Keller-Segel, Fast Diffusion
and Functional Inequalities

J. A. Carrillo

ICREA - Universitat Autdbnoma de Barcelona

Benasque, Spain, 2011



Outline

o Macroscopic Models: PKS system
@ Modelling Chemotaxis: First Properties
@ PKS as Gradient Flow
@ Critical Fast Diffusion as Gradient Flow
@ New Liapunov Functionals

e Ideas of the Rigorous Proof
@ Concentration-Control Inequalities

e A byproduct: A new proof of HLS inequalities
@ Log HLS via Fast Diffusion Flows
@ A New Proof of the HLS inequality with Equality Cases

e Conclusions



Macroscopic Models: PKS system

Model 0 : First Properties

Outline

o Macroscopic Models: PKS system
@ Modelling Chemotaxis: First Properties



Macroscopic Models: PKS system
(o] Jelele]
Modelling Chemotaxis: First Properties

Chemotaxis

Cell movement and aggregation by chemical interaction.
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PKS System

P (1) = D)) = V(e )Ve(v 1) x€R, 130,

o) =~ [ toglr=lplr.o) dy xeR, 150,
27 Jp2

px,t=0)=py >0 x€R?.

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).
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@ Conservation of mass:
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PKS System

P (1) = D)) = V(e )Ve(v 1) x€R, 130,

o) =~ [ toglr=lplr.o) dy xeR, 150,
27 Jp2

plx,t=0)=po >0 x € R%.

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).

Conservations:

@ Conservation of mass:

M:= [ po(x)dx= /Rz p(x, 1) dx

R2

@ Conservation of center of mass:

M ::/ x po(x) dx:/ xp(x,t) dx .
R2 R2
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Second Moment

Distributional Solution:

We shall say that p € C°([0, T); Ly.a (R?)) is a weak solution to the PKS system
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Second Moment

Distributional Solution:

We shall say that p € C°([0, T); Ly (R?)) is a weak solution to the PKS system if
for all test functions 1 € D(R?),

c% . Y(x) p(x, 1) dx

/ Ap(x) plx, 1) dx — — / ﬁ / (VU VQ/)()’)]~H (x,1) p(y, 1) dxdy

holds in the distributional sense in (0, 7) and p(0) = po.
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Second Moment

Distributional Solution:

We shall say that p € C°([0, T); Ly (R?)) is a weak solution to the PKS system if
for all test functions 1 € D(R?),

G | v e as =

[ v ptends— - [ [ 1900 = Tu0)] - 5T pte ) oty o) day

holds in the distributional sense in (0, 7) and p(0) = po.

Evolution of second moment:

1
t)d 74M——M
G | et as =
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Second Moment

Distributional Solution:

We shall say that p € C°([0, T); Ly (R?)) is a weak solution to the PKS system if
for all test functions 1 € D(R?),

& w0 o, =

/ Ap(x) plx, 1) dx — — / ﬁ / (VU VQ/)()’)]~H (x,1) p(y, 1) dxdy

holds in the distributional sense in (0, 7) and p(0) = po.

Evolution of second moment:

1
t)d 74M——M
G | et as =

Struggle between diffusion and aggregation. Balance between these two
mechanisms happens precisely at the critical mass M = 8 .
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Cases

PKS Cases:

@ Subcritical Case, M < 8 7: Global existence: Jagger-Luckhaus (1992),
Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006),
Blanchet-Calvez-C. (2008).
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Cases

PKS Cases:

@ Subcritical Case, M < 8 7: Global existence: Jagger-Luckhaus (1992),
Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006),
Blanchet-Calvez-C. (2008).

@ Supercritical Case, M > 8 7: Blow-up: Herrero-Velazquez (1996), Velazquez
(2002-2004), Dolbeault-Schmeiser (2009).

@ Critical Case, M = 8 7: Infinite-time aggregation, infinitely many stationary
states: Biler-Karch-Laurengot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008),
Blanchet-Carlen-C. (2011), Carlen-C.-Loss (2010), Carlen-Figalli (preprint).
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Log HLS Inequality by Carlen& Loss

) with mass M such that f log f and

Let f be a non-negative function in L' (R
flog(e + |x|*) belong to L' (R?). Then

| f(x) logf(x) dx + = / / FOFO) loglx —y] dxdy > — C(M)

JR2 x R2

with C(M) := M(1 + logm — log M).
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Log HLS Inequality by Carlen& Loss

) with mass M such that f log f and

Let f be a non-negative function in L' (R
flog(e + |x|*) belong to L' (R?). Then

| f(x) logf(x) dx + = / / FOFO) loglx —y] dxdy > — C(M)

JR2 x R2

with C(M) := M(1 + logm — log M).
Equality cases:

There is equality if and only if f(x) = px(x — xo) for some A > 0 and some xo € R?,
where

M

™

PO = N Py
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Log HLS Inequality by Carlen& Loss

) with mass M such that f log f and

Let f be a non-negative function in L' (R
flog(e + |x|*) belong to L' (R?). Then

| f(x) logf(x) dx + = / / FOFO) loglx —y] dxdy > — C(M)

JR2 x R2

with C(M) := M(1 + logm — log M).
Equality cases:

There is equality if and only if f(x) = px(x — xo) for some A > 0 and some xo € R?,
where

M A
pa(x) == =

A+ [x2)°

Natural Liapunov Functional:

Free energy:

Frks|p] = /KZ p(x)log p(x da+—/4 »\vz y) log |x — y| dx dy
J R X
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Formal Gradient Flow

A formal calculation shows that for all u € C2°(R?) with zero mean,
.1 O0F
lim — (Fexs[p + eu] — Foks[p]) = / 9vis(p) (o) u(x) dx
e—0 € R2 5/)

where

AU 1) —tog ) + 5 [ 1ol = 51p(0) dy = o p(3) = G < ).
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Formal Gradient Flow

A formal calculation shows that for all u € C2°(R?) with zero mean,
.1 O0F
lim — (Fexs[p + eu] — Foks[p]) = / 9vis(p) (o) u(x) dx
e—0 € R2 5/)

where

AU 1) —tog ) + 5 [ 1ol = 51p(0) dy = o p(3) = G < ).

The PKS equation can be rewritten as

%f(,_, x) = div (p(t,x)V {M(”X)D '

op
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Formal Gradient Flow

A formal calculation shows that for all u € C2°(R?) with zero mean,
.1 O0F
lim — (Fexs[p + eu] — Foks[p]) = / 9vis(p) (o) u(x) dx
e—0 € R2 5/)

where

AU 1) —tog ) + 5 [ 1ol = 51p(0) dy = o p(3) = G < ).

The PKS equation can be rewritten as

1) =an (otew [P )

with entropy dissipation:

%fpks[p(t)] =- /2 p(t,x)
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Critical Case: Stationary States & Main Result

The critical case M = 87 has a family of explicit stationary solutions of the form

_ 8
PA(X) = (/\Jr Mz)z

with A > 0.
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Critical Case: Stationary States & Main Result

The critical case M = 87 has a family of explicit stationary solutions of the form

_ 8
PA(X) = (/\Jr Mz)z

with A > 0.

@ All of these stationary solutions have critical mass and infinite second moment.
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Critical Case: Stationary States & Main Result

The critical case M = 87 has a family of explicit stationary solutions of the form

_ 8
PA(X) = (/\Jr Mz)z

with A > 0.

@ All of these stationary solutions have critical mass and infinite second moment.

@ They are the cases of equality functions for the Log HLS inequality.



Macroscopic Models: PKS system
@00
Critical Fast Diffu adient Flow

Outline

o Macroscopic Models: PKS system

@ Critical Fast Diffusion as Gradient Flow



Macroscopic Models: PKS system
o]
Critical Fast Diffusion as Gradient Flow

Critical Fast Diffusion

The nonlinear Fokker-Planck equation in R* with exponent 1/2:

%(m) = (Vi) + \/‘ﬁ div(rv(t, %) 1>0, xR,
v(0,x) =vo(x) >0 x€R?,

corresponding to the fast diffusion equation % = A (y/u) by a self-similar change
of variable.
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Critical Fast Diffusion

The nonlinear Fokker-Planck equation in R* with exponent 1/2:

%(m) =a(Vi(r) + \/]TA

v(0,x) =vo(x) >0 x€R?,

div(xv(z,x)) t>0, xR,

corresponding to the fast diffusion equation % = A (y/u) by a self-similar change
of variable.

For A > 0, define the functional 7, on the non-negative functions in L' (R*) by

HaV] = V() — v/pa(x) ‘”’ ) dx
L.

This functional is the relative entropy of the fast diffusion equation with respect to
the stationary solution px. The unique minimizer of H is px.
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Formal Gradient Flow

A formal calculation as before shows,
OH [V] 1 L

v [NRVA
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Formal Gradient Flow

A formal calculation as before shows,
OHA] 1 1
ov Vor W

and the critical fast diffusion equation can be rewritten as

% 1,0) = div (v(l,x) {v ol D ,
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Formal Gradient Flow

A formal calculation as before shows,
OHA] 1 1
ov Vor W

and the critical fast diffusion equation can be rewritten as

% 1,0) = div (v(l,x) {v ol D ,

with entropy dissipation:

2

67‘[)\ [V] dx

Sl = [ a0 |v
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Critical Fast Diffusion as Gradient Flow

Formal Gradient Flow

A formal calculation as before shows,
OHA] 1 1
ov Vor W

and the critical fast diffusion equation can be rewritten as

% 1,0) = div (v(t,x) {v ol D :

with entropy dissipation:

2

67‘[)\ [V] dx

LA = - A V(e ’v L

Let us point out that the functional #[v] can be written as
Holu = [ [2(09) — B(pr () — #'(p1) () — )]
R2

with ®(s) = —24/s a convex function.
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New Liapunov Functional

Claim: The critical fast diffusion functional is also a Liapunov functional for the
critical mass PKS.
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New Liapunov Functional

Claim: The critical fast diffusion functional is also a Liapunov functional for the
critical mass PKS. Formal Computation:

Swlpo) = [ i (pgv [Zl]) o
Y {5% } [6]—"?5[/)]} dy
R2 p
:—/Rsz{ LA \/ﬁ} V[logp — G*p] dx

—/ {2 LX/)+V\/E:| -V [logp — Gx*p|] dx
JRr2 AM
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New Liapunov Functional

Claim: The critical fast diffusion functional is also a Liapunov functional for the
critical mass PKS. Formal Computation:

St = [ i (v [Tl o
= L[] o [
1

:—/ {ﬁ—7}~V[logp—G*p]dx

_'Az{zmxp+Vf} V [logp — G  p] dx

Now, integrating by parts once more on the term involving the Green’s function,

. 2
Vﬁ.V[logp—G*p]dx—E/2|v3€2| /\/ﬁAG*p
R2

L[Vl [ oap
- [ P,
2 /T( P2 R2 g
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Also, fRZ x - Vp dx = —2M and, making the same symmetrization that led to the
evolution of the second moment,

1 xX—y
p(x)x-VG* p(x) dx =— p(t,x) (x—y)-— p(t,y) dx dy
IRe W= [ o) ) )
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Also, fRZ x - Vp dx = —2M and, making the same symmetrization that led to the
evolution of the second moment,

1 X—y M’
)x- VG dx =— t —y)— p(t,y) dxdy = — .
/Rzpw o) =g | () () e pley) dedy =
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New Liapunov Functional 2

Also, fRZ x - Vp dx = —2M and, making the same symmetrization that led to the
evolution of the second moment,

1 X—y M’
)x- VG dx =— t —y)— p(t,y) dxdy = — .
/Rzpw o) =g | () () e pley) dedy =

Collecting the above computations:

d 1 [ |VpP / 3/2 Mz M
< N =—= dx Aoty /=S (122 .
4 P()] 2,/Rz PIC DY 8
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New Liapunov Functional 2

Also, fRZ x - Vp dx = —2M and, making the same symmetrization that led to the
evolution of the second moment,

1 xX—y M?
)x- VG dr =— 1,x) (—y)- =2 p(t,y) dx dy = —
[ o9 p ar =g [ ) (o) ) dry = <

Collecting the above computations:
d 1 [ |Vp) / 32 M M
— N=-= dx rdx 4y — (11— — ] .
a0l = =3 /p g S LRy 8

Notice that the constant term vanishes in critical mass case M = 8. Thus, in the
critical mass case, formal calculation yields that for all 7 > 0,

Ha[p(T)] +/OT B/}F ‘Zﬁ’f (1,%) dxf/Rz P21, x) dx} dr < Ha[po] -
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The missing link to exploit the previous relation is a particular case of the
Gagliardo-Nirenberg-Sobolev inequalities'.

IDolbeault-DelPino, JMPA 2002
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The missing link to exploit the previous relation is a particular case of the
Gagliardo-Nirenberg-Sobolev inequalities'.

Gagliardo-Nirenberg-Sobolev inequality

For all functions f in R* with a square integrable distributional gradient Vf,
w [ uracs [wfa [ e
R2 R2 R2

and there is equality if and only if f is a multiple of a translate of ﬁi\/ LA 0.

IDolbeault-DelPino, JMPA 2002
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New Liapunov Functional 3

The missing link to exploit the previous relation is a particular case of the
Gagliardo-Nirenberg-Sobolev inequalities'.

Gagliardo-Nirenberg-Sobolev inequality

For all functions f in R* with a square integrable distributional gradient Vf,
6 ' 2 e
wfuracs [vta ] e
R2 R2 R2

and there is equality if and only if f is a multiple of a translate of ﬁi\/ LA>0.

Dissipation of H

Applying the GNS to f = pl/ *: For all densities p of mass M = 8,

Dlp] := %/E 7‘2[/)2(8)‘_ dv — /RZ p7(x) dx >0,

and moreover, there is equality if and only p is a translate of py for some A > 0.

IDolbeault-DelPino, JMPA 2002
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Halpo] < o0
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Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS
Given any density po in R? with total mass 87 such that there exists A > 0 with
Halpo] < o0

Then there exists p € AC°([0, T], P>(R?)), with p(r) € L'(R?) for all # > 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Halp()] < Halp(s)]  and  Fexs[p(1)] < Fexs[p(s)],

forall0 <s <t
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Bassin of attractions in the Critical Mass PKS
Given any density po in R? with total mass 87 such that there exists A > 0 with
Halpo] < o0

Then there exists p € AC°([0, T], P>(R?)), with p(r) € L'(R?) for all # > 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Halp()] < Halp(s)]  and  Fexs[p(1)] < Fexs[p(s)],

for all 0 < s < t. Moreover, we can show that the constructed weak solutions are
dissipative solutions, i.e., they satisfy forall T > 0

Halo(T)] + / Dip(t)] di < Halpl
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Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density po in R? with total mass 87 such that there exists A > 0 with
Halpo] < o0

Then there exists p € AC°([0, T], P>(R?)), with p(r) € L'(R?) for all # > 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Halp()] < Halp(s)]  and  Fexs[p(1)] < Fexs[p(s)],

for all 0 < s < t. Moreover, we can show that the constructed weak solutions are
dissipative solutions, i.e., they satisfy forall T > 0

Halo(T)] + / Dip(t)] di < Halpl

and lim [|p(2) — pallo1 g2y = 0.
11— 00
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Mathematical Difficulties

@ For a density of mass 87, an upper bound on Fpks|[p] does not provide any
upper bound on the entropy &|p].
Indeed, Fpks takes its minimum value for p = p,, for all ;o > 0, but
E[pu] — oo as u — 0 since p,, converges weakly-* as measures towards a
Dirac delta at the origin with mass 8.

@ The dissipation functional D[p] is well defined as long as ||p||3/2 < oo, but an
upper bound on D[p] does not give an upper bound on either ||V (p'/*)|> or
[lpll5/> since it is the difference of both terms.

Indeed, D[p] = 0 for p = p, forall sz > 0, but [V (5/*)|2 or ||, ||s/2 both
diverge to infinity as p tends to zero.

@ Stability properties of H over Fpks. In fact, not much was known about
stability for Fpks till very recently (E. Carlen, A. Figalli, preprint).

We do know that if some density p with mass 87 satisfies Fpks[p] = Frks[fr),

then, up to translation, p = p,, for some p > 0. Even knowing a quantitative
estimate for the error in Fpks, it mainly helps to quantify the decay rate.
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@ Rigorous Proof of Displacement Convexity of H by regularization.

@ Proof of Talagrand inequality to control W>(p, 0x) in terms of H . [p].



eas of the Rigorous Proof
[e] Jele}
Concentration-Control Inequalities

Thick Tails & Localization by H

@ Rigorous Proof of Displacement Convexity of H by regularization.

@ Proof of Talagrand inequality to control W»(p, x) in terms of H[p].

Thick Tails

A bound on H, [p] implies a "matching tail" estimate.-




eas of the Rigorous Proof
[e] Jele}
Concentration-Control Inequalities

Thick Tails & Localization by H

@ Rigorous Proof of Displacement Convexity of H by regularization.

@ Proof of Talagrand inequality to control W»(p, x) in terms of H[p].

Thick Tails

A bound on H[p] implies a "matching tail" estimate.- Let p be any density of mass
M such that H»[p] < oo. Then for 1, := %e‘l/s and any s > 1
Mn.

. L . .
/ p(x) dx > n.e s L] / oa(x) dx = s Vi Lol
x> s ]2 > As? 1+s




eas of the Rigorous Proof
[e] Jele}
Concentration-Control Inequalities

Thick Tails & Localization by H

@ Rigorous Proof of Displacement Convexity of H by regularization.

@ Proof of Talagrand inequality to control W»(p, x) in terms of H[p].

Thick Tails

A bound on H[p] implies a "matching tail" estimate.- Let p be any density of mass
M such that H»[p] < oo. Then for 1, := %e‘l/s and any s > 1
Mn.

. L . .
/ p(x) dx > n.e s L] / oa(x) dx = s Vi Lol
x> s ]2 > As? 1+s

Solid core

A bound on H [p] implies localization.-




eas of the Rigorous Proof
[e] Jele}
Concentration-Control Inequalities

Thick Tails & Localization by H

@ Rigorous Proof of Displacement Convexity of H by regularization.

@ Proof of Talagrand inequality to control W»(p, x) in terms of H[p].

Thick Tails

A bound on H[p] implies a "matching tail" estimate.- Let p be any density of mass
M such that H»[p] < oo. Then for 1, := %e‘l/s and any s > 1

. L . L
/ p(x) dx > n.e s L] / oa(x) dx = M _ = s Halel
x> s ]2 > As? 1+ s2

Solid core

A bound on H [p] implies localization.- Let p be a density of mass M such that for
some A > 0, Hx[p] < co. Then
M
/ pdx < —.
(x> 4v/A+4(0/Mm) /4 /HA [T} 2
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Concentration-Control for the Entropy I

In summary, we can show there exists R > 1 so that for some 0 < a < 8,

/ pdx < 8w —a and / pdx <8m—a.
x| >R—1 x| <R+1

The densities lying in sublevel sets of Fpks[p] and H  [p] are compact.

Entropy bound

Let p be any density with mass M = 87, with H[p] < oo for some A > 0. Then
there exist positive computable constants 7y and Cccr depending only on A and
‘Hx[p] such that

ol / plog, p dx < Feks[p] 4+ Cccr -
Jr2
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Concentration-Control for Entropy-Dissipation

The densities lying in sublevel sets of Fpks[p], Ha[p] and D[p] are compact.

Concentration control for D

Let p be any density with mass 87, Fexs [p] finite, and Hx [p] finite for some A > 0.
Then there exist positive computable constants 7, and Cccp depending only on A,
H[p] and Feks[p] such that

v | [Vp*P dx < 7 D[p] + Ceep -
R2

This allows to control the L*/-norm of p too.
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Observation of Matthes, McCann & Savaré, CPDE 2009
Consider two smooth functions ® and ¥ on R?, and consider the two ordinary
differential equations describing gradient flow:

i(t) = —VO[x(r)] and (1) = —VU[(r)] .

Then of course ®[x(¢)] and ¥[y(¢)] are monotone decreasing. Now differentiate each
function along the others flow:

Sal(o)] = (Ve VI )
d

3 Y] = ~(VE L), Ve[x(0)]) -

Thus, ® is decreasing along the gradient flow of W for any initial data if and only if
U is decreasing along the gradient flow of ® for any initial data.
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“Duality” between CFD and PKS

@ An analog of this holds for well-behaved gradient flows in the 2-Wasserstein
sense as used in (Matthes, McCann & Savare, CPDE 2009).

@ Our case: Apply it to the Log-HLS functional in d = 2.-

Since H  is decreasing along the 2-Wasserstein gradient flow for Fpks, i.e., the
Patlak-Keller-Segel equation, one can expect that Fpks of the Log-HLS
functional is decreasing along the 2-Wasserstein gradient flow for Hy, i.e., the
critical fast diffusion.
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Log HLS via Fast Diffusion Flows

The connection from FD perspective
The log HLS functional F is defined by

Fif) = [ f)togf() det / [, gl =) dedy.

R2
The critical fast diffusion is
0
i) = A (x,0),
with associated Fokker-Planck equation

8 1/2
51 =Av P(x,0) + V- ov(x, 1)] .

which has as stationary solution

M 1 :
hix) = — | ——
) w<1+\xlz>
with mass M.

Scaling: f,) := a’f(ax). Then, F[f(,)] = F[f] forall a. v(x, 1) := e*u(e'x, e') and
thus F[v(-,1)] = Flu(-,€")].
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Log HLS via fast diffusion flow

Let f be a non-negative measurable functions on R? such that flogf and
flog(e + |x|*) belong to L' (R?). Suppose also that

fx)dx= [ h(x)dx=M
R2 R2
and
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Log HLS via Fast Diffusion Flows

The connection from FD perspective

Log HLS via fast diffusion flow

Let f be a non-negative measurable functions on R? such that flogf and
flog(e + |x|*) belong to L' (R?). Suppose also that

fe)de= [ A dr=M
R2 R2

and

sup f(x)|x\4 < 0.
[x| >R

Let u(x, t) be the solution of critical fast diffusion with u(x, 1) = f(x). Then

FIf] = F[n] + /]m Dlu'/*(-, )] dr > F[n]

where ) i i
Dl = [ Vel e [ gde—r [ .

which is non-negative by the sharp GNS inequality.
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Two Inequalities, One Equation

Sharp Hardy-Littlewood-Sobolev inequality

“ It states that for all non-negative measurable functions f on R%, and all 0 < A < d,
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Sharp Hardy-Littlewood-Sobolev inequality

“ It states that for all non-negative measurable functions f on R%, and all 0 < A < d,
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Ju OO [ [ MR gt e

WHP Ik
1 (2d—\)/2
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Moreover, there is equality if and only if for some xo € RY and s € R, f is a
non-zero multiple of A(x/s — xo).

where
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A New Proof of the HLS inequality with Equality Cases

Two Inequalities, One Equation

Sharp Hardy-Littlewood-Sobolev inequality
“ It states that for all non-negative measurable functions f on R%, and all 0 < A < d,

) dx dy h(x dx dy
Ju OO [ [ MR gt e

Hf”/? [151[7

1 (2d—X)/2
hlx) = (1 T |x|2> '

Moreover, there is equality if and only if for some xo € RY and s € R, f is a
non-zero multiple of A(x/s — xo).

where

_ 2
and p = =~

9E. Lieb, Ann. Math 1983.

For d > 3, the A\ = d — 2 case of the sharp HLS inequality can be proved by using
the fast diffusion flow form = d/(d + 2).
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@ Optimal Transportation Tools are crucially used to construct the solutions.
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@ The duality between the PKS in the critical mass case and the critical nonlinear
fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS
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