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-
The Muskat problem |

Model for the motion of two immiscible fluids with different densities
and viscosities in a porous medium (intrusion of water into oil).

@ Bottom of the porous medium: y = 0,

@ Height of the lower fluid: y = f(t, x), I'(f) := {y = f}

@ Domain occupied by the lower fluid:

Q(f) :={(x,¥) € (0, L) x (0,00) : y < f(t, x)},

Height of the upper fluid: y = h(t, x), I'(h) := {y = h}
Domain occupied by the upper fluid:

Q(f, h) := {(x,y) € (0,L) x (0,00) : f(t,x) <y < h(t, x)}.
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-
The Muskat problem I

y = h(x)

0 L
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-
The Muskat problem Il

Auy =0 in  Q(f,9),
Au_ = 0 in  Q(f),
orh = —pu3' (Vug,(=0xh, 1)) on T(h),

Us = Gp4+h —vakr(n) on T(h),
Of = —pu3' (Vus, (=0xf, 1)) on T(f),

up —u- = Glps+ — p-)f +ywrri on  T(f),
Oyu_ =0 on {y=0}.

with initial data 0 < fy < hg and
@ o, u+: density and viscosity of the fluid =+,
@ G: gravity constant,
@ Uy =ps+ Gpry, Vi = —pu3' Vus (Darcy’s law),
® ", rir(r): surface tension and curvature of the interface I'(f),
® g, kir(n): surface tension and curvature of the interface I'(h).
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|
Thin fluid layers: h < L

Scaling:

X=X y=cy, f=cf, h=ch, uy=0t=1/.

Formal asymptotic expansion in powers of ¢:

f = pZ'Glp— — pi)x(foxf) + =" Gprox(foxh)
— = ywOx (FORf) — p~ ya0x (fO3 D)

oth = u='G(p— — p4)0x(foxf) + n="' Gpx(foxh)
+115 Gp1Ox((h = )dxh) — p va0x((h — )O3 h)
— 1= YwOx(FOR1) — p= ' yqOx(fO3h)

[Escher, Matioc & Matioc (2011)]
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Thin film system

Neglecting the curvature terms (v, = 74 = 0) and rescaling time give:

for (t,x) € (0,00) x (0, L), supplemented with homogeneous
Neumann boundary conditions and initial conditions 0 < fy < hg, where

Ri=—"* >0 andR, == R
P—— P+ M

[Escher, Matioc & Matioc (2011)]
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|
Strong solutions

@ Assume that p_ > p and fy, hy € H3(0, L), 0 < fy < hg in (0, L).
Then there exists a local strong solution (f, h) satisfying 0 < f < h
n(0,T) x (0,L).

@ Energy functional: 2&(f, h) := ||/f||3 + R ||h||3 with
d

L
FE(h) = / f (0xf + ROch)? dx—RR ,/(h—f)(axh)z dx < 0.
J0

@ Steady states are of the form (., h,) with constants 0 < f, < h,.

@ If 0 < f. < h, are constants, (f., h.) is asymptotically exponentially
stable (by the principle of linearised stability).

[Escher, Matioc & Matioc (2011)]
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|
Alternative formulation

Define g := h—f > 0. Then (f, g) solves

Otf

o0tg
Oxf

(f,9)(0)

with initial conditions f, > 0 and go > 0 (R > 0, R, > 0).

(14 R)Ox(foxf) + Rox(foxg) in (0,00) x (0, L)

R.0x(g0xf) + Rudx(gdxg) I (0,00) x (0, L),

0xg =0 on (0,00) x {0, L},
(fo,90) in (0,L),

’ Degenerate parabolic system with full diffusion matrix‘
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Properties

@ f > 0and g > 0 by the comparison principle,

[f()ll+ = [[folly and [|g(D)[l+ = llgoll1
@ Energy functional: &(f,g) := | f|5 + R||f + g||5 with

igz(fg / f (Oxf + Roxh)? dx—RR”/ g(dch)? dx < 0.

@ Entropy functional:

L L
51(f,g)::/0 (flnf—f+1)dx+"f_j/0 (glng—g+1) dx
1

with
d

L
_ s 2 . 2
6(f.9) = /0 (104712 + R 0xh[2) dx <.
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Weak solutions: existence

Given fy, go € L?(0, L), fy, go > 0, there is a global weak solution (f, g)
satisfying

@ f>0andg >0,
@ f,g € L>(0,T;L?0,L)nL2(0, T;H'(0, L)),

o [[f(ll1 = lIfoll+ and [lg(t)I[+ = llgoll+,
@ “Weak entropy inequality”:

e R
ex(r(). (0 + [ (Zl0x1E + 1 ggloal ) ds < &i(h.g0)

@ Energy inequality.
[Escher, L. & Matioc (2011)]
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Weak solutions: difficulties

Difficulties: non-uniform parabolic system and full diffusion matrix.
General principle [Amann]:
positive lower bounds

+ — global existence of strong solutions

L>(0, T; H'(0, L)) — bounds

] regularisation
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-
Weak solutions: regularised system

oif: = (14 R)0x (f:0xf.) + Rox ((f: — €)0xG:) ,
019: = RuOx((g: —€)oxF:) + R.0x (9-0x9-)
with
Foi=(1-¢299)7"t, G.:=(1-£%9%)g..
and supplemented with homogeneous Neumann boundary conditions
and regularised initial conditions.
@ Comparison principle: . > cand g. > «.
@ Similar entropy and energy inequalities.
© Coupling terms of lower order — L>(0, T; H'(0, L))-bounds.

’ (1)+(2)+(3) — global existence for (f., g.) / (2) — compactness
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Weak solutions: large time behaviour

Exponential stability: there are C > 0 and w > 0 such that
I1£(t) = Bollz + 19(t) — Goll < Ce™',  t>0,

where

_ L L
fo = 1[ / fo(x) dx and gp:= 1[ / 9o(x) dx.
0 0

Proof: compute

d - _
S lenr.9) — &k, @) + &(1,g) - £, 60)] < —C (0xFI3+ lxgl3)

and use Poincaré-Wirtinger inequality.
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-
Alternative approach

of = Ox[fOx((1+R)f+Rg)] in (0,00) x R,
og = RuOx[g0x(f+9)] In (0,00) xR,
(£,9)(0) = (fh,90) in R,

with integrable initial conditions f, > 0 and go > 0 (R > 0, R, > 0).

Energy functional: &(f, g) := ||f||3 + R||f + 9|13

If || fll1 = ||lgoll1 = 1, the above system is formally a gradient flow of &
with respect to the 2-Wasserstein distance W5 in Po(R) x Po(R).
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|
Notations

@ P»(R) is the set of probability measures in R with finite second
moment.

@ Given p, v in P2(R), let M(u, v) be the set of probability measures
~ in R? with marginals p and v, that is,

YA xR) = u(A) and (R x A) = v(A)

for all Borel sets A of R.
@ Given p, v in P2(R), the 2-Wasserstein distance W is defined by

WZ(N? V)z = inf ’X_y|2 de(Xay)
~yeM(p,v) JR2
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N
Time discrete scheme

Define
K = {(f, ) € Po(R; R?) : (f,g) € L3(R; R2)}.

Given 7 € (0,1) and (fy, go) € K, define the functional

1 R
Fiwv)i= 5 (W) + - WE(Y.0)) +x(uv
I

for (u, v) € K and solve the minimisation problem

inf  F-(u,v).
(u,lv)eK (U’ V)

Minimisers are actually in H'(R) [Matthes, McCann & Savaré (2009)]
(Work in progress with B.-V. Matioc)
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