A thin film approximation of the Muskat problem

Philippe Laurençot

CNRS, Institut de Mathématiques de Toulouse

September 2011

Joint works with: Joachim Escher (Hannover) Bogdan-Vasile Matioc (Hannover)

The Muskat problem I

Model for the motion of two immiscible fluids with different densities and viscosities in a porous medium (intrusion of water into oil).

- Bottom of the porous medium: y = 0,
- Height of the lower fluid: $y = f(t, x), \Gamma(f) := \{y = f\}$
- Domain occupied by the lower fluid:

$$\Omega(f) := \{(x,y) \in (0,L) \times (0,\infty) \ : \ y < f(t,x)\},\$$

- Height of the upper fluid: y = h(t, x), $\Gamma(h) := \{y = h\}$
- Domain occupied by the upper fluid:

$$\Omega(f,h) := \{(x,y) \in (0,L) \times (0,\infty) : f(t,x) < y < h(t,x)\}.$$

The Muskat problem II

The Muskat problem III

```
\begin{array}{lllll} \Delta u_{+} & = & 0 & & \text{in} & \Omega(f,g), \\ \Delta u_{-} & = & 0 & & \text{in} & \Omega(f), \\ \partial_{t}h & = & -\mu_{+}^{-1} \left\langle \nabla u_{+}, (-\partial_{x}h,1) \right\rangle & \text{on} & \Gamma(h), \\ u_{+} & = & G\rho_{+}h - \gamma_{d}\kappa_{\Gamma(h)} & & \text{on} & \Gamma(h), \\ \partial_{t}f & = & -\mu_{\pm}^{-1} \left\langle \nabla u_{\pm}, (-\partial_{x}f,1) \right\rangle & & \text{on} & \Gamma(f), \\ u_{+} - u_{-} & = & G(\rho_{+} - \rho_{-})f + \gamma_{w}\kappa_{\Gamma(f)} & & \text{on} & \Gamma(f), \\ \partial_{y}u_{-} & = & 0 & & \text{on} & \{y = 0\}. \end{array}
```

with initial data $0 < f_0 < h_0$ and

- ρ_{\pm}, μ_{\pm} : density and viscosity of the fluid \pm ,
- G: gravity constant,
- $u_{\pm} = p_{\pm} + G \rho_{\pm} y$, $\mathbf{v}_{\pm} = -\mu_{\pm}^{-1} \nabla u_{\pm}$ (Darcy's law),
- $\gamma_{\mathbf{w}}$, $\kappa_{\Gamma(f)}$: surface tension and curvature of the interface $\Gamma(f)$,
- γ_d , $\kappa_{\Gamma(h)}$: surface tension and curvature of the interface $\Gamma(h)$.

Thin fluid layers: $h \ll L$

Scaling:

$$x = \tilde{x}, \quad y = \varepsilon \tilde{y}, \quad f = \varepsilon \tilde{f}, \quad h = \varepsilon \tilde{h}, \quad u_{\pm} = \tilde{u}_{\pm}, t = \tilde{t}/\varepsilon.$$

Formal asymptotic expansion in powers of ε :

$$\partial_{t}f = \mu_{-}^{-1}G(\rho_{-} - \rho_{+})\partial_{x}(f\partial_{x}f) + \mu_{-}^{-1}G\rho_{+}\partial_{x}(f\partial_{x}h)$$

$$-\mu_{-}^{-1}\gamma_{w}\partial_{x}(f\partial_{x}^{3}f) - \mu_{-}^{-1}\gamma_{d}\partial_{x}(f\partial_{x}^{3}h)$$

$$\partial_{t}h = \mu_{-}^{-1}G(\rho_{-} - \rho_{+})\partial_{x}(f\partial_{x}f) + \mu_{-}^{-1}G\rho_{+}\partial_{x}(f\partial_{x}h)$$

$$+\mu_{+}^{-1}G\rho_{+}\partial_{x}((h-f)\partial_{x}h) - \mu_{+}^{-1}\gamma_{d}\partial_{x}((h-f)\partial_{x}^{3}h)$$

$$-\mu_{-}^{-1}\gamma_{w}\partial_{x}(f\partial_{x}^{3}f) - \mu_{-}^{-1}\gamma_{d}\partial_{x}(f\partial_{x}^{3}h)$$

[Escher, Matioc & Matioc (2011)]

Thin film system

Neglecting the curvature terms ($\gamma_w = \gamma_d = 0$) and rescaling time give:

$$\begin{array}{rcl} \partial_t f & = & \partial_x (f \partial_x f) + R \partial_x (f \partial_x h), \\ \partial_t h & = & \partial_x (f \partial_x f) + R \partial_x (f \partial_x h) + R_\mu \partial_x ((h - f) \partial_x h), \end{array}$$

for $(t,x) \in (0,\infty) \times (0,L)$, supplemented with homogeneous Neumann boundary conditions and initial conditions $0 < f_0 < h_0$, where

$$R := rac{
ho_+}{
ho_- -
ho_+} > 0 \ \ ext{ and } R_\mu := rac{\mu_-}{\mu_+} \ R.$$

[Escher, Matioc & Matioc (2011)]

Strong solutions

- Assume that $\rho_- > \rho_+$ and $f_0, h_0 \in H^2_N(0, L), 0 < f_0 < h_0$ in (0, L). Then there exists a local strong solution (f, h) satisfying 0 < f < h in $(0, T) \times (0, L)$.
- Energy functional: $2\mathcal{E}(f,h) := ||f||_2^2 + R ||h||_2^2$ with

$$\frac{d}{dt}\mathcal{E}(f,h) = -\int_0^L f \left(\partial_x f + R\partial_x h\right)^2 dx - RR_\mu \int_0^L (h-f)(\partial_x h)^2 dx \leq 0.$$

- Steady states are of the form (f_*, h_*) with constants $0 \le f_* \le h_*$.
- If $0 < f_* < h_*$ are constants, (f_*, h_*) is asymptotically exponentially stable (by the principle of linearised stability).

[Escher, Matioc & Matioc (2011)]

Alternative formulation

Define g := h - f > 0. Then (f, g) solves

$$\begin{array}{rcll} \partial_t f &=& (1+R)\partial_x(f\partial_x f) + R\partial_x(f\partial_x g) & \text{in} & (0,\infty)\times(0,L), \\ \partial_t g &=& R_\mu\partial_x(g\partial_x f) + R_\mu\partial_x(g\partial_x g) & \text{in} & (0,\infty)\times(0,L), \\ \partial_x f &=& \partial_x g = 0 & \text{on} & (0,\infty)\times\{0,L\}, \\ (f,g)(0) &=& (f_0,g_0) & \text{in} & (0,L), \end{array}$$

with initial conditions $f_0 \ge 0$ and $g_0 \ge 0$ (R > 0, $R_{\mu} > 0$).

Degenerate parabolic system with full diffusion matrix

Properties

- $f \ge 0$ and $g \ge 0$ by the comparison principle,
- $||f(t)||_1 = ||f_0||_1$ and $||g(t)||_1 = ||g_0||_1$,
- Energy functional: $\mathcal{E}_2(f,g) := \|f\|_2^2 + R\|f + g\|_2^2$ with

$$\frac{d}{dt}\mathcal{E}_2(f,g) = -\int_0^L f \left(\partial_x f + R \partial_x h\right)^2 dx - RR_\mu \int_0^L g(\partial_x h)^2 dx \leq 0.$$

Entropy functional:

$$\mathcal{E}_1(f,g) := \int_0^L (f \ln f - f + 1) \ dx + \frac{R}{R_\mu} \int_0^L (g \ln g - g + 1) \ dx$$

with

$$\frac{d}{dt}\mathcal{E}_1(f,g) = -\int_0^L \left(|\partial_x f|^2 + R |\partial_x h|^2 \right) dx \leq 0.$$

4□ > <@ > < \(\bar{a}\) >
E < <p>O< </p>

Weak solutions: existence

Given $f_0, g_0 \in L^2(0, L)$, $f_0, g_0 \ge 0$, there is a global weak solution (f, g) satisfying

- $f \ge 0$ and $g \ge 0$,
- $f, g \in L^{\infty}(0, T; L^{2}(0, L)) \cap L^{2}(0, T; H^{1}(0, L)),$
- $||f(t)||_1 = ||f_0||_1$ and $||g(t)||_1 = ||g_0||_1$,
- "Weak entropy inequality":

$$\mathcal{E}_{1}(f(t),g(t)) + \int_{0}^{t} \left(\frac{1}{2}\|\partial_{x}f\|_{2}^{2} + \frac{R}{1+2R}\|\partial_{x}g\|_{2}^{2}\right) ds \leq \mathcal{E}_{1}(f_{0},g_{0})$$

• Energy inequality.

[Escher, L. & Matioc (2011)]

Weak solutions: difficulties

Difficulties: non-uniform parabolic system and full diffusion matrix.

General principle [Amann]:

positive lower bounds

 \longrightarrow global existence of strong solutions

 $L^{\infty}(0, T; H^{1}(0, L))$ – bounds

regularisation

Weak solutions: regularised system

$$\partial_{t}f_{\varepsilon} = (1+R)\partial_{x}(f_{\varepsilon}\partial_{x}f_{\varepsilon}) + R\partial_{x}((f_{\varepsilon}-\varepsilon)\partial_{x}G_{\varepsilon}),
\partial_{t}g_{\varepsilon} = R_{\mu}\partial_{x}((g_{\varepsilon}-\varepsilon)\partial_{x}F_{\varepsilon}) + R_{\mu}\partial_{x}(g_{\varepsilon}\partial_{x}g_{\varepsilon}),$$

with

$$F_{\varepsilon} := (1 - \varepsilon^2 \partial_x^2)^{-1} f_{\varepsilon}, \qquad G_{\varepsilon} := (1 - \varepsilon^2 \partial_x^2)^{-1} g_{\varepsilon}.$$

and supplemented with homogeneous Neumann boundary conditions and regularised initial conditions.

- **1** Comparison principle: $f_{\varepsilon} \geq \varepsilon$ and $g_{\varepsilon} \geq \varepsilon$.
- Similar entropy and energy inequalities.
- **3** Coupling terms of lower order $\longrightarrow L^{\infty}(0, T; H^{1}(0, L))$ -bounds.

(1)+(2)+(3)
$$\longrightarrow$$
 global existence for $(f_{\varepsilon},g_{\varepsilon})$ / (2) \longrightarrow compactness

(IMT) September 2011 12 / 16

Weak solutions: large time behaviour

Exponential stability: there are C > 0 and $\omega > 0$ such that

$$||f(t) - \bar{f_0}||_2 + ||g(t) - \bar{g_0}||_2 \le Ce^{-\omega t}, \qquad t \ge 0,$$

where

$$\bar{f}_0 := \frac{1}{L} \int_0^L f_0(x) \ dx$$
 and $\bar{g}_0 := \frac{1}{L} \int_0^L g_0(x) \ dx$.

Proof: compute

$$\frac{d}{dt}\left[\mathcal{E}_1(f,g) - \mathcal{E}_1(\bar{f}_0,\bar{g}_0) + \mathcal{E}_2(f,g) - \mathcal{E}_2(\bar{f}_0,\bar{g}_0)\right] \leq -C\left(\|\partial_x f\|_2^2 + \|\partial_x g\|_2^2\right)$$

and use Poincaré-Wirtinger inequality.

(IMT)

Alternative approach

$$egin{array}{lcl} \partial_t f &=& \partial_x \left[f \ \partial_x \left((1+R)f + Rg
ight)
ight] & ext{in} & (0,\infty) imes \mathbb{R}, \ \partial_t g &=& R_\mu \partial_x \left[g \ \partial_x \left(f + g
ight)
ight] & ext{in} & (0,\infty) imes \mathbb{R}, \ (f,g)(0) &=& (f_0,g_0) & ext{in} & \mathbb{R}, \end{array}$$

with integrable initial conditions $f_0 \ge 0$ and $g_0 \ge 0$ (R > 0, $R_u > 0$).

Energy functional: $\mathcal{E}_{2}(f, g) := ||f||_{2}^{2} + R||f + g||_{2}^{2}$

If $||f_0||_1 = ||g_0||_1 = 1$, the above system is formally a gradient flow of \mathcal{E}_2 with respect to the 2-Wasserstein distance W_2 in $\mathcal{P}_2(\mathbb{R}) \times \mathcal{P}_2(\mathbb{R})$.

Notations

- \bullet $\mathcal{P}_2(\mathbb{R})$ is the set of probability measures in \mathbb{R} with finite second moment.
- Given μ , ν in $\mathcal{P}_2(\mathbb{R})$, let $\Pi(\mu,\nu)$ be the set of probability measures γ in \mathbb{R}^2 with marginals μ and ν , that is,

$$\gamma(A \times \mathbb{R}) = \mu(A)$$
 and $\gamma(\mathbb{R} \times A) = \nu(A)$

for all Borel sets A of \mathbb{R} .

• Given μ , ν in $\mathcal{P}_2(\mathbb{R})$, the 2-Wasserstein distance W_2 is defined by

$$W_2(\mu,\nu)^2 := \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^2} |x-y|^2 d\gamma(x,y).$$

Time discrete scheme

Define

$$K:=\left\{(f,g)\in\mathcal{P}_2(\mathbb{R};\mathbb{R}^2)\ :\ (f,g)\in L^2(\mathbb{R};\mathbb{R}^2)\right\}.$$

Given $\tau \in (0,1)$ and $(f_0,g_0) \in K$, define the functional

$$\mathcal{F}_{\tau}(u,v) := \frac{1}{2\tau} \left(W_2^2(u,f_0) + \frac{R}{R_{\mu}} W_2^2(v,g_0) \right) + \mathcal{E}_2(u,v)$$

for $(u, v) \in K$ and solve the minimisation problem

$$\inf_{(u,v)\in K} \mathcal{F}_{\tau}(u,v).$$

Minimisers are actually in $H^1(\mathbb{R})$ [Matthes, McCann & Savaré (2009)] (Work in progress with B.-V. Matioc)

(ロ) (回) (巨) (巨) (巨) (回)