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Free Material Optimization (FMO) setup

(w, 2) —/E (w(z)) - e(2(z))dz

:{EEL‘W( SM)| E = 0ae. in ﬂ}

E={Ec& | Tr(E) <pae.inQ, v(E) < v}

éllib c(E) s.t
1
ug € V: ug = arg inf {—ag{u,u.j — / f-u ds}
ucV 2 T

c(E) = [.f-upds
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Examples for additional state constraints

e QQuadratic or tracking type displacement constraints of the form

/Q (u() — up(2))? dx < C,

with here uy € V.
e Integral stress constraints of the form

fw o(z)T Mo(z) dx < O,

where w C ) and M is either the unit or the von Mises matrix.
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Regularizations and additional constraints

We consider the regularization of the set &£:
Ef={F €& |FE =cly ae.in}

gB . {E c£2(0,8V) |aly < E <8Iy ae.in rz}

£=:41.911 . — {E c £= |§I(HE} < GH:I EHI(’Z"E) < Cg}

inf J(E,u)s.t

EcE&s
u=S(E),
gr(u) < Cy, gii(o) £ Cy, 0 = Ee(S(E))
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H-compactness (see also Haslinger et.al.1996, Allaire 2002)

Theorem: (H-compactness, Murat, Tartar '79 )
For any sequence (F,,) in £%* there exists a subsequence, still denoted by (E,,),

and a (‘homogenized’) E* € £*F such that (E, ) H-converges to E*.

Lemma: (Haslinger, Stingl, Kocvara, G.L. ’10) The sets

tr(E) dx < V}

£ = {EE L2, S8N) | el < pI < E; tr(F) gp,/
- Q

and £91911 are H-compact.
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Existence result based on H-convergence

Consider cost functionals of the type
J:E xV =R

with the following property:

= lim inf J(E,,v,) > J(E,v).

n—oo

(E,) 2 En 55}

(vp,) = vinV

Theorem: ( HLKS ’10) The regularized FMO problem

min C(E):=J(E,ug).

has at least one solution.
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Bendsoe, Sigmund,

Material design Diaz, ...

Goal: find a microstructure, which yields desired macroscopic
material properties

ldea;

Macroscopic Representative
material base structure

S m:aterial design EH(S)

For given E find S s.t. |[E — Exg(S)|| — min

In particular, £ may be given by the FMO-optimized matrix!
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3-D auxetic elastic material

(a)v=-0.5 by =-06

(dv=-04
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Optimization: auxetic materials

Isotropic auxetic structures in 3D

... still difficult to realize in practice ...
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Optimization: other criteria

Optimization problem:

Goals:
max Eii1; . . .
p » light weight design
s.t. ' is isotropic » given porosity
N .. .
%Zpe <V = maX|m|ze stiffness
Y| = » isotropy

2 typical results: porosity 90%; a base structure (I); several
elements (r) _
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Modeling

Let a € R be a fixed positive value and ¥, be a nonempty compact subset of
L'(2) such that ¢, € U, if and only if

0 < (u(x) <aaee in €, (e Ll(Q),
C« : Q — [0, is smooth function along the boundary 0f2,
(« =a on Of.

By 95 (Q) we denote the set of all matrices A(z) = [a;;(x)] € S such that

A(z) < B(x)] a. e.in €,
3¢ € U, st (I <A(x) a. e in Q.

Here 3 € L'(Q) is a given function such that 3(z) > 0 a.e. in €, I is the identity

matrix in RYV*V,
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Degeneration of eigenvalues

if Ae L'(SY), then [|A(2)|L1qsv) < |18l @) < +oo,
G(@)I€lljn < (A(2)€,E)pn a. . in Q, VEERY.

Remark Since every measurable matrix-valued function A : Q@ — S¥ can be
associated with its eigenvalues {)\‘14, ceey )\ﬁ}, the second inequality means that
eigenvalues of matrices A € 9P (Q) may vanish on subdomains of  with zero
Lebesgue measure.
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Weighted spaces

Introduce:
Wa(Tp) =W (Q;Tp; Adr) and Ha(Q;Tp) = H(Q; T p; Adx),

where W4 (Q;T'p) is the set of functions y € WH(Q;T'p) whith finite norm

5 1/2
Wl = ([ 02+ (V0 A@) Ve ) o)
and H4(2;'p) is the closure of C§°(£2;'p) in the || - || a-norm.

It is clear that Ha(Q;Tp) C Wa(Q;Tp). If the eigenvalues { A, ..., A4} of A:
Q) — SY are bounded above and away from zero, then W (Q;T'p) = Ha(€;Tp).
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Seqguences In varying spaces

We assume that the measures ji and { /i } oy are defined by djiy, = Ar(z) dz, dji =

A(z) dz, and fi, = jiin M(Q;SY). Further, we will use L?(2, A dz)" to denote
the set of measurable vector-valued functions £ € R¥Y on €) such that

1/2
IFlz20.aa = ([ (£ A@DRr dz) <400,

Any vector-valued function of L?(€Q, Adx)” is Lebesgue integrable on €.
We say that a sequence {vj € L*((, Ay da:)N}keN is bounded if

lim sup/ (Vie, A () Vi )pn dz < 400.
Q

k—o00

Fﬂ iEHEIHEEHII‘IE Friedrich-Alexander-Universitéat
OF ADVANCED Erlangen-Niirnberg <~
MATERIALS (1




Convergence In variable spaces

Definition 1. A bounded sequence {V;c e L?(Q, Ay, dx)N } e is weakly con-
vergent in the variable space L*(Q, Ay dx)" to a function v € L*(Q, Adxz) if

lim [ (@, Ap(2)Vi)py dz —/ (B, A(z)V)pn dz V3 € C5(Q)N.

k—oo O QO

Proposition 1. If a sequence {V;c c L?(Q, Ay dm)N}keN is bounded, then it
is compact in the sense of weak convergence in L*(Q, Ay dx)™.
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Lower semicontinuity

Proposition 2. If the sequence {ijc c L*(Q, Ay dx) } pen converges weakly to
v € L?(Q, Adz)N, then

liminf/ (Vi, Ak(2)VE) g da:Z/(v,A(:z:)v)RN dz.
Q Q

k—oo

Definition 2. A sequence {Vk € L?(Q, A dz)N } ren 18 said to be strongly
convergent to a function v € L?(Q, Adz)", if

klim (br, Ap(z)VE)pn dx :/ (b, A(z)V)pn dx
—00 JQ Q

whenever by — b in L?(Q, Ay dz)V as k — oo.
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Weak and strong convergence

Proposition 3. Weak convergence of {vy, € L*(Q, Ay dx)™}, | tov € L*(Q, Adx)™
and

klim (Vies Ak (2) Vi )pn dz =/ (v, A(2)V)pn dz
T JO Q

are equivalent to strong convergence of {vy}, . in L*(Q, A dz)" tov € L*(Q, Adx)N.

Let {Ce.n},cn be any sequence in W,. Then there is an element ¢, € L'(Q)

such that, within a subsequence of {(s »}. ey We have

C*,n — C* in Ll(Q)a C* € \D*:
C*_é — (¢ tin LY(Q), and
C*_i — ¢! in variable space L*(, (.., dx).
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w-Convergence

Definition 3. We say that a bounded sequence

{(An,un) € LR SY) x Wa, (% TD)}, 0

w-converges to (A,u) € L' (;SY) x WH1(Q;9)) as n — oo, if

A, — A in LY(Q;SY),
u, —u in L*(),

Vu, — Vu in the variable space L?*(%Q, A,, dz)V

therefore,

n—oo

lim A, - nd;c—/A»ﬁda: Ve LOO(Q;SN),
Q Q

n—oo

lim un)\da;zfu)\da: Ve L*(9Q),
Q Q

n—oo

6o

lim (5, AnV'u,n)RN dr = /Q (E, AVU)RN dr VE&e€ Ce ()N
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Compactness

Lemma Let {(A4,,u,) € L*(Q;SY) x Wa, (O FD)}nEN be a sequence such that

(i) the sequence {u, € Wa, (€;'p)},, cnis bounded, i.e.

sup/ (uz + (Vup, ApVu,) ) de < +oo;
Q

neN

(i) {An},eny C ME(Q) and there exists a matrix-valued function A(z) € SV
such that

A, — A and A;'— A1 in LY(Q;SY) as n— .

Then, A € MP(Q) N L1(;SY) and the original sequence is relatively compact

with respect to w-convergence. Moreover, each w-limit pair (A, u) belongs to
the space L'(Q;SY) x Wa(2;Tp).
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Assumptions

Let @ be a closed subdomain of € for which dist(0€2,0Q) > § > 0, where
§ is a prescribed value. Let B € L>=(Q;S%) be a given matrix-valued function

such that

allélZn < (B)&,E)gn < (a+0)|¢l3w a e in @ VEeRY

with some o > 0. Let f € L*(Q2) and g € L?(I'y) be given functions.

Definition 4. We say that a matrix-valued function A = A(z) € SV is an
admissible control to the boundary value problem (P) if

(Ac BV(Q\Q:SY), /Q\Q A(z) dz = M,

L AeMI(Q\Q), A(z)=B(z) ae. in Q.

(AC) <
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Weakly degenerate PDE

The main object of our consideration in this section is the following boundary
value problem

(P) —div (A(z)Vy) = f in Q,
y=0onTIp, Oy/Ovy =g on I'y.

Here
8 E a;;(x 8 Cos(n x;),
VA =1 € j

cos(n, x;) is i-th directing cosine of n, and n is the outward unit normal at I'y

to .
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Admissible controls and concept of solutions

Definition 5. We say that a function y = y(A, f, g) is a weak solution to the
boundary value problem (P) for a fixed control A € 2,4 and given functions
f€L?Q) and g € L*(Ty), if

y € Wa(;T'p)

and the integral identity

(WP) / (Vg@, A(:}:)Vy)RN dr = / fodx —I—/ godHN 1
Q Q2 I'n
holds for any ¢ € C§5°(RY;T'p).
The set of (WP) solutions

Zp = {(A4y) | A€ Uaa, y € Wa(%Tp) , (A,y) are related by (WP) }.

is sequentially closed wrt. w-convergence (if it is non-empty).
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The optimal control problem

We are concerned with the following optimal control problem (OCP)

Minimize {I(A,y) = fQ ly(x) — ya(x)|? dx

- Z/ Dayj(a)| + || gt — v

ZJ_

2
H—1/2(1"D)}

subject to the constraints (P), (AC).
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Existence result

Hypothesis A. The set of admissible solutions =, is nonempty, that is, the
minimization problem inf( 4 ,ye=, 1 (A,y) is regular.

We say that a pair (A% y°) € L1(Q;SY) x Wa(Q;Tp) is weakly optimal for
problem (OCP) if

(WO) (A% ") €E, and I(Aoay°)=(Aiglf I(A,y).
Y)EEw

Theorem Let f € L*(2), g € L*(T'x), ya € L*(), and y* € L*(I'p) be given
functions. Assume that the Hypothesis A is valid. Then the optimal control
problem (OCP) admits at least one solution

(A% y") € LY (Q;SY) x Wao(;Tp).
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Proofof the theorem ....

I = I(A,y) is bounded below and =,, # (), hence, there exists of a minimizing
sequence {(A,,yn) € Eu}, ey to the problem (WO).

inf I(A,y)= lim I(A,,y,) = lim |yn — yq(z)|* dx
(A,y)€EEy n—00 n—00
+ [ (T (@), A2 Tyn (@) da + S / Dy
Q =1
oy, 2
+ H In oy ] < +00
Ova, H-1/2(T'p)
implies the existence of a constant C' > 0 such that
Up [V 20,4, oy < Cs a2l yrosageyy < C
neN y41imn Wl aVAn D
Sup ”ynHL2(Q) <C, sup ”An”BV(Q\Q;SN) < C.
neN neN
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Proof cont.

Hence, {(A,,Yn) € Zwlnen is bounded. and there exist functions AY €
LY (Q;SV) and 3° € W40(2;T'p) s.t, up to a subsequence, (A,,y,) — (A%, y).
=, is sequentially closed w.r.t. w-convergence, hence, (A", ") is an admissible
solution to the optimal control problem (OCP) (i.e. (4% 4°) € Z,). Moreover,
by the estimates above and the Corollary to Proposition 4, we have:

Oyn 0y’

—

8VAR 81/Ao

in HY2('p).

This and (A,,u,) — (A% ¢°) imply that the cost functional I is sequentially
lower w-semicontinuous. Hence

I(Ao,yo) <liminf I(A,,y,) = inf I(A,y),

n—00 (Ay)€Ew

i.e. (A% y") is an optimal solution. The proof is complete.

A ENGINEERING Friedrich-Alexander-Universitat
F i OF ADVANCED Erlangen-Niirnberg /‘"R\
MATERIALS -




Part C: Towards life-cycle optimization
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The evolution of damage

for a given body force £ € L?(0,T; L*(Q)"), a surface traction p € P,q, the
set ¥,, and an initial damage field (, € L*(Q2) for which

3¢Y € U, such that (¥ <y <1 ae. in Q,

a displacement field u : Qp — RY, a stress field & : Qr — S¥, and a damage
field ¢ : Q7 — R satisfy the relations

( putt —dive =f in  Qrp,

d =(CAe(u) in Qp,

u=0 on (0,7) xS,

ov=p on (0,7)xT, pé&€ Puq,
("= kAC = ¢(e(u),() in Qr,
¢(0,)=¢ in

(=1 on (0,7)xTI, 9(/On=0 on (0,7) xS,
(| 3¢« € U, such that (. < ((t,z) <1 ae. in Qp.
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Remarks and results in brief:

e For given data including the damage field, we derive a concept of weak
solutions in weighted space

e We introduce a relaxed problem (with an extra eu-term in the equation).
e We show existence of solutions (no uniqueness!)
e We introduce a concept of weak variational solutions to the full system

e We show existence for the relaxed problem
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Life-cycle optimization

T
Minimize {I(p, u,() = / / lu — ud|ﬁw dxdt
0 Q

+/UT/QIC—1Ida:dt+/UT/Q||e(u)gNgdxdt}

subject to

Z:={(p,(,u)| P EPud, (€2, uecW(2x(0,7);5),

({,u) is a weak variational solution to (P)}.

We show that the constraint set is sequentially 7-closed and that a minimum
exists.

The extension to the fully dynamic case is under way.
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Typical picture....here for a spring
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