Cases

4 Conclusions

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions
•••••			
Modelling Chemotaxis: First Properties			

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow
- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

- Concentration-Control Inequalities
- A byproduct: A new proof of HLS inequalities
 - Log HLS via Fast Diffusion Flows
 - A New Proof of the HLS inequality with Equality Cases

4 Conclusions

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
Chemotaxis			

Cell movement and aggregation by chemical interaction.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
DIZCO			

PKS System

$$\begin{cases} \frac{\partial \rho}{\partial t}(x,t) = \Delta \rho(x,t) - \nabla \cdot (\rho(x,t)\nabla c(x,t)) & x \in \mathbb{R}^2, \ t > 0, \\ c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| \ \rho(y,t) \ dy & x \in \mathbb{R}^2, \ t > 0, \\ \rho(x,t=0) = \rho_0 \ge 0 & x \in \mathbb{R}^2. \end{cases}$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).

Conservations:

• <u>Conservation of mass:</u>

$$M := \int_{\mathbb{R}^2} \rho_0(x) \ dx = \int_{\mathbb{R}^2} \rho(x, t) \ dx$$

• Conservation of center of mass:

$$M_1 := \int_{\mathbb{R}^2} x \,\rho_0(x) \, dx = \int_{\mathbb{R}^2} x \,\rho(x,t) \, dx \, .$$

PKS System			
Modelling Chemotaxis: First Properties			
000000000000000000000000000000000000000	00000	000000	
Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	

$$\begin{cases} \frac{\partial \rho}{\partial t}(x,t) = \Delta \rho(x,t) - \nabla \cdot (\rho(x,t)\nabla c(x,t)) & x \in \mathbb{R}^2, \ t > 0 \\ c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| \, \rho(y,t) \, dy & x \in \mathbb{R}^2, \ t > 0 \\ \rho(x,t=0) = \rho_0 \ge 0 & x \in \mathbb{R}^2. \end{cases}$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).

Conservations:

• Conservation of mass:

$$M := \int_{\mathbb{R}^2} \rho_0(x) \ dx = \int_{\mathbb{R}^2} \rho(x, t) \ dx$$

• Conservation of center of mass:

$$M_1 := \int_{\mathbb{R}^2} x \, \rho_0(x) \, dx = \int_{\mathbb{R}^2} x \, \rho(x, t) \, dx \, .$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
PKS System			

$$\begin{cases} \frac{\partial \rho}{\partial t}(x,t) = \Delta \rho(x,t) - \nabla \cdot (\rho(x,t)\nabla c(x,t)) & x \in \mathbb{R}^2, \ t > 0 \\ c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| \, \rho(y,t) \, dy & x \in \mathbb{R}^2, \ t > 0 \\ \rho(x,t=0) = \rho_0 \ge 0 & x \in \mathbb{R}^2. \end{cases}$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).

Conservations:

• Conservation of mass:

$$M := \int_{\mathbb{R}^2} \rho_0(x) \ dx = \int_{\mathbb{R}^2} \rho(x, t) \ dx$$

• Conservation of center of mass:

$$M_1 := \int_{\mathbb{R}^2} x \, \rho_0(x) \, dx = \int_{\mathbb{R}^2} x \, \rho(x,t) \, dx \; .$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
Second Moment	t		

We shall say that $\rho \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt}\int_{\mathbb{R}^2}\psi(x)\,\rho(x,t)\,dx=$$

$$\int_{\mathbb{R}^2} \Delta \psi(x) \,\rho(x,t) \,dx - \frac{1}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x-y}{|x-y|^2} \,\rho(x,t) \,\rho(y,t) \,dx \,dy$$

holds in the distributional sense in (0, T) and $\rho(0) = \rho_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,\rho(x,t)\,dx=4M-\frac{1}{2\pi}M^2,$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			

Second Moment

Distributional Solution:

We shall say that $\rho \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt}\int_{\mathbb{R}^2}\psi(x)\,\rho(x,t)\,dx=$$

$$\int_{\mathbb{R}^2} \Delta \psi(x) \,\rho(x,t) \,dx - \frac{1}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x-y}{|x-y|^2} \,\rho(x,t) \,\rho(y,t) \,dx \,dy$$

holds in the distributional sense in (0, T) and $\rho(0) = \rho_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,\rho(x,t)\,dx=4M-\frac{1}{2\pi}M^2,$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
Second Moment	t		

We shall say that $\rho \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) \,\rho(x,t) \,dx = \int_{\mathbb{R}^2} \Delta \psi(x) \,\rho(x,t) \,dx - \frac{1}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x-y}{|x-y|^2} \,\rho(x,t) \,\rho(y,t) \,dx \,dy$$

holds in the distributional sense in (0, T) and $\rho(0) = \rho_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,\rho(x,t)\,dx=4M-\frac{1}{2\pi}M^2,$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
Second Moment	t		

We shall say that $\rho \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) \,\rho(x,t) \,dx = \int_{\mathbb{R}^2} \Delta \psi(x) \,\rho(x,t) \,dx - \frac{1}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} [\nabla \psi(x) - \nabla \psi(y)] \cdot \frac{x-y}{|x-y|^2} \,\rho(x,t) \,\rho(y,t) \,dx \,dx$$

holds in the distributional sense in (0, T) and $\rho(0) = \rho_0$.

Evolution of second moment:

$$\frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 \,\rho(x,t) \, dx = 4M - \frac{1}{2\pi} M^2,$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			
Second Moment	t		

We shall say that $\rho \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) \,\rho(x,t) \,dx = \int_{\mathbb{R}^2} \Delta \psi(x) \,\rho(x,t) \,dx - \frac{1}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x-y}{|x-y|^2} \,\rho(x,t) \,\rho(y,t) \,dx \,dy$$

holds in the distributional sense in (0, T) and $\rho(0) = \rho_0$.

Evolution of second moment:

$$\frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 \,\rho(x,t) \, dx = 4M - \frac{1}{2\pi} M^2$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			

Cases

PKS Cases:

- Subcritical Case, M < 8 π: Global existence: Jägger-Luckhaus (1992), Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006), Blanchet-Calvez-C. (2008).
- **Supercritical Case**, *M* > 8 π: Blow-up: Herrero-Velazquez (1996), Velazquez (2002-2004), Dolbeault-Schmeiser (2009).
- Critical Case, M = 8π: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2011), Carlen-C.-Loss (2010), Carlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000			
Modelling Chemotaxis: First Properties			

Cases

PKS Cases:

- Subcritical Case, $M < 8 \pi$: Global existence: Jägger-Luckhaus (1992), Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006), Blanchet-Calvez-C. (2008).
- Supercritical Case, $M > 8 \pi$: Blow-up: Herrero-Velazquez (1996), Velazquez (2002-2004), Dolbeault-Schmeiser (2009).
- Critical Case, M = 8π: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2011), Carlen-C.-Loss (2010), Carlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Modelling Chemotaxis: First Properties			

Cases

PKS Cases:

- Subcritical Case, $M < 8 \pi$: Global existence: Jägger-Luckhaus (1992), Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006), Blanchet-Calvez-C. (2008).
- Supercritical Case, *M* > 8 π: Blow-up: Herrero-Velazquez (1996), Velazquez (2002-2004), Dolbeault-Schmeiser (2009).
- Critical Case, M = 8 π: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2011), Carlen-C.-Loss (2010), Carlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
00000 000 00000000	00000	0000000	
PKS as Gradient Flow			

Outline

Macroscopic Models: PKS system

Modelling Chemotaxis: First Properties

• PKS as Gradient Flow

- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

• Concentration-Control Inequalities

A byproduct: A new proof of HLS inequalities

- Log HLS via Fast Diffusion Flows
- A New Proof of the HLS inequality with Equality Cases

4 Conclusions

PKS as Gradient Flow

Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in $L^1(\mathbb{R}^2)$ with mass M such that $f \log f$ and $f \log(e + |x|^2)$ belong to $L^1(\mathbb{R}^2)$. Then

$$\int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{M} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) f(y) \log |x - y| \, \mathrm{d}x \, \mathrm{d}y \ge -C(M)$$

with
$$C(M) := M(1 + \log \pi - \log M)$$
.

$$ar{p}_{\lambda}(x) := rac{M}{\pi} rac{\lambda}{\left(\lambda + |x|^2
ight)^2}$$

$$\mathcal{F}_{\mathrm{PKS}}[\rho] := \int_{\mathbb{R}^2} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{4\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(x) \, \rho(y) \, \log |x - y| \, \mathrm{d}x \, \mathrm{d}y$$

PKS as Gradient Flow

Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in $L^1(\mathbb{R}^2)$ with mass M such that $f \log f$ and $f \log(e + |x|^2)$ belong to $L^1(\mathbb{R}^2)$. Then

$$\int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{M} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) f(y) \log |x - y| \, \mathrm{d}x \, \mathrm{d}y \ge -C(M)$$

with
$$C(M) := M(1 + \log \pi - \log M)$$
.

Equality cases:

There is equality if and only if $f(x) = \bar{\rho}_{\lambda}(x - x_0)$ for some $\lambda > 0$ and some $x_0 \in \mathbb{R}^2$, where

$$ar{
ho}_{\lambda}(x) := rac{M}{\pi} rac{\lambda}{\left(\lambda + |x|^2
ight)^2}$$

$$\mathcal{F}_{\mathsf{PKS}}[\rho] := \int_{\mathbb{R}^2} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{4\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(x) \, \rho(y) \, \log |x - y| \, \mathrm{d}x \, \mathrm{d}y$$

PKS as Gradient Flow

Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in $L^1(\mathbb{R}^2)$ with mass M such that $f \log f$ and $f \log(e + |x|^2)$ belong to $L^1(\mathbb{R}^2)$. Then

$$\int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{M} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) f(y) \log |x - y| \, \mathrm{d}x \, \mathrm{d}y \ge -C(M)$$

with
$$C(M) := M(1 + \log \pi - \log M)$$
.

Equality cases:

There is equality if and only if $f(x) = \bar{\rho}_{\lambda}(x - x_0)$ for some $\lambda > 0$ and some $x_0 \in \mathbb{R}^2$, where

$$ar{
ho}_{\lambda}(x) := rac{M}{\pi} rac{\lambda}{\left(\lambda + |x|^2
ight)^2}$$

Natural Liapunov Functional:

Free energy:

$$\mathcal{F}_{\mathsf{PKS}}[\rho] := \int_{\mathbb{R}^2} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{4\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(x) \, \rho(y) \, \log |x - y| \, \mathrm{d}x \, \mathrm{d}y$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
PKS as Gradient Flow			

A formal calculation shows that for all $u \in C_c^{\infty}(\mathbb{R}^2)$ with zero mean,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\mathcal{F}_{\text{PKS}}[\rho + \epsilon u] - \mathcal{F}_{\text{PKS}}[\rho] \right) = \int_{\mathbb{R}^2} \frac{\delta \mathcal{F}_{\text{PKS}}(\rho)}{\delta \rho}(x) \, u(x) \, dx$$

where

$$\frac{\delta \mathcal{F}_{\mathsf{PKS}}(\rho)}{\delta \rho}(x) := \log \rho(x) + \frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| \rho(y) \, \mathrm{d}y = \log \rho(x) - G * \rho(x) \, .$$

The PKS equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}_{\mathsf{PKS}}(\rho(t))}{\delta\rho}(t,x)\right]\right) \;.$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}_{\mathrm{PKS}}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}_{\mathrm{PKS}}(\rho(t))}{\delta \rho}(t,x) \right|^2 \, \mathrm{d}x \, .$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
PKS as Gradient Flow			

A formal calculation shows that for all $u \in C_c^{\infty}(\mathbb{R}^2)$ with zero mean,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\mathcal{F}_{\text{PKS}}[\rho + \epsilon u] - \mathcal{F}_{\text{PKS}}[\rho] \right) = \int_{\mathbb{R}^2} \frac{\delta \mathcal{F}_{\text{PKS}}(\rho)}{\delta \rho}(x) \, u(x) \, dx$$

where

$$\frac{\delta \mathcal{F}_{\mathsf{PKS}}(\rho)}{\delta \rho}(x) := \log \rho(x) + \frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| \rho(y) \, \mathrm{d}y = \log \rho(x) - G * \rho(x) \, .$$

The PKS equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}_{\mathrm{PKS}}(\rho(t))}{\delta\rho}(t,x)\right]\right) \ .$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}_{\mathrm{PKS}}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}_{\mathrm{PKS}}(\rho(t))}{\delta \rho}(t,x) \right|^2 \mathrm{d}x \,.$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
PKS as Gradient Flow			

A formal calculation shows that for all $u \in C_c^{\infty}(\mathbb{R}^2)$ with zero mean,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\mathcal{F}_{\text{PKS}}[\rho + \epsilon u] - \mathcal{F}_{\text{PKS}}[\rho] \right) = \int_{\mathbb{R}^2} \frac{\delta \mathcal{F}_{\text{PKS}}(\rho)}{\delta \rho}(x) \, u(x) \, dx$$

where

$$\frac{\delta \mathcal{F}_{\mathsf{PKS}}(\rho)}{\delta \rho}(x) := \log \rho(x) + \frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| \rho(y) \, \mathrm{d}y = \log \rho(x) - G * \rho(x) \, .$$

The PKS equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}_{\mathrm{PKS}}(\rho(t))}{\delta\rho}(t,x)\right]\right) \ .$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}_{\mathrm{PKS}}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}_{\mathrm{PKS}}(\rho(t))}{\delta \rho}(t,x) \right|^2 \, \mathrm{d}x \, .$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
00000 000 000000000			
PKS as Gradient Flow			

Critical Case: Stationary States & Main Result

The critical case $M = 8\pi$ has a family of explicit stationary solutions of the form

$$\bar{\rho}_{\lambda}(x) = \frac{8\lambda}{(\lambda + |x|^2)^2}$$

with $\lambda > 0$.

- All of these stationary solutions have critical mass and infinite second moment.
- They are the cases of equality functions for the Log HLS inequality.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
00000 000 000000000			
PKS as Gradient Flow			

Critical Case: Stationary States & Main Result

The critical case $M = 8\pi$ has a family of explicit stationary solutions of the form

$$ar{
ho}_{\lambda}(x) = rac{8\lambda}{(\lambda+|x|^2)^2}$$

with $\lambda > 0$.

- All of these stationary solutions have critical mass and infinite second moment.
- They are the cases of equality functions for the Log HLS inequality.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
00000 000 000000000			
PKS as Gradient Flow			

Critical Case: Stationary States & Main Result

The critical case $M = 8\pi$ has a family of explicit stationary solutions of the form

$$ar{
ho}_{\lambda}(x) = rac{8\lambda}{(\lambda+|x|^2)^2}$$

with $\lambda > 0$.

- All of these stationary solutions have critical mass and infinite second moment.
- They are the cases of equality functions for the Log HLS inequality.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Critical Fast Diffusion as Gradient Flow			

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow

• Critical Fast Diffusion as Gradient Flow

New Liapunov Functionals

Ideas of the Rigorous Proof

• Concentration-Control Inequalities

A byproduct: A new proof of HLS inequalities

- Log HLS via Fast Diffusion Flows
- A New Proof of the HLS inequality with Equality Cases

4 Conclusions

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Critical Fast Diffusion as Gradient Flow			
Critical Fast Dif	fusion		

The nonlinear Fokker-Planck equation in \mathbb{R}^2 with exponent 1/2:

$$\begin{cases} \frac{\partial v}{\partial t}(t,x) = \Delta\left(\sqrt{v(t,x)}\right) + \frac{1}{\sqrt{2\lambda}}\operatorname{div}(x\,v(t,x)) & t > 0, \ x \in \mathbb{R}^2, \\ v(0,x) = v_0(x) \ge 0 & x \in \mathbb{R}^2, \end{cases}$$

corresponding to the *fast diffusion equation* $\frac{\partial u}{\partial t} = \Delta(\sqrt{u})$ by a self-similar change of variable.

For $\lambda > 0$, define the functional \mathcal{H}_{λ} on the non-negative functions in $L^1(\mathbb{R}^2)$ by

$$\mathcal{H}_{\lambda}[v] := \int_{\mathbb{R}^2} \left(\sqrt{v(x)} - \sqrt{\bar{\rho}_{\lambda}(x)} \right)^2 \bar{\rho}_{\lambda}^{-1/2}(x) \, \mathrm{d}x$$

This functional is the relative entropy of the fast diffusion equation with respect to the stationary solution $\bar{\rho}_{\lambda}$. The unique minimizer of \mathcal{H}_{λ} is $\bar{\rho}_{\lambda}$.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
Critical Fast Diffusion as Gradient Flow			
Critical Fast Diff	fusion		

The nonlinear Fokker-Planck equation in \mathbb{R}^2 with exponent 1/2:

$$\begin{cases} \frac{\partial v}{\partial t}(t,x) = \Delta\left(\sqrt{v(t,x)}\right) + \frac{1}{\sqrt{2\lambda}}\operatorname{div}(x\,v(t,x)) & t > 0, \ x \in \mathbb{R}^2, \\ v(0,x) = v_0(x) \ge 0 & x \in \mathbb{R}^2, \end{cases}$$

corresponding to the *fast diffusion equation* $\frac{\partial u}{\partial t} = \Delta(\sqrt{u})$ by a self-similar change of variable.

For $\lambda > 0$, define the functional \mathcal{H}_{λ} on the non-negative functions in $L^{1}(\mathbb{R}^{2})$ by

$$\mathcal{H}_{\lambda}[v] := \int_{\mathbb{R}^2} \left(\sqrt{v(x)} - \sqrt{\bar{\rho}_{\lambda}(x)} \right)^2 \bar{\rho}_{\lambda}^{-1/2}(x) \, \mathrm{d}x$$

This functional is the relative entropy of the fast diffusion equation with respect to the stationary solution $\bar{\rho}_{\lambda}$. The unique minimizer of \mathcal{H}_{λ} is $\bar{\rho}_{\lambda}$.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000			
Critical Fast Diffusion as Gradient Flow			
E 1 C 1			

A formal calculation as before shows,

$$\frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} = \frac{1}{\sqrt{\bar{\rho}_{\lambda}}} - \frac{1}{\sqrt{v}} ,$$

and the critical fast diffusion equation can be rewritten as

$$\frac{\partial v}{\partial t}(t,x) = \operatorname{div}\left(v(t,x)\left[\nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v}\right]\right) \;,$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[v(t)] = -\int_{\mathbb{R}^2} v(t,x) \left| \nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} \right|^2 \, \mathrm{d}x.$$

Let us point out that the functional $\mathcal{H}_{\lambda}[v]$ can be written as

$$\mathcal{H}_{\lambda}[u] := \int_{\mathbb{R}^2} \left[\Phi(v(x)) - \Phi(\bar{\rho}_{\lambda}(x)) - \Phi'(\bar{\rho}_{\lambda})(v(x) - \bar{\rho}_{\lambda}(x)) \right] dx$$

Formal Cradient Flow							
Critical Fast Diffusion as Gradient Flow							
000000000000000000000000000000000000000	00000	000000					
Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities					

A formal calculation as before shows,

$$\frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} = \frac{1}{\sqrt{\bar{\rho}_{\lambda}}} - \frac{1}{\sqrt{v}} ,$$

and the critical fast diffusion equation can be rewritten as

$$\frac{\partial v}{\partial t}(t,x) = \operatorname{div}\left(v(t,x)\left[\nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v}\right]\right) \;,$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[v(t)] = -\int_{\mathbb{R}^2} v(t,x) \left| \nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} \right|^2 \,\mathrm{d}x.$$

Let us point out that the functional $\mathcal{H}_{\lambda}[v]$ can be written as

$$\mathcal{H}_{\lambda}[u] := \int_{\mathbb{R}^2} \left[\Phi(v(x)) - \Phi(\bar{\rho}_{\lambda}(x)) - \Phi'(\bar{\rho}_{\lambda})(v(x) - \bar{\rho}_{\lambda}(x)) \right] dx$$

Formal Cradient Flow							
Critical Fast Diffusion as Gradient Flow							
000000000000000000000000000000000000000	00000	000000					
Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities					

A formal calculation as before shows,

$$\frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} = \frac{1}{\sqrt{\bar{\rho}_{\lambda}}} - \frac{1}{\sqrt{v}} \; ,$$

and the critical fast diffusion equation can be rewritten as

(

$$\frac{\partial v}{\partial t}(t,x) = \operatorname{div}\left(v(t,x)\left[\nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v}\right]\right) ,$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[v(t)] = -\int_{\mathbb{R}^2} v(t,x) \left| \nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} \right|^2 \, \mathrm{d}x.$$

Let us point out that the functional $\mathcal{H}_{\lambda}[v]$ can be written as

$$\mathcal{H}_{\lambda}[u] := \int_{\mathbb{R}^2} \left[\Phi(v(x)) - \Phi(\bar{\rho}_{\lambda}(x)) - \Phi'(\bar{\rho}_{\lambda})(v(x) - \bar{\rho}_{\lambda}(x)) \right] dx$$

Formal Cradient Flow							
Critical Fast Diffusion as Gradient Flow							
00000000000000000	00000	0000000					
Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities					

A formal calculation as before shows,

$$\frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v} = \frac{1}{\sqrt{\bar{\rho}_{\lambda}}} - \frac{1}{\sqrt{v}} \,,$$

and the critical fast diffusion equation can be rewritten as

$$\frac{\partial v}{\partial t}(t,x) = \operatorname{div}\left(v(t,x)\left[\nabla \frac{\delta \mathcal{H}_{\lambda}[v]}{\delta v}\right]\right) ,$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\nu(t)] = -\int_{\mathbb{R}^2} \nu(t,x) \left| \nabla \frac{\delta \mathcal{H}_{\lambda}[\nu]}{\delta \nu} \right|^2 \, \mathrm{d}x.$$

Let us point out that the functional $\mathcal{H}_{\lambda}[v]$ can be written as

$$\mathcal{H}_{\lambda}[u] := \int_{\mathbb{R}^2} \left[\Phi(v(x)) - \Phi(\bar{\rho}_{\lambda}(x)) - \Phi'(\bar{\rho}_{\lambda})(v(x) - \bar{\rho}_{\lambda}(x)) \right] dx$$

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
000000000000000000000000000000000000000			
New Liapunov Functionals			

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow
- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

- Concentration-Control Inequalities
- A byproduct: A new proof of HLS inequalities
 - Log HLS via Fast Diffusion Flows
 - A New Proof of the HLS inequality with Equality Cases

4 Conclusions

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

New Liapunov Functionals

New Liapunov Functional

Claim: The critical fast diffusion functional is also a Liapunov functional for the critical mass PKS. Formal Computation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = \int_{\mathbb{R}^{2}} \frac{\delta\mathcal{H}_{\lambda}[\rho]}{\delta\rho} \mathrm{div}\left(\rho(t,x)\nabla\left[\frac{\delta\mathcal{F}_{\mathrm{PKS}}[\rho]}{\delta\rho}\right]\right) \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \rho\nabla\left[\frac{\delta\mathcal{H}_{\lambda}[\rho]}{\delta\rho}\right] \cdot \nabla\left[\frac{\delta\mathcal{F}_{\mathrm{PKS}}[\rho]}{\delta\rho}\right] \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \rho\nabla\left[\frac{1}{\sqrt{\rho_{\lambda}}} - \frac{1}{\sqrt{\rho}}\right] \cdot \nabla\left[\log\rho - G*\rho\right] \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \left[2\sqrt{\frac{\pi}{\lambda M}}x\rho + \nabla\sqrt{\rho}\right] \cdot \nabla\left[\log\rho - G*\rho\right] \,\mathrm{d}x$$

Now, integrating by parts once more on the term involving the Green's function,

$$\begin{split} \int_{\mathbb{R}^2} \nabla \sqrt{\rho} \cdot \nabla \left[\log \rho - G * \rho \right] \, \mathrm{d}x &= \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}} + \int_{\mathbb{R}^2} \sqrt{\rho} \, \Delta G * \rho \\ &= \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}} - \int_{\mathbb{R}^2} \rho^{3/2} \, \mathrm{d}x \, . \end{split}$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

New Liapunov Functional

Claim: The critical fast diffusion functional is also a Liapunov functional for the critical mass PKS. Formal Computation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = \int_{\mathbb{R}^{2}} \frac{\delta\mathcal{H}_{\lambda}[\rho]}{\delta\rho} \mathrm{div}\left(\rho(t,x)\nabla\left[\frac{\delta\mathcal{F}_{\mathrm{PKS}}[\rho]}{\delta\rho}\right]\right) \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \rho\nabla\left[\frac{\delta\mathcal{H}_{\lambda}[\rho]}{\delta\rho}\right] \cdot \nabla\left[\frac{\delta\mathcal{F}_{\mathrm{PKS}}[\rho]}{\delta\rho}\right] \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \rho\nabla\left[\frac{1}{\sqrt{\rho_{\lambda}}} - \frac{1}{\sqrt{\rho}}\right] \cdot \nabla\left[\log\rho - G * \rho\right] \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \left[2\sqrt{\frac{\pi}{\lambda M}} x \rho + \nabla\sqrt{\rho}\right] \cdot \nabla\left[\log\rho - G * \rho\right] \,\mathrm{d}x$$

Now, integrating by parts once more on the term involving the Green's function,

$$\begin{split} \int_{\mathbb{R}^2} \nabla \sqrt{\rho} \cdot \nabla \left[\log \rho - G * \rho \right] \, \mathrm{d}x &= \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}} + \int_{\mathbb{R}^2} \sqrt{\rho} \, \Delta G * \rho \\ &= \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}} - \int_{\mathbb{R}^2} \rho^{3/2} \, \mathrm{d}x \, . \end{split}$$

Ideas of the Rigorous Proof 00000 A byproduct: A new proof of HLS inequalities 0000000 Conclusions

New Liapunov Functional

Claim: The critical fast diffusion functional is also a Liapunov functional for the critical mass PKS. Formal Computation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = \int_{\mathbb{R}^{2}} \frac{\delta\mathcal{H}_{\lambda}[\rho]}{\delta\rho} \mathrm{div}\left(\rho(t,x)\nabla\left[\frac{\delta\mathcal{F}_{\mathrm{PKS}}[\rho]}{\delta\rho}\right]\right) \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \rho\nabla\left[\frac{\delta\mathcal{H}_{\lambda}[\rho]}{\delta\rho}\right] \cdot \nabla\left[\frac{\delta\mathcal{F}_{\mathrm{PKS}}[\rho]}{\delta\rho}\right] \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \rho\nabla\left[\frac{1}{\sqrt{\rho_{\lambda}}} - \frac{1}{\sqrt{\rho}}\right] \cdot \nabla\left[\log\rho - G * \rho\right] \,\mathrm{d}x$$
$$= -\int_{\mathbb{R}^{2}} \left[2\sqrt{\frac{\pi}{\lambda M}} x \rho + \nabla\sqrt{\rho}\right] \cdot \nabla\left[\log\rho - G * \rho\right] \,\mathrm{d}x$$

Now, integrating by parts once more on the term involving the Green's function,

$$\begin{split} \int_{\mathbb{R}^2} \nabla \sqrt{\rho} \cdot \nabla \left[\log \rho - G * \rho \right] \, \mathrm{d}x &= \frac{1}{2} \int_{\mathbb{R}^2} \frac{\left| \nabla \rho \right|^2}{\rho^{3/2}} + \int_{\mathbb{R}^2} \sqrt{\rho} \, \Delta G * \rho \\ &= \frac{1}{2} \int_{\mathbb{R}^2} \frac{\left| \nabla \rho \right|^2}{\rho^{3/2}} - \int_{\mathbb{R}^2} \rho^{3/2} \, \mathrm{d}x \, . \end{split}$$
New Liapunov Functionals

New Liapunov Functional 2

Also, $\int_{\mathbb{R}^2} x \cdot \nabla \rho \, dx = -2M$ and, making the same symmetrization that led to the evolution of the second moment,

$$\int_{\mathbb{R}^2} \rho(x) x \cdot \nabla G * \rho(x) \, \mathrm{d}x = \frac{1}{4\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(t, x) \, (x - y) \cdot \frac{x - y}{|x - y|^2} \, \rho(t, y) \, \mathrm{d}x \, \mathrm{d}y = -\frac{M^2}{4\pi}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = -\frac{1}{2}\int_{\mathbb{R}^2} \frac{|\nabla\rho|^2}{\rho^{3/2}} \,\mathrm{d}x + \int_{\mathbb{R}^2} \rho^{3/2} \,\mathrm{d}x + 4\sqrt{\frac{M\pi}{\lambda}} \left(1 - \frac{M}{8\pi}\right) \,.$$

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_0^T \left[\frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}}(t,x) \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(t,x) \, \mathrm{d}x \right] \, \mathrm{d}t \leq \mathcal{H}_{\lambda}[\rho_0] \, .$$

New Liapunov Functionals

New Liapunov Functional 2

Also, $\int_{\mathbb{R}^2} x \cdot \nabla \rho \, dx = -2M$ and, making the same symmetrization that led to the evolution of the second moment,

$$\int_{\mathbb{R}^2} \rho(x) \, x \cdot \nabla G * \rho(x) \, \mathrm{d}x = \frac{1}{4\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(t, x) \, (x - y) \cdot \frac{x - y}{|x - y|^2} \, \rho(t, y) \, \mathrm{d}x \, \mathrm{d}y = -\frac{M^2}{4\pi} \, .$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = -\frac{1}{2}\int_{\mathbb{R}^2} \frac{|\nabla\rho|^2}{\rho^{3/2}} \,\mathrm{d}x + \int_{\mathbb{R}^2} \rho^{3/2} \,\mathrm{d}x + 4\sqrt{\frac{M\pi}{\lambda}} \left(1 - \frac{M}{8\pi}\right) \,.$$

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_0^T \left[\frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}}(t, x) \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(t, x) \, \mathrm{d}x \right] \, \mathrm{d}t \leq \mathcal{H}_{\lambda}[\rho_0] \, .$$

New Liapunov Functionals

New Liapunov Functional 2

Also, $\int_{\mathbb{R}^2} x \cdot \nabla \rho \, dx = -2M$ and, making the same symmetrization that led to the evolution of the second moment,

$$\int_{\mathbb{R}^2} \rho(x) \, x \cdot \nabla G * \rho(x) \, \mathrm{d}x = \frac{1}{4\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(t, x) \, (x - y) \cdot \frac{x - y}{|x - y|^2} \, \rho(t, y) \, \mathrm{d}x \, \mathrm{d}y = -\frac{M^2}{4\pi} \, .$$

Collecting the above computations:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = -\frac{1}{2}\int_{\mathbb{R}^2} \frac{|\nabla\rho|^2}{\rho^{3/2}} \,\mathrm{d}x + \int_{\mathbb{R}^2} \rho^{3/2} \,\mathrm{d}x + 4\sqrt{\frac{M\pi}{\lambda}} \left(1 - \frac{M}{8\pi}\right) \,.$$

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_0^T \left[\frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}}(t,x) \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(t,x) \, \mathrm{d}x \right] \, \mathrm{d}t \leq \mathcal{H}_{\lambda}[\rho_0] \, .$$

New Liapunov Functionals

New Liapunov Functional 2

Also, $\int_{\mathbb{R}^2} x \cdot \nabla \rho \, dx = -2M$ and, making the same symmetrization that led to the evolution of the second moment.

$$\int_{\mathbb{R}^2} \rho(x) \, x \cdot \nabla G * \rho(x) \, \mathrm{d}x = \frac{1}{4\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(t, x) \, (x - y) \cdot \frac{x - y}{|x - y|^2} \, \rho(t, y) \, \mathrm{d}x \, \mathrm{d}y = -\frac{M^2}{4\pi} \, .$$

Collecting the above computations:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{\lambda}[\rho(t)] = -\frac{1}{2}\int_{\mathbb{R}^2} \frac{|\nabla\rho|^2}{\rho^{3/2}} \,\mathrm{d}x + \int_{\mathbb{R}^2} \rho^{3/2} \,\mathrm{d}x + 4\sqrt{\frac{M\pi}{\lambda}} \left(1 - \frac{M}{8\pi}\right) \,.$$

Notice that the constant term vanishes in critical mass case $M = 8\pi$. Thus, in the critical mass case, formal calculation yields that for all T > 0,

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_0^T \left[\frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho|^2}{\rho^{3/2}}(t,x) \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(t,x) \, \mathrm{d}x \right] \, \mathrm{d}t \leq \mathcal{H}_{\lambda}[\rho_0] \, .$$

Ideas of the Rigorous Proof 00000 A byproduct: A new proof of HLS inequalities 0000000 Conclusions

New Liapunov Functional 3

The missing link to exploit the previous relation is a particular case of the Gagliardo-Nirenberg-Sobolev inequalities¹.

Gagliardo-Nirenberg-Sobolev inequality

For all functions f in \mathbb{R}^2 with a square integrable distributional gradient ∇f ,

$$\pi \int_{\mathbb{R}^2} |f|^6 \, \mathrm{d}x \le \int_{\mathbb{R}^2} |\nabla f|^2 \, \mathrm{d}x \int_{\mathbb{R}^2} |f|^4 \, \mathrm{d}x$$

and there is equality if and only if f is a multiple of a translate of $\bar{\rho}_{\lambda}^{1/4}$, $\lambda > 0$.

Dissipation of \mathcal{H}_{λ}

Applying the GNS to $f = \rho^{1/4}$: For all densities ρ of mass $M = 8\pi$,

$$\mathcal{D}[\rho] := \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho(x)|^2}{\rho^{3/2}(x)} \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(x) \, \mathrm{d}x \ge 0 \; ,$$

and moreover, there is equality if and only ρ is a translate of $\bar{\rho}_{\lambda}$ for some $\lambda > 0$.

¹Dolbeault-DelPino, JMPA 2002

A byproduct: A new proof of HLS inequalities 0000000

New Liapunov Functional 3

The missing link to exploit the previous relation is a particular case of the Gagliardo-Nirenberg-Sobolev inequalities¹.

Gagliardo-Nirenberg-Sobolev inequality

For all functions f in \mathbb{R}^2 with a square integrable distributional gradient ∇f ,

$$\pi \int_{\mathbb{R}^2} |f|^6 \, \mathrm{d}x \le \int_{\mathbb{R}^2} |\nabla f|^2 \, \mathrm{d}x \int_{\mathbb{R}^2} |f|^4 \, \mathrm{d}x$$

and there is equality if and only if f is a multiple of a translate of $\bar{\rho}_{\lambda}^{1/4}$, $\lambda > 0$.

Dissipation of \mathcal{H}_{λ}

Applying the GNS to $f = \rho^{1/4}$: For all densities ρ of mass $M = 8\pi$,

$$\mathcal{D}[\rho] := \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho(x)|^2}{\rho^{3/2}(x)} \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(x) \, \mathrm{d}x \ge 0 \; ,$$

and moreover, there is equality if and only ρ is a translate of $\bar{\rho}_{\lambda}$ for some $\lambda > 0$.

¹Dolbeault-DelPino, JMPA 2002

A byproduct: A new proof of HLS inequalities 0000000

New Liapunov Functional 3

The missing link to exploit the previous relation is a particular case of the Gagliardo-Nirenberg-Sobolev inequalities¹.

Gagliardo-Nirenberg-Sobolev inequality

For all functions f in \mathbb{R}^2 with a square integrable distributional gradient ∇f ,

$$\pi \int_{\mathbb{R}^2} |f|^6 \, \mathrm{d}x \le \int_{\mathbb{R}^2} |\nabla f|^2 \, \mathrm{d}x \int_{\mathbb{R}^2} |f|^4 \, \mathrm{d}x$$

and there is equality if and only if f is a multiple of a translate of $\bar{\rho}_{\lambda}^{1/4}$, $\lambda > 0$.

Dissipation of \mathcal{H}_{λ}

Applying the GNS to $f = \rho^{1/4}$: For all densities ρ of mass $M = 8\pi$,

$$\mathcal{D}[\rho] := \frac{1}{2} \int_{\mathbb{R}^2} \frac{|\nabla \rho(x)|^2}{\rho^{3/2}(x)} \, \mathrm{d}x - \int_{\mathbb{R}^2} \rho^{3/2}(x) \, \mathrm{d}x \ge 0 \; ,$$

and moreover, there is equality if and only ρ is a translate of $\bar{\rho}_{\lambda}$ for some $\lambda > 0$.

¹Dolbeault-DelPino, JMPA 2002

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ_0 in \mathbb{R}^2 with total mass 8π such that there exists $\lambda > 0$ with

$\mathcal{H}_{\lambda}[\rho_0] < \infty$

Then there exists $\rho \in AC^0([0, T], \mathcal{P}_2(\mathbb{R}^2))$, with $\rho(t) \in L^1(\mathbb{R}^2)$ for all $t \ge 0$ being a global-in-time weak solution of the critical mass PKS. Moreover, the solutions constructed satisfy that

 $\mathcal{H}_{\lambda}[\rho(t)] \leq \mathcal{H}_{\lambda}[\rho(s)] \quad \text{and} \quad \mathcal{F}_{\text{PKS}}[\rho(t)] \leq \mathcal{F}_{\text{PKS}}[\rho(s)],$

for all $0 \le s \le t$. Moreover, we can show that the constructed weak solutions are *dissipative solutions, i.e.*, they satisfy for all T > 0

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_{0}^{T} \mathcal{D}[\rho(t)] dt \leq \mathcal{H}_{\lambda}[\rho_{0}]$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ_0 in \mathbb{R}^2 with total mass 8π such that there exists $\lambda > 0$ with

 $\mathcal{H}_{\lambda}[\rho_0] < \infty$

Then there exists $\rho \in \mathcal{AC}^0([0,T], \mathcal{P}_2(\mathbb{R}^2))$, with $\rho(t) \in L^1(\mathbb{R}^2)$ for all $t \ge 0$ being a global-in-time weak solution of the critical mass PKS. Moreover, the solutions constructed satisfy that

 $\mathcal{H}_{\lambda}[\rho(t)] \leq \mathcal{H}_{\lambda}[\rho(s)] \quad \text{and} \quad \mathcal{F}_{\text{PKS}}[\rho(t)] \leq \mathcal{F}_{\text{PKS}}[\rho(s)],$

for all $0 \le s \le t$. Moreover, we can show that the constructed weak solutions are *dissipative solutions*, *i.e.*, they satisfy for all T > 0

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_{0}^{T} \mathcal{D}[\rho(t)] dt \leq \mathcal{H}_{\lambda}[\rho_{0}]$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ_0 in \mathbb{R}^2 with total mass 8π such that there exists $\lambda > 0$ with

 $\mathcal{H}_{\lambda}[\rho_0] < \infty$

Then there exists $\rho \in \mathcal{AC}^0([0,T], \mathcal{P}_2(\mathbb{R}^2))$, with $\rho(t) \in L^1(\mathbb{R}^2)$ for all $t \ge 0$ being a global-in-time weak solution of the critical mass PKS. Moreover, the solutions constructed satisfy that

 $\mathcal{H}_{\lambda}[\rho(t)] \leq \mathcal{H}_{\lambda}[\rho(s)] \quad \text{and} \quad \mathcal{F}_{\text{PKS}}[\rho(t)] \leq \mathcal{F}_{\text{PKS}}[\rho(s)],$

for all $0 \le s \le t$. Moreover, we can show that the constructed weak solutions are *dissipative solutions, i.e.*, they satisfy for all T > 0

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_{0}^{T} \mathcal{D}[\rho(t)] dt \leq \mathcal{H}_{\lambda}[\rho_{0}]$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ_0 in \mathbb{R}^2 with total mass 8π such that there exists $\lambda > 0$ with

 $\mathcal{H}_{\lambda}[\rho_0] < \infty$

Then there exists $\rho \in \mathcal{AC}^0([0,T], \mathcal{P}_2(\mathbb{R}^2))$, with $\rho(t) \in L^1(\mathbb{R}^2)$ for all $t \ge 0$ being a global-in-time weak solution of the critical mass PKS. Moreover, the solutions constructed satisfy that

 $\mathcal{H}_{\lambda}[\rho(t)] \leq \mathcal{H}_{\lambda}[\rho(s)] \quad \text{and} \quad \mathcal{F}_{\text{PKS}}[\rho(t)] \leq \mathcal{F}_{\text{PKS}}[\rho(s)],$

for all $0 \le s \le t$. Moreover, we can show that the constructed weak solutions are *dissipative solutions, i.e.*, they satisfy for all T > 0

$$\mathcal{H}_{\lambda}[\rho(T)] + \int_{0}^{T} \mathcal{D}[\rho(t)] dt \leq \mathcal{H}_{\lambda}[\rho_{0}]$$

A byproduct: A new proof of HLS inequalities 0000000

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

Stability properties of H_λ over F_{PKS}. In fact, not much was known about stability for F_{PKS} till very recently (E. Carlen, A. Figalli, preprint).
 We do know that if some density ρ with mass 8π satisfies F_{PKS}[ρ] = F_{PKS}[ρ̄_λ], then, up to translation, ρ = ρ̄_μ for some μ > 0. Even knowing a quantitative estimate for the error in F_{PKS}, it mainly helps to quantify the decay rate.

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

Stability properties of H_λ over F_{PKS}. In fact, not much was known about stability for F_{PKS} till very recently (E. Carlen, A. Figalli, preprint).
 We do know that if some density ρ with mass 8π satisfies F_{PKS}[ρ] = F_{PKS}[ρ_λ], then, up to translation, ρ = ρ_μ for some μ > 0. Even knowing a quantitative estimate for the error in F_{PKS}, it mainly helps to quantify the decay rate.

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

Stability properties of H_λ over F_{PKS}. In fact, not much was known about stability for F_{PKS} till very recently (E. Carlen, A. Figalli, preprint).
 We do know that if some density ρ with mass 8π satisfies F_{PKS}[ρ] = F_{PKS}[ρ̄_λ], then, up to translation, ρ = ρ̄_μ for some μ > 0. Even knowing a quantitative estimate for the error in F_{PKS}, it mainly helps to quantify the decay rate.

A byproduct: A new proof of HLS inequalities 0000000

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

Stability properties of H_λ over F_{PKS}. In fact, not much was known about stability for F_{PKS} till very recently (E. Carlen, A. Figalli, preprint). We do know that if some density ρ with mass 8π satisfies F_{PKS}[ρ] = F_{PKS}[ρ̄_λ], then, up to translation, ρ = ρ̄_μ for some μ > 0. Even knowing a quantitative estimate for the error in F_{PKS}, it mainly helps to quantify the decay rate.

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

Stability properties of H_λ over F_{PKS}. In fact, not much was known about stability for F_{PKS} till very recently (E. Carlen, A. Figalli, preprint). We do know that if some density ρ with mass 8π satisfies F_{PKS}[ρ] = F_{PKS}[ρ̄_λ], then, up to translation, ρ = ρ̄_μ for some μ > 0. Even knowing a quantitative estimate for the error in F_{PKS}, it mainly helps to quantify the decay rate.

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

• Stability properties of \mathcal{H}_{λ} over \mathcal{F}_{PKS} . In fact, not much was known about stability for \mathcal{F}_{PKS} till very recently (E. Carlen, A. Figalli, preprint).

We do know that if some density ρ with mass 8π satisfies $\mathcal{F}_{PKS}[\rho] = \mathcal{F}_{PKS}[\bar{\rho}_{\lambda}]$, then, up to translation, $\rho = \bar{\rho}_{\mu}$ for some $\mu > 0$. Even knowing a quantitative estimate for the error in \mathcal{F}_{PKS} , it mainly helps to quantify the decay rate.

A byproduct: A new proof of HLS inequalities 0000000

Mathematical Difficulties

For a density of mass 8π, an upper bound on *F*_{PKS}[ρ] does not provide any upper bound on the entropy *E*[ρ].

Indeed, \mathcal{F}_{PKS} takes its minimum value for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\mathcal{E}[\bar{\rho}_{\mu}] \to \infty$ as $\mu \to 0$ since $\bar{\rho}_{\mu}$ converges weakly-* as measures towards a Dirac delta at the origin with mass 8π .

The dissipation functional D[ρ] is well defined as long as ||ρ||_{3/2} < ∞, but an upper bound on D[ρ] does not give an upper bound on either ||∇(ρ^{1/4})||₂ or ||ρ||_{3/2} since it is the difference of both terms.

Indeed, $\mathcal{D}[\rho] = 0$ for $\rho = \bar{\rho}_{\mu}$ for all $\mu > 0$, but $\|\nabla(\bar{\rho}_{\mu}^{1/4})\|_2$ or $\|\bar{\rho}_{\mu}\|_{3/2}$ both diverge to infinity as μ tends to zero.

Stability properties of H_λ over F_{PKS}. In fact, not much was known about stability for F_{PKS} till very recently (E. Carlen, A. Figalli, preprint).
 We do know that if some density ρ with mass 8π satisfies F_{PKS}[ρ] = F_{PKS}[ρ̄_λ], then, up to translation, ρ = ρ̄_μ for some μ > 0. Even knowing a quantitative estimate for the error in F_{PKS}, it mainly helps to quantify the decay rate.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions
	0000		
Concentration-Control Inequalities			

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow
- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

Concentration-Control Inequalities

A byproduct: A new proof of HLS inequalities

- Log HLS via Fast Diffusion Flows
- A New Proof of the HLS inequality with Equality Cases

4 Conclusions

Macroscopic Models: PKS system 000000000000000000000000 Concentration-Control Inequalities Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Thick Tails & Localization by \mathcal{H}_{λ}

- Rigorous Proof of Displacement Convexity of \mathcal{H}_{λ} by regularization.
- Proof of Talagrand inequality to control $W_2(\rho, \varrho_\lambda)$ in terms of $\mathcal{H}_\lambda[\rho]$.

Thick Tails

A bound on $\mathcal{H}_{\lambda}[\rho]$ implies a "matching tail" estimate.- Let ρ be any density of mass M such that $\mathcal{H}_{\lambda}[\rho] < \infty$. Then for $\eta_* := \frac{1}{5}e^{-1/5}$ and any s > 1

$$\int_{|x|^2 \ge \lambda s^2} \rho(x) \, \mathrm{d}x \ge \eta_* \, e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \int_{|x|^2 \ge \lambda s^2} \varrho_{\lambda}(x) \, \mathrm{d}x = \frac{M \eta_*}{1 + s^2} e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]}.$$

Solid core

$$\int_{\{|x| \ge 4\sqrt{\lambda} + 4(\lambda/M\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}\}} \rho \, \mathrm{d}x \le \frac{M}{2} \, .$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Thick Tails & Localization by \mathcal{H}_{λ}

- Rigorous Proof of Displacement Convexity of \mathcal{H}_{λ} by regularization.
- Proof of Talagrand inequality to control $W_2(\rho, \varrho_\lambda)$ in terms of $\mathcal{H}_\lambda[\rho]$.

Thick Tails

A bound on $\mathcal{H}_{\lambda}[\rho]$ implies a "matching tail" estimate.- Let ρ be any density of mass M such that $\mathcal{H}_{\lambda}[\rho] < \infty$. Then for $\eta_* := \frac{1}{5}e^{-1/5}$ and any s > 1

$$\int_{|x|^2 \ge \lambda s^2} \rho(x) \, \mathrm{d}x \ge \eta_* \, e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \int_{|x|^2 \ge \lambda s^2} \varrho_{\lambda}(x) \, \mathrm{d}x = \frac{M \eta_*}{1 + s^2} e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \, dx$$

Solid core

$$\int_{\{|x| \ge 4\sqrt{\lambda} + 4(\lambda/M\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}\}} \rho \, \mathrm{d}x \le \frac{M}{2} \, .$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Thick Tails & Localization by \mathcal{H}_{λ}

- Rigorous Proof of Displacement Convexity of \mathcal{H}_{λ} by regularization.
- Proof of Talagrand inequality to control $W_2(\rho, \varrho_\lambda)$ in terms of $\mathcal{H}_\lambda[\rho]$.

Thick Tails

A bound on $\mathcal{H}_{\lambda}[\rho]$ implies a "matching tail" estimate.- Let ρ be any density of mass M such that $\mathcal{H}_{\lambda}[\rho] < \infty$. Then for $\eta_* := \frac{1}{5}e^{-1/5}$ and any s > 1

$$\int_{|x|^2 \ge \lambda s^2} \rho(x) \, \mathrm{d}x \ge \eta_* \, e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \int_{|x|^2 \ge \lambda s^2} \varrho_{\lambda}(x) \, \mathrm{d}x = \frac{M \eta_*}{1 + s^2} e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]}$$

Solid core

$$\int_{\{|x| \ge 4\sqrt{\lambda} + 4(\lambda/M\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}\}} \rho \, \mathrm{d}x \le \frac{M}{2} \, .$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Thick Tails & Localization by \mathcal{H}_{λ}

- Rigorous Proof of Displacement Convexity of \mathcal{H}_{λ} by regularization.
- Proof of Talagrand inequality to control $W_2(\rho, \varrho_\lambda)$ in terms of $\mathcal{H}_\lambda[\rho]$.

Thick Tails

A bound on $\mathcal{H}_{\lambda}[\rho]$ implies a "matching tail" estimate.- Let ρ be any density of mass M such that $\mathcal{H}_{\lambda}[\rho] < \infty$. Then for $\eta_* := \frac{1}{5}e^{-1/5}$ and any s > 1

$$\int_{|x|^2 \ge \lambda s^2} \rho(x) \, \mathrm{d}x \ge \eta_* \, e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \int_{|x|^2 \ge \lambda s^2} \varrho_{\lambda}(x) \, \mathrm{d}x = \frac{M \eta_*}{1 + s^2} e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]}.$$

Solid core

$$\int_{\{|x| \ge 4\sqrt{\lambda} + 4(\lambda/M\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}\}} \rho \, \mathrm{d}x \le \frac{M}{2} \, .$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Thick Tails & Localization by \mathcal{H}_{λ}

- Rigorous Proof of Displacement Convexity of \mathcal{H}_{λ} by regularization.
- Proof of Talagrand inequality to control $W_2(\rho, \varrho_\lambda)$ in terms of $\mathcal{H}_\lambda[\rho]$.

Thick Tails

A bound on $\mathcal{H}_{\lambda}[\rho]$ implies a "matching tail" estimate.- Let ρ be any density of mass M such that $\mathcal{H}_{\lambda}[\rho] < \infty$. Then for $\eta_* := \frac{1}{5}e^{-1/5}$ and any s > 1

$$\int_{|x|^2 \ge \lambda s^2} \rho(x) \, \mathrm{d}x \ge \eta_* \, e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \int_{|x|^2 \ge \lambda s^2} \varrho_{\lambda}(x) \, \mathrm{d}x = \frac{M \eta_*}{1 + s^2} e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]}.$$

Solid core

$$\int_{\{|x| \ge 4\sqrt{\lambda} + 4(\lambda/M\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}\}} \rho \, \mathrm{d}x \le \frac{M}{2} \, .$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Thick Tails & Localization by \mathcal{H}_{λ}

- Rigorous Proof of Displacement Convexity of \mathcal{H}_{λ} by regularization.
- Proof of Talagrand inequality to control $W_2(\rho, \varrho_\lambda)$ in terms of $\mathcal{H}_\lambda[\rho]$.

Thick Tails

A bound on $\mathcal{H}_{\lambda}[\rho]$ implies a "matching tail" estimate.- Let ρ be any density of mass M such that $\mathcal{H}_{\lambda}[\rho] < \infty$. Then for $\eta_* := \frac{1}{5}e^{-1/5}$ and any s > 1

$$\int_{|x|^2 \ge \lambda s^2} \rho(x) \, \mathrm{d}x \ge \eta_* \, e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]} \int_{|x|^2 \ge \lambda s^2} \varrho_{\lambda}(x) \, \mathrm{d}x = \frac{M \eta_*}{1 + s^2} e^{-\frac{4}{\sqrt{\pi M \lambda}} \mathcal{H}_{\lambda}[\rho]}.$$

Solid core

$$\int_{\{|x| \ge 4\sqrt{\lambda} + 4(\lambda/M\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}\}} \rho \, \mathrm{d}x \le \frac{M}{2} \, .$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Concentration-Control for the Entropy I

In summary, we can show there exists R > 1 so that for some $0 < a < 8\pi$,

$$\int_{|x|>R-1} \rho \, \mathrm{d}x \le 8\pi - a \qquad \text{and} \qquad \int_{|x|< R+1} \rho \, \mathrm{d}x \le 8\pi - a$$

The densities lying in sublevel sets of $\mathcal{F}_{PKS}[\rho]$ and $\mathcal{H}_{\lambda}[\rho]$ are compact.

Entropy bound

Let ρ be any density with mass $M = 8\pi$, with $\mathcal{H}_{\lambda}[\rho] < \infty$ for some $\lambda > 0$. Then there exist positive computable constants γ_1 and C_{CCF} depending only on λ and $\mathcal{H}_{\lambda}[\rho]$ such that

$$\gamma_1 \int_{\mathbb{R}^2} \rho \log_+ \rho \, \mathrm{d}x \le \mathcal{F}_{\mathrm{PKS}}[\rho] + C_{\mathrm{CCF}}$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Concentration-Control for the Entropy I

In summary, we can show there exists R > 1 so that for some $0 < a < 8\pi$,

$$\int_{|x|>R-1} \rho \, \mathrm{d}x \le 8\pi - a \qquad \text{and} \qquad \int_{|x|< R+1} \rho \, \mathrm{d}x \le 8\pi - a$$

The densities lying in sublevel sets of $\mathcal{F}_{PKS}[\rho]$ and $\mathcal{H}_{\lambda}[\rho]$ are compact.

Entropy bound

Let ρ be any density with mass $M = 8\pi$, with $\mathcal{H}_{\lambda}[\rho] < \infty$ for some $\lambda > 0$. Then there exist positive computable constants γ_1 and C_{CCF} depending only on λ and $\mathcal{H}_{\lambda}[\rho]$ such that

$$\gamma_1 \int_{\mathbb{R}^2} \rho \log_+ \rho \, \mathrm{d}x \le \mathcal{F}_{\mathrm{PKS}}[\rho] + C_{\mathrm{CCF}}$$

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities 0000000 Conclusions

Concentration-Control for the Entropy I

In summary, we can show there exists R > 1 so that for some $0 < a < 8\pi$,

$$\int_{|x|>R-1} \rho \, \mathrm{d}x \le 8\pi - a \qquad \text{and} \qquad \int_{|x|< R+1} \rho \, \mathrm{d}x \le 8\pi - a$$

The densities lying in sublevel sets of $\mathcal{F}_{PKS}[\rho]$ and $\mathcal{H}_{\lambda}[\rho]$ are compact.

Entropy bound

Let ρ be any density with mass $M = 8\pi$, with $\mathcal{H}_{\lambda}[\rho] < \infty$ for some $\lambda > 0$. Then there exist positive computable constants γ_{1} and C_{CCF} depending only on λ and $\mathcal{H}_{\lambda}[\rho]$ such that

$$\gamma_1 \int_{\mathbb{R}^2} \rho \log_+
ho \, \mathrm{d} x \leq \mathcal{F}_{ ext{PKS}}[
ho] + C_{ ext{CCF}}$$
 .

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

Concentration-Control for Entropy-Dissipation

The densities lying in sublevel sets of $\mathcal{F}_{PKS}[\rho]$, $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{D}[\rho]$ are compact.

Concentration control for \mathcal{D}

Let ρ be any density with mass 8π , $\mathcal{F}_{PKS}[\rho]$ finite, and $\mathcal{H}_{\lambda}[\rho]$ finite for some $\lambda > 0$. Then there exist positive computable constants γ_2 and C_{CCD} depending only on λ , $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{F}_{PKS}[\rho]$ such that

$$\gamma_2 \, \int_{\mathbb{R}^2} |
abla
ho^{1/4}|^2 \, \mathrm{d} x \leq \pi \mathcal{D}[
ho] + C_{ ext{CCD}} \, \, .$$

This allows to control the $L^{3/2}$ -norm of ρ too.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

Concentration-Control for Entropy-Dissipation

The densities lying in sublevel sets of $\mathcal{F}_{PKS}[\rho]$, $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{D}[\rho]$ are compact.

Concentration control for ${\cal D}$

Let ρ be any density with mass 8π , $\mathcal{F}_{PKS}[\rho]$ finite, and $\mathcal{H}_{\lambda}[\rho]$ finite for some $\lambda > 0$. Then there exist positive computable constants γ_2 and C_{CCD} depending only on λ , $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{F}_{PKS}[\rho]$ such that

$$\gamma_2 \, \int_{\mathbb{R}^2} |
abla
ho^{1/4}|^2 \, \mathrm{d} x \leq \pi \mathcal{D}[
ho] + C_{\mathrm{CCD}} \, \, .$$

This allows to control the $L^{3/2}$ -norm of ρ too.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

Concentration-Control for Entropy-Dissipation

The densities lying in sublevel sets of $\mathcal{F}_{PKS}[\rho]$, $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{D}[\rho]$ are compact.

Concentration control for ${\cal D}$

Let ρ be any density with mass 8π , $\mathcal{F}_{PKS}[\rho]$ finite, and $\mathcal{H}_{\lambda}[\rho]$ finite for some $\lambda > 0$. Then there exist positive computable constants γ_2 and C_{CCD} depending only on λ , $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{F}_{PKS}[\rho]$ such that

$$\gamma_2 \, \int_{\mathbb{R}^2} |
abla
ho^{1/4}|^2 \, \mathrm{d} x \leq \pi \mathcal{D}[
ho] + C_{\mathrm{CCD}} \, \, .$$

This allows to control the $L^{3/2}$ -norm of ρ too.

A byproduct: A new proof of HLS inequalities •••••••

"Duality" between CFD and PKS

Observation of Matthes, McCann & Savaré, CPDE 2009

Consider two smooth functions Φ and Ψ on \mathbb{R}^d , and consider the two ordinary differential equations describing gradient flow:

$$\dot{x}(t) = -\nabla \Phi[x(t)]$$
 and $\dot{y}(t) = -\nabla \Psi[y(t)]$.

Then of course $\Phi[x(t)]$ and $\Psi[y(t)]$ are monotone decreasing. Now differentiate each function along the others flow:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \Phi[y(t)] &= -\langle \nabla \Phi[y(t)], \nabla \Psi[y(t)] \rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi[x(t)] &= -\langle \nabla \Psi[x(t)], \nabla \Phi[x(t)] \rangle \,. \end{aligned}$$

Thus, Φ is decreasing along the gradient flow of Ψ for any initial data if and only if Ψ is decreasing along the gradient flow of Φ for any initial data.

A byproduct: A new proof of HLS inequalities •••••••

"Duality" between CFD and PKS

Observation of Matthes, McCann & Savaré, CPDE 2009

Consider two smooth functions Φ and Ψ on \mathbb{R}^d , and consider the two ordinary differential equations describing gradient flow:

 $\dot{x}(t) = -\nabla \Phi[x(t)]$ and $\dot{y}(t) = -\nabla \Psi[y(t)]$.

Then of course $\Phi[x(t)]$ and $\Psi[y(t)]$ are monotone decreasing. Now differentiate each function along the others flow:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \Phi[y(t)] &= -\langle \nabla \Phi[y(t)], \nabla \Psi[y(t)] \rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi[x(t)] &= -\langle \nabla \Psi[x(t)], \nabla \Phi[x(t)] \rangle \,. \end{split}$$

Thus, Φ is decreasing along the gradient flow of Ψ for any initial data if and only if Ψ is decreasing along the gradient flow of Φ for any initial data.

deas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities OOOOOOO Conclusions

"Duality" between CFD and PKS

- An analog of this holds for well-behaved gradient flows in the 2-Wasserstein sense as used in (Matthes, McCann & Savare, CPDE 2009).
- Our case: Apply it to the Log-HLS functional in d = 2.-

Since \mathcal{H}_{λ} is decreasing along the 2-Wasserstein gradient flow for \mathcal{F}_{PKS} , i.e., the Patlak-Keller-Segel equation, one can expect that \mathcal{F}_{PKS} of the Log-HLS functional is decreasing along the 2-Wasserstein gradient flow for \mathcal{H}_{λ} , i.e., the critical fast diffusion.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities OOOOOOO Conclusions

"Duality" between CFD and PKS

- An analog of this holds for well-behaved gradient flows in the 2-Wasserstein sense as used in (Matthes, McCann & Savare, CPDE 2009).
- Our case: Apply it to the Log-HLS functional in d = 2.-

Since \mathcal{H}_{λ} is decreasing along the 2-Wasserstein gradient flow for \mathcal{F}_{PKS} , i.e., the Patlak-Keller-Segel equation, one can expect that \mathcal{F}_{PKS} of the Log-HLS functional is decreasing along the 2-Wasserstein gradient flow for \mathcal{H}_{λ} , i.e., the critical fast diffusion.

Macroscopic Models: PKS system		A byproduct: A new proof of HLS inequalities	
0000000000000000	00000	00000	
Log HLS via Fast Diffusion Flows			

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow
- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

• Concentration-Control Inequalities

A byproduct: A new proof of HLS inequalities Log HLS via Fast Diffusion Flows

• A New Proof of the HLS inequality with Equality Cases

4 Conclusions
Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

The connection from FD perspective

The log HLS functional \mathcal{F} is defined by

$$\mathcal{F}[f] := \int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \log |x - y| f(y) \, \mathrm{d}x \, \mathrm{d}y.$$

The critical fast diffusion is

$$\frac{\partial}{\partial t}u(x,t) = \Delta u^{1/2}(x,t) ,$$

with associated Fokker-Planck equation

$$\frac{\partial}{\partial t}v(x,t) = \Delta v^{1/2}(x,t) + \nabla \cdot [xv(x,t)].$$

which has as stationary solution

$$h(x) = \frac{M}{\pi} \left(\frac{1}{1+|x|^2} \right)^2$$

with mass M.

Scaling: $f_{(a)} := a^2 f(ax)$. Then, $\mathcal{F}[f_{(a)}] = \mathcal{F}[f]$ for all a. $v(x, t) := e^{2t}u(e^t x, e^t)$ and thus $\mathcal{F}[v(\cdot, t)] = \mathcal{F}[u(\cdot, e^t)]$.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

The connection from FD perspective

The log HLS functional \mathcal{F} is defined by

$$\mathcal{F}[f] := \int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \log |x - y| f(y) \, \mathrm{d}x \, \mathrm{d}y.$$

The critical fast diffusion is

$$\frac{\partial}{\partial t}u(x,t) = \Delta u^{1/2}(x,t) \; ,$$

with associated Fokker-Planck equation

$$\frac{\partial}{\partial t}v(x,t) = \Delta v^{1/2}(x,t) + \nabla \cdot [xv(x,t)].$$

which has as stationary solution

$$h(x) = \frac{M}{\pi} \left(\frac{1}{1+|x|^2} \right)^2$$

with mass M.

Scaling: $f_{(a)} := a^2 f(ax)$. Then, $\mathcal{F}[f_{(a)}] = \mathcal{F}[f]$ for all a. $v(x, t) := e^{2t} u(e^t x, e^t)$ and thus $\mathcal{F}[v(\cdot, t)] = \mathcal{F}[u(\cdot, e^t)]$.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

The connection from FD perspective

The log HLS functional \mathcal{F} is defined by

$$\mathcal{F}[f] := \int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \log |x - y| f(y) \, \mathrm{d}x \, \mathrm{d}y.$$

The critical fast diffusion is

$$\frac{\partial}{\partial t}u(x,t) = \Delta u^{1/2}(x,t) \; ,$$

with associated Fokker-Planck equation

$$\frac{\partial}{\partial t}v(x,t) = \Delta v^{1/2}(x,t) + \nabla \cdot [xv(x,t)].$$

which has as stationary solution

$$h(x) = \frac{M}{\pi} \left(\frac{1}{1+|x|^2} \right)^2$$

with mass *M*. Scaling: $f_{(a)} := a^2 f(ax)$. Then, $\mathcal{F}[f_{(a)}] = \mathcal{F}[f]$ for all *a*. $v(x, t) := e^{2t}u(e^t x, e^t)$ and thus $\mathcal{F}[v(\cdot, t)] = \mathcal{F}[u(\cdot, e^t)]$.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

The connection from FD perspective

The log HLS functional \mathcal{F} is defined by

$$\mathcal{F}[f] := \int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \log |x - y| f(y) \, \mathrm{d}x \, \mathrm{d}y.$$

The critical fast diffusion is

$$\frac{\partial}{\partial t}u(x,t) = \Delta u^{1/2}(x,t) ,$$

with associated Fokker-Planck equation

$$\frac{\partial}{\partial t}v(x,t) = \Delta v^{1/2}(x,t) + \nabla \cdot [xv(x,t)].$$

which has as stationary solution

$$h(x) = \frac{M}{\pi} \left(\frac{1}{1+|x|^2} \right)^2$$

with mass *M*. Scaling: $f_{(a)} := a^2 f(ax)$. Then, $\mathcal{F}[f_{(a)}] = \mathcal{F}[f]$ for all *a*. $v(x, t) := e^{2t}u(e^t x, e^t)$ and thus $\mathcal{F}[v(\cdot, t)] = \mathcal{F}[u(\cdot, e^t)]$.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities

Conclusions

The connection from FD perspective

The log HLS functional \mathcal{F} is defined by

$$\mathcal{F}[f] := \int_{\mathbb{R}^2} f(x) \log f(x) \, \mathrm{d}x + \frac{2}{\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \log |x - y| f(y) \, \mathrm{d}x \, \mathrm{d}y.$$

The critical fast diffusion is

$$\frac{\partial}{\partial t}u(x,t) = \Delta u^{1/2}(x,t) ,$$

with associated Fokker-Planck equation

$$\frac{\partial}{\partial t}v(x,t) = \Delta v^{1/2}(x,t) + \nabla \cdot [xv(x,t)].$$

which has as stationary solution

$$h(x) = \frac{M}{\pi} \left(\frac{1}{1+|x|^2} \right)^2$$

with mass M.

Scaling: $f_{(a)} := a^2 f(ax)$. Then, $\mathcal{F}[f_{(a)}] = \mathcal{F}[f]$ for all a. $v(x, t) := e^{2t}u(e^t x, e^t)$ and thus $\mathcal{F}[v(\cdot, t)] = \mathcal{F}[u(\cdot, e^t)]$.

Ideas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities ○○○○●○○ Conclusions

The connection from FD perspective

Log HLS via fast diffusion flow

Let f be a non-negative measurable functions on \mathbb{R}^2 such that flogf and $flog(e + |x|^2)$ belong to $L^1(\mathbb{R}^2)$. Suppose also that

$$\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x = \int_{\mathbb{R}^2} h(x) \, \mathrm{d}x = M$$

and

 $\sup_{|x|>R} f(x)|x|^4 < \infty \ .$

Let u(x, t) be the solution of critical fast diffusion with u(x, 1) = f(x). Then

$$\mathcal{F}[f] = \mathcal{F}[h] + \int_1^\infty \mathcal{D}[u^{1/4}(\cdot, e^t)] \, \mathrm{d}t \ge \mathcal{F}[h] \,,$$

where

$$\mathcal{D}[g] = \int_{\mathbb{R}^2} |
abla g(x)|^2 \,\mathrm{d}x \int_{\mathbb{R}^2} g^4(x) \,\mathrm{d}x - \pi \int_{\mathbb{R}^2} g^6(x) \,\mathrm{d}x \,,$$

which is non-negative by the sharp GNS inequality.

Ideas of the Rigorous Proo

A byproduct: A new proof of HLS inequalities ○○○○●○○ Conclusions

The connection from FD perspective

Log HLS via fast diffusion flow

Let f be a non-negative measurable functions on \mathbb{R}^2 such that flogf and $flog(e + |x|^2)$ belong to $L^1(\mathbb{R}^2)$. Suppose also that

$$\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x = \int_{\mathbb{R}^2} h(x) \, \mathrm{d}x = M$$

and

$$\sup_{|x|>R} f(x)|x|^4 < \infty \, .$$

Let u(x, t) be the solution of critical fast diffusion with u(x, 1) = f(x). Then

$$\mathcal{F}[f] = \mathcal{F}[h] + \int_1^\infty \mathcal{D}[u^{1/4}(\cdot, e^t)] \, \mathrm{d}t \ge \mathcal{F}[h] \,,$$

where

$$\mathcal{D}[g] = \int_{\mathbb{R}^2} |\nabla g(x)|^2 \, \mathrm{d}x \int_{\mathbb{R}^2} g^4(x) \, \mathrm{d}x - \pi \int_{\mathbb{R}^2} g^6(x) \, \mathrm{d}x \,,$$

which is non-negative by the sharp GNS inequality.

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	
		0000000	
A New Proof of the HLS inequality with Equality Cases			

Outline

Macroscopic Models: PKS system

- Modelling Chemotaxis: First Properties
- PKS as Gradient Flow
- Critical Fast Diffusion as Gradient Flow
- New Liapunov Functionals

Ideas of the Rigorous Proof

• Concentration-Control Inequalities

3 A byproduct: A new proof of HLS inequalities

- Log HLS via Fast Diffusion Flows
- A New Proof of the HLS inequality with Equality Cases

Macroscopic Models: PKS system

deas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities ○○○○○○● Conclusions

A New Proof of the HLS inequality with Equality Cases

Two Inequalities, One Equation

Sharp Hardy-Littlewood-Sobolev inequality

^{*a*} It states that for all non-negative measurable functions f on \mathbb{R}^d , and all $0 < \lambda < d$,

$$\frac{\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x) \frac{1}{|x-y|^{\lambda}} f(y) \, \mathrm{d}x \, \mathrm{d}y}{\|f\|_p^2} \le \frac{\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x) \frac{1}{|x-y|^{\lambda}} h(y) \, \mathrm{d}x \, \mathrm{d}y}{\|h\|_p^2}$$

where

$$h(x) = \left(\frac{1}{1+|x|^2}\right)^{(2d-\lambda)/2}$$

and $p = \frac{2d}{2d - \lambda}$.

Moreover, there is equality if and only if for some $x_0 \in \mathbb{R}^d$ and $s \in \mathbb{R}_+$, *f* is a non-zero multiple of $h(x/s - x_0)$.

^aE. Lieb, Ann. Math 1983.

For $d \ge 3$, the $\lambda = d - 2$ case of the sharp HLS inequality can be proved by using the fast diffusion flow for m = d/(d+2).

Macroscopic Models: PKS system

deas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities ○○○○○○● Conclusions

A New Proof of the HLS inequality with Equality Cases

Two Inequalities, One Equation

Sharp Hardy-Littlewood-Sobolev inequality

^{*a*} It states that for all non-negative measurable functions f on \mathbb{R}^d , and all $0 < \lambda < d$,

$$\frac{\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x) \frac{1}{|x-y|^{\lambda}} f(y) \, \mathrm{d}x \, \mathrm{d}y}{\|f\|_p^2} \le \frac{\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x) \frac{1}{|x-y|^{\lambda}} h(y) \, \mathrm{d}x \, \mathrm{d}y}{\|h\|_p^2}$$

where

$$h(x) = \left(\frac{1}{1+|x|^2}\right)^{(2d-\lambda)/2}$$

and $p = \frac{2d}{2d - \lambda}$.

Moreover, there is equality if and only if for some $x_0 \in \mathbb{R}^d$ and $s \in \mathbb{R}_+$, *f* is a non-zero multiple of $h(x/s - x_0)$.

^aE. Lieb, Ann. Math 1983.

For $d \ge 3$, the $\lambda = d - 2$ case of the sharp HLS inequality can be proved by using the fast diffusion flow for m = d/(d+2).

Macroscopic Models: PKS system

deas of the Rigorous Proof

A byproduct: A new proof of HLS inequalities ○○○○○○● Conclusions

A New Proof of the HLS inequality with Equality Cases

Two Inequalities, One Equation

Sharp Hardy-Littlewood-Sobolev inequality

^{*a*} It states that for all non-negative measurable functions f on \mathbb{R}^d , and all $0 < \lambda < d$,

$$\frac{\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x) \frac{1}{|x-y|^{\lambda}} f(y) \, \mathrm{d}x \, \mathrm{d}y}{\|f\|_p^2} \le \frac{\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x) \frac{1}{|x-y|^{\lambda}} h(y) \, \mathrm{d}x \, \mathrm{d}y}{\|h\|_p^2}$$

where

$$h(x) = \left(\frac{1}{1+|x|^2}\right)^{(2d-\lambda)/2}$$

and $p = \frac{2d}{2d - \lambda}$.

Moreover, there is equality if and only if for some $x_0 \in \mathbb{R}^d$ and $s \in \mathbb{R}_+$, *f* is a non-zero multiple of $h(x/s - x_0)$.

^aE. Lieb, Ann. Math 1983.

For $d \ge 3$, the $\lambda = d - 2$ case of the sharp HLS inequality can be proved by using the fast diffusion flow for m = d/(d+2).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions
0000000000000000	00000	000000	

- A new Liapunov functional unveiled for the critical mass PKS: a bassin of attraction determined for each stationary state.
- Optimal Transportation Tools are crucially used to construct the solutions.
- A technique of Concentration Controlled inequalities developed to cope with the lack of compactness.
- The duality between the PKS in the critical mass case and the critical nonlinear fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS and HLS inequalities.
- References:
 - Blanchet-Carlen-C. (to appear in J. Funct. Analysis).
 - Carlen-C.-Loss (PNAS 2010).
 - Orarlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions
0000000000000000	00000	000000	

- A new Liapunov functional unveiled for the critical mass PKS: a bassin of attraction determined for each stationary state.
- Optimal Transportation Tools are crucially used to construct the solutions.
- A technique of Concentration Controlled inequalities developed to cope with the lack of compactness.
- The duality between the PKS in the critical mass case and the critical nonlinear fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS and HLS inequalities.
- References:
 - Blanchet-Carlen-C. (to appear in J. Funct. Analysis).
 - Carlen-C.-Loss (PNAS 2010).
 - Orarlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions

- A new Liapunov functional unveiled for the critical mass PKS: a bassin of attraction determined for each stationary state.
- Optimal Transportation Tools are crucially used to construct the solutions.
- A technique of Concentration Controlled inequalities developed to cope with the lack of compactness.
- The duality between the PKS in the critical mass case and the critical nonlinear fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS and HLS inequalities.
- References:
 - Blanchet-Carlen-C. (to appear in J. Funct. Analysis).
 - Carlen-C.-Loss (PNAS 2010).
 - Orarlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions

- A new Liapunov functional unveiled for the critical mass PKS: a bassin of attraction determined for each stationary state.
- Optimal Transportation Tools are crucially used to construct the solutions.
- A technique of Concentration Controlled inequalities developed to cope with the lack of compactness.
- The duality between the PKS in the critical mass case and the critical nonlinear fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS and HLS inequalities.

• References:

- Blanchet-Carlen-C. (to appear in J. Funct. Analysis).
- Carlen-C.-Loss (PNAS 2010).
- Carlen-Figalli (preprint).

Macroscopic Models: PKS system	Ideas of the Rigorous Proof	A byproduct: A new proof of HLS inequalities	Conclusions

- A new Liapunov functional unveiled for the critical mass PKS: a bassin of attraction determined for each stationary state.
- Optimal Transportation Tools are crucially used to construct the solutions.
- A technique of Concentration Controlled inequalities developed to cope with the lack of compactness.
- The duality between the PKS in the critical mass case and the critical nonlinear fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS and HLS inequalities.
- References:
 - Blanchet-Carlen-C. (to appear in J. Funct. Analysis).
 - 2 Carlen-C.-Loss (PNAS 2010).
 - Oarlen-Figalli (preprint).