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Modelling Chemotaxis: First Properties

Chemotaxis

Cell movement and aggregation by chemical interaction.
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PKS System

∂ρ

∂t
(x, t) = ∆ρ(x, t)−∇·(ρ(x, t)∇c(x, t)) x ∈ R2 , t > 0 ,

c(x, t) = − 1
2π

∫
R2

log |x− y| ρ(y, t) dy x ∈ R2 , t > 0 ,

ρ(x, t = 0) = ρ0 ≥ 0 x ∈ R2 .

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).

Conservations:

Conservation of mass:

M :=

∫
R2
ρ0(x) dx =

∫
R2
ρ(x, t) dx

Conservation of center of mass:

M1 :=

∫
R2

x ρ0(x) dx =

∫
R2

x ρ(x, t) dx .
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Second Moment

Distributional Solution:

We shall say that ρ ∈ C0([0, T); L1
weak(R2)

)
is a weak solution to the PKS system if

for all test functions ψ ∈ D(R2),

d
dt

∫
R2
ψ(x) ρ(x, t) dx =

∫
R2

∆ψ(x) ρ(x, t) dx− 1
4π

∫
R2

∫
R2

[∇ψ(x)−∇ψ(y)] · x− y
|x− y|2 ρ(x, t) ρ(y, t) dx dy

holds in the distributional sense in (0, T) and ρ(0) = ρ0.

Evolution of second moment:

d
dt

∫
R2
|x|2 ρ(x, t) dx = 4M − 1

2π
M2,

Struggle between diffusion and aggregation. Balance between these two
mechanisms happens precisely at the critical mass M = 8π.
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Cases

PKS Cases:

Subcritical Case, M < 8π: Global existence: Jägger-Luckhaus (1992),
Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006),
Blanchet-Calvez-C. (2008).

Supercritical Case, M > 8π: Blow-up: Herrero-Velazquez (1996), Velazquez
(2002-2004), Dolbeault-Schmeiser (2009).

Critical Case, M = 8π: Infinite-time aggregation, infinitely many stationary
states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008),
Blanchet-Carlen-C. (2011), Carlen-C.-Loss (2010), Carlen-Figalli (preprint).
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PKS as Gradient Flow

Log HLS Inequality by Carlen& Loss
Let f be a non-negative function in L1(R2) with mass M such that f log f and
f log(e + |x|2) belong to L1(R2). Then∫

R2
f (x) log f (x) dx +

2
M

∫∫
R2×R2

f (x)f (y) log |x− y| dx dy ≥ − C(M)

with C(M) := M(1 + logπ − log M).

Equality cases:

There is equality if and only if f (x) = ρ̄λ(x− x0) for some λ > 0 and some x0 ∈ R2,
where

ρ̄λ(x) :=
M
π

λ

(λ+ |x|2)2

Natural Liapunov Functional:

Free energy:

FPKS[ρ] :=

∫
R2
ρ(x) log ρ(x) dx +

1
4π

∫∫
R2×R2

ρ(x) ρ(y) log |x− y| dx dy



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

PKS as Gradient Flow

Log HLS Inequality by Carlen& Loss
Let f be a non-negative function in L1(R2) with mass M such that f log f and
f log(e + |x|2) belong to L1(R2). Then∫

R2
f (x) log f (x) dx +

2
M

∫∫
R2×R2

f (x)f (y) log |x− y| dx dy ≥ − C(M)

with C(M) := M(1 + logπ − log M).

Equality cases:

There is equality if and only if f (x) = ρ̄λ(x− x0) for some λ > 0 and some x0 ∈ R2,
where

ρ̄λ(x) :=
M
π

λ

(λ+ |x|2)2

Natural Liapunov Functional:

Free energy:

FPKS[ρ] :=

∫
R2
ρ(x) log ρ(x) dx +

1
4π

∫∫
R2×R2

ρ(x) ρ(y) log |x− y| dx dy



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

PKS as Gradient Flow

Log HLS Inequality by Carlen& Loss
Let f be a non-negative function in L1(R2) with mass M such that f log f and
f log(e + |x|2) belong to L1(R2). Then∫

R2
f (x) log f (x) dx +

2
M

∫∫
R2×R2

f (x)f (y) log |x− y| dx dy ≥ − C(M)

with C(M) := M(1 + logπ − log M).

Equality cases:

There is equality if and only if f (x) = ρ̄λ(x− x0) for some λ > 0 and some x0 ∈ R2,
where

ρ̄λ(x) :=
M
π

λ

(λ+ |x|2)2

Natural Liapunov Functional:

Free energy:

FPKS[ρ] :=

∫
R2
ρ(x) log ρ(x) dx +

1
4π

∫∫
R2×R2

ρ(x) ρ(y) log |x− y| dx dy



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

PKS as Gradient Flow

Formal Gradient Flow
A formal calculation shows that for all u ∈ C∞c (R2) with zero mean,

lim
ε→0

1
ε

(FPKS[ρ+ εu]−FPKS[ρ]) =

∫
R2

δFPKS(ρ)

δρ
(x) u(x) dx

where

δFPKS(ρ)

δρ
(x) := log ρ(x) +

1
2π

∫
R2

log |x− y|ρ(y) dy = log ρ(x)− G ∗ ρ(x) .

The PKS equation can be rewritten as

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δFPKS(ρ(t))

δρ
(t, x)

])
.

with entropy dissipation:

d
dt
FPKS[ρ(t)] = −

∫
R2
ρ(t, x)

∣∣∣∣∇δFPKS(ρ(t))
δρ

(t, x)

∣∣∣∣2 dx .
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PKS as Gradient Flow

Critical Case: Stationary States & Main Result

The critical case M = 8π has a family of explicit stationary solutions of the form

ρ̄λ(x) =
8λ

(λ+ |x|2)2

with λ > 0.

All of these stationary solutions have critical mass and infinite second moment.

They are the cases of equality functions for the Log HLS inequality.
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Critical Fast Diffusion as Gradient Flow

Critical Fast Diffusion

The nonlinear Fokker-Planck equation in R2 with exponent 1/2:
∂v
∂t

(t, x) = ∆
(√

v(t, x)
)

+
1√
2λ

div(x v(t, x)) t > 0 , x ∈ R2 ,

v(0, x) = v0(x) ≥ 0 x ∈ R2 ,

corresponding to the fast diffusion equation ∂u
∂t = ∆ (

√
u) by a self-similar change

of variable.

For λ > 0, define the functionalHλ on the non-negative functions in L1(R2) by

Hλ[v] :=

∫
R2

(√
v(x)−

√
ρ̄λ(x)

)2
ρ̄
−1/2
λ (x) dx

This functional is the relative entropy of the fast diffusion equation with respect to
the stationary solution ρ̄λ. The unique minimizer ofHλ is ρ̄λ.
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Critical Fast Diffusion as Gradient Flow

Formal Gradient Flow
A formal calculation as before shows,

δHλ[v]

δv
=

1√
ρ̄λ
− 1√

v
,

and the critical fast diffusion equation can be rewritten as

∂v
∂t

(t, x) = div
(

v(t, x)

[
∇δHλ[v]

δv

])
,

with entropy dissipation:

d
dt
Hλ[v(t)] = −

∫
R2

v(t, x)

∣∣∣∣∇δHλ[v]

δv

∣∣∣∣2 dx.

Let us point out that the functionalHλ[v] can be written as

Hλ[u] :=

∫
R2

[
Φ(v(x))− Φ(ρ̄λ(x))− Φ′(ρ̄λ)(v(x)− ρ̄λ(x))

]
dx

with Φ(s) = −2
√

s a convex function.
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and the critical fast diffusion equation can be rewritten as

∂v
∂t

(t, x) = div
(

v(t, x)

[
∇δHλ[v]

δv

])
,

with entropy dissipation:

d
dt
Hλ[v(t)] = −

∫
R2

v(t, x)

∣∣∣∣∇δHλ[v]

δv

∣∣∣∣2 dx.

Let us point out that the functionalHλ[v] can be written as

Hλ[u] :=

∫
R2

[
Φ(v(x))− Φ(ρ̄λ(x))− Φ′(ρ̄λ)(v(x)− ρ̄λ(x))

]
dx

with Φ(s) = −2
√

s a convex function.
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New Liapunov Functionals

New Liapunov Functional
Claim: The critical fast diffusion functional is also a Liapunov functional for the
critical mass PKS. Formal Computation:

d
dt
Hλ[ρ(t)] =

∫
R2

δHλ[ρ]

δρ
div
(
ρ(t, x)∇

[
δFPKS[ρ]

δρ

])
dx

= −
∫
R2
ρ∇
[
δHλ[ρ]

δρ

]
· ∇
[
δFPKS[ρ]

δρ

]
dx

= −
∫
R2
ρ∇
[

1√
ρ̄λ
− 1
√
ρ

]
· ∇ [log ρ− G ∗ ρ] dx

=−
∫
R2

[
2
√

π

λM
x ρ+∇√ρ

]
· ∇ [log ρ− G ∗ ρ] dx

Now, integrating by parts once more on the term involving the Green’s function,∫
R2
∇√ρ · ∇ [log ρ− G ∗ ρ] dx =

1
2

∫
R2

|∇ρ|2

ρ3/2 +

∫
R2

√
ρ∆G ∗ ρ

=
1
2

∫
R2

|∇ρ|2

ρ3/2 −
∫
R2
ρ3/2 dx .
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New Liapunov Functionals

New Liapunov Functional 2
Also,

∫
R2 x · ∇ρ dx = −2M and, making the same symmetrization that led to the

evolution of the second moment,∫
R2
ρ(x) x · ∇G ∗ ρ(x) dx =

1
4π

∫
R2×R2

ρ(t, x) (x−y)· x− y
|x− y|2 ρ(t, y) dx dy = −M2

4π
.

Collecting the above computations:

d
dt
Hλ[ρ(t)] = −1

2

∫
R2

|∇ρ|2

ρ3/2 dx +

∫
R2
ρ3/2 dx + 4

√
M π

λ

(
1− M

8π

)
.

Notice that the constant term vanishes in critical mass case M = 8π. Thus, in the
critical mass case, formal calculation yields that for all T > 0,

Hλ[ρ(T)] +

∫ T

0

[
1
2

∫
R2

|∇ρ|2

ρ3/2 (t, x) dx−
∫
R2
ρ3/2(t, x) dx

]
dt ≤ Hλ[ρ0] .
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New Liapunov Functionals

New Liapunov Functional 3
The missing link to exploit the previous relation is a particular case of the
Gagliardo-Nirenberg-Sobolev inequalities1.

Gagliardo-Nirenberg-Sobolev inequality

For all functions f in R2 with a square integrable distributional gradient∇f ,

π

∫
R2
|f |6 dx ≤

∫
R2
|∇f |2 dx

∫
R2
|f |4 dx

and there is equality if and only if f is a multiple of a translate of ρ̄1/4
λ , λ > 0.

Dissipation ofHλ

Applying the GNS to f = ρ1/4: For all densities ρ of mass M = 8π,

D[ρ] :=
1
2

∫
R2

|∇ρ(x)|2

ρ3/2(x)
dx−

∫
R2
ρ3/2(x) dx ≥ 0 ,

and moreover, there is equality if and only ρ is a translate of ρ̄λ for some λ > 0.

1Dolbeault-DelPino, JMPA 2002
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New Liapunov Functionals

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ0 in R2 with total mass 8π such that there exists λ > 0 with

Hλ[ρ0] <∞

Then there exists ρ ∈ AC0([0, T],P2(R2)), with ρ(t) ∈ L1(R2) for all t ≥ 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Hλ[ρ(t)] ≤ Hλ[ρ(s)] and FPKS[ρ(t)] ≤ FPKS[ρ(s)] ,

for all 0 ≤ s ≤ t. Moreover, we can show that the constructed weak solutions are
dissipative solutions, i.e., they satisfy for all T > 0

Hλ[ρ(T)] +

∫ T

0
D[ρ(t)] dt ≤ Hλ[ρ0]

and lim
t→∞
‖ρ(t)− ρ̄λ‖L1(R2) = 0.



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

New Liapunov Functionals

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ0 in R2 with total mass 8π such that there exists λ > 0 with

Hλ[ρ0] <∞

Then there exists ρ ∈ AC0([0, T],P2(R2)), with ρ(t) ∈ L1(R2) for all t ≥ 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Hλ[ρ(t)] ≤ Hλ[ρ(s)] and FPKS[ρ(t)] ≤ FPKS[ρ(s)] ,

for all 0 ≤ s ≤ t. Moreover, we can show that the constructed weak solutions are
dissipative solutions, i.e., they satisfy for all T > 0

Hλ[ρ(T)] +

∫ T

0
D[ρ(t)] dt ≤ Hλ[ρ0]

and lim
t→∞
‖ρ(t)− ρ̄λ‖L1(R2) = 0.



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

New Liapunov Functionals

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ0 in R2 with total mass 8π such that there exists λ > 0 with

Hλ[ρ0] <∞

Then there exists ρ ∈ AC0([0, T],P2(R2)), with ρ(t) ∈ L1(R2) for all t ≥ 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Hλ[ρ(t)] ≤ Hλ[ρ(s)] and FPKS[ρ(t)] ≤ FPKS[ρ(s)] ,

for all 0 ≤ s ≤ t. Moreover, we can show that the constructed weak solutions are
dissipative solutions, i.e., they satisfy for all T > 0

Hλ[ρ(T)] +

∫ T

0
D[ρ(t)] dt ≤ Hλ[ρ0]

and lim
t→∞
‖ρ(t)− ρ̄λ‖L1(R2) = 0.



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

New Liapunov Functionals

Main Result Blanchet-Carlen-C.

Bassin of attractions in the Critical Mass PKS

Given any density ρ0 in R2 with total mass 8π such that there exists λ > 0 with

Hλ[ρ0] <∞

Then there exists ρ ∈ AC0([0, T],P2(R2)), with ρ(t) ∈ L1(R2) for all t ≥ 0 being a
global-in-time weak solution of the critical mass PKS. Moreover, the solutions
constructed satisfy that

Hλ[ρ(t)] ≤ Hλ[ρ(s)] and FPKS[ρ(t)] ≤ FPKS[ρ(s)] ,

for all 0 ≤ s ≤ t. Moreover, we can show that the constructed weak solutions are
dissipative solutions, i.e., they satisfy for all T > 0

Hλ[ρ(T)] +

∫ T

0
D[ρ(t)] dt ≤ Hλ[ρ0]

and lim
t→∞
‖ρ(t)− ρ̄λ‖L1(R2) = 0.



icreauab

Macroscopic Models: PKS system Ideas of the Rigorous Proof A byproduct: A new proof of HLS inequalities Conclusions

Mathematical Difficulties

For a density of mass 8π, an upper bound on FPKS[ρ] does not provide any
upper bound on the entropy E [ρ].
Indeed, FPKS takes its minimum value for ρ = ρ̄µ for all µ > 0, but
E [ρ̄µ]→∞ as µ→ 0 since ρ̄µ converges weakly-* as measures towards a
Dirac delta at the origin with mass 8π.

The dissipation functional D[ρ] is well defined as long as ‖ρ‖3/2 <∞, but an
upper bound on D[ρ] does not give an upper bound on either ‖∇(ρ1/4)‖2 or
‖ρ‖3/2 since it is the difference of both terms.

Indeed, D[ρ] = 0 for ρ = ρ̄µ for all µ > 0, but ‖∇(ρ̄
1/4
µ )‖2 or ‖ρ̄µ‖3/2 both

diverge to infinity as µ tends to zero.

Stability properties ofHλ over FPKS. In fact, not much was known about
stability for FPKS till very recently (E. Carlen, A. Figalli, preprint).
We do know that if some density ρ with mass 8π satisfies FPKS[ρ] = FPKS[ρ̄λ],
then, up to translation, ρ = ρ̄µ for some µ > 0. Even knowing a quantitative
estimate for the error in FPKS, it mainly helps to quantify the decay rate.
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E [ρ̄µ]→∞ as µ→ 0 since ρ̄µ converges weakly-* as measures towards a
Dirac delta at the origin with mass 8π.

The dissipation functional D[ρ] is well defined as long as ‖ρ‖3/2 <∞, but an
upper bound on D[ρ] does not give an upper bound on either ‖∇(ρ1/4)‖2 or
‖ρ‖3/2 since it is the difference of both terms.

Indeed, D[ρ] = 0 for ρ = ρ̄µ for all µ > 0, but ‖∇(ρ̄
1/4
µ )‖2 or ‖ρ̄µ‖3/2 both

diverge to infinity as µ tends to zero.

Stability properties ofHλ over FPKS. In fact, not much was known about
stability for FPKS till very recently (E. Carlen, A. Figalli, preprint).
We do know that if some density ρ with mass 8π satisfies FPKS[ρ] = FPKS[ρ̄λ],
then, up to translation, ρ = ρ̄µ for some µ > 0. Even knowing a quantitative
estimate for the error in FPKS, it mainly helps to quantify the decay rate.
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Concentration-Control Inequalities

Thick Tails & Localization by Hλ

Rigorous Proof of Displacement Convexity ofHλ by regularization.

Proof of Talagrand inequality to control W2(ρ, %λ) in terms ofHλ[ρ].

Thick Tails

A bound onHλ[ρ] implies a "matching tail" estimate.- Let ρ be any density of mass
M such thatHλ[ρ] <∞. Then for η∗ := 1

5 e−1/5 and any s > 1∫
|x|2≥λs2

ρ(x) dx ≥ η∗ e−
4√
πMλ
Hλ[ρ]

∫
|x|2≥λs2

%λ(x) dx =
Mη∗

1 + s2 e−
4√
πMλ
Hλ[ρ].

Solid core

A bound onHλ[ρ] implies localization.- Let ρ be a density of mass M such that for
some λ > 0,Hλ[ρ] <∞. Then∫

{|x|≥4
√
λ+4(λ/Mπ)1/4

√
Hλ[ρ]}

ρ dx ≤ M
2
.
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Concentration-Control Inequalities

Concentration-Control for the Entropy I

In summary, we can show there exists R > 1 so that for some 0 < a < 8π,∫
|x|>R−1

ρ dx ≤ 8π − a and
∫
|x|<R+1

ρ dx ≤ 8π − a .

The densities lying in sublevel sets of FPKS[ρ] andHλ[ρ] are compact.

Entropy bound

Let ρ be any density with mass M = 8π, withHλ[ρ] <∞ for some λ > 0. Then
there exist positive computable constants γ1 and CCCF depending only on λ and
Hλ[ρ] such that

γ1

∫
R2
ρ log+ ρ dx ≤ FPKS[ρ] + CCCF .
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Concentration-Control Inequalities

Concentration-Control for Entropy-Dissipation

The densities lying in sublevel sets of FPKS[ρ],Hλ[ρ] and D[ρ] are compact.

Concentration control for D
Let ρ be any density with mass 8π, FPKS[ρ] finite, andHλ[ρ] finite for some λ > 0.
Then there exist positive computable constants γ2 and CCCD depending only on λ,
Hλ[ρ] and FPKS[ρ] such that

γ2

∫
R2
|∇ρ1/4|2 dx ≤ πD[ρ] + CCCD .

This allows to control the L3/2-norm of ρ too.
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“Duality” between CFD and PKS

Observation of Matthes, McCann & Savaré, CPDE 2009

Consider two smooth functions Φ and Ψ on Rd, and consider the two ordinary
differential equations describing gradient flow:

ẋ(t) = −∇Φ[x(t)] and ẏ(t) = −∇Ψ[y(t)] .

Then of course Φ[x(t)] and Ψ[y(t)] are monotone decreasing. Now differentiate each
function along the others flow:

d
dt

Φ[y(t)] = −〈∇Φ[y(t)],∇Ψ[y(t)]〉

d
dt

Ψ[x(t)] = −〈∇Ψ[x(t)],∇Φ[x(t)]〉 .

Thus, Φ is decreasing along the gradient flow of Ψ for any initial data if and only if
Ψ is decreasing along the gradient flow of Φ for any initial data.
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“Duality” between CFD and PKS

An analog of this holds for well-behaved gradient flows in the 2-Wasserstein
sense as used in (Matthes, McCann & Savare, CPDE 2009).

Our case: Apply it to the Log-HLS functional in d = 2.-

SinceHλ is decreasing along the 2-Wasserstein gradient flow for FPKS, i.e., the
Patlak-Keller-Segel equation, one can expect that FPKS of the Log-HLS
functional is decreasing along the 2-Wasserstein gradient flow forHλ, i.e., the
critical fast diffusion.
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Log HLS via Fast Diffusion Flows

The connection from FD perspective
The log HLS functional F is defined by

F [f ] :=

∫
R2

f (x) log f (x) dx +
2∫

R2
f (x) dx

∫∫
R2×R2

f (x) log |x− y|f (y) dx dy .

The critical fast diffusion is

∂

∂t
u(x, t) = ∆u1/2(x, t) ,

with associated Fokker-Planck equation

∂

∂t
v(x, t) = ∆v1/2(x, t) +∇ · [xv(x, t)] .

which has as stationary solution

h(x) =
M
π

(
1

1 + |x|2

)2

with mass M.
Scaling: f(a) := a2f (ax). Then, F [f(a)] = F [f ] for all a. v(x, t) := e2tu(etx, et) and
thus F [v(·, t)] = F [u(·, et)].
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Log HLS via Fast Diffusion Flows

The connection from FD perspective
Log HLS via fast diffusion flow

Let f be a non-negative measurable functions on R2 such that f logf and
f log(e + |x|2) belong to L1(R2). Suppose also that∫

R2
f (x) dx =

∫
R2

h(x) dx = M

and
sup
|x|>R

f (x)|x|4 <∞ .

Let u(x, t) be the solution of critical fast diffusion with u(x, 1) = f (x). Then

F [f ] = F [h] +

∫ ∞
1
D[u1/4(·, et)] dt ≥ F [h] ,

where
D[g] =

∫
R2
|∇g(x)|2 dx

∫
R2

g4(x) dx− π
∫
R2

g6(x) dx ,

which is non-negative by the sharp GNS inequality.
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A New Proof of the HLS inequality with Equality Cases

Two Inequalities, One Equation
Sharp Hardy-Littlewood-Sobolev inequality
a It states that for all non-negative measurable functions f on Rd, and all 0 < λ < d,∫

Rd

∫
Rd

f (x)
1

|x− y|λ f (y) dx dy

‖f‖2
p

≤

∫
Rd

∫
Rd

h(x)
1

|x− y|λ h(y) dx dy

‖h‖2
p

where

h(x) =

(
1

1 + |x|2

)(2d−λ)/2

.

and p = 2d
2d−λ .

Moreover, there is equality if and only if for some x0 ∈ Rd and s ∈ R+, f is a
non-zero multiple of h(x/s− x0).

aE. Lieb, Ann. Math 1983.

For d ≥ 3, the λ = d − 2 case of the sharp HLS inequality can be proved by using
the fast diffusion flow for m = d/(d + 2).
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Two Inequalities, One Equation
Sharp Hardy-Littlewood-Sobolev inequality
a It states that for all non-negative measurable functions f on Rd, and all 0 < λ < d,∫

Rd

∫
Rd

f (x)
1

|x− y|λ f (y) dx dy

‖f‖2
p

≤

∫
Rd

∫
Rd

h(x)
1

|x− y|λ h(y) dx dy

‖h‖2
p

where

h(x) =

(
1

1 + |x|2

)(2d−λ)/2

.

and p = 2d
2d−λ .

Moreover, there is equality if and only if for some x0 ∈ Rd and s ∈ R+, f is a
non-zero multiple of h(x/s− x0).

aE. Lieb, Ann. Math 1983.

For d ≥ 3, the λ = d − 2 case of the sharp HLS inequality can be proved by using
the fast diffusion flow for m = d/(d + 2).
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Conclusions

A new Liapunov functional unveiled for the critical mass PKS: a bassin of
attraction determined for each stationary state.

Optimal Transportation Tools are crucially used to construct the solutions.

A technique of Concentration Controlled inequalities developed to cope with
the lack of compactness.

The duality between the PKS in the critical mass case and the critical nonlinear
fast diffusion equation in 2D leads to the discovery of new proofs of log-HLS
and HLS inequalities.
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