Convergence of an inverse problem for discrete wave equations.

Lucie Baudouin - LAAS - CNRS, Toulouse in collaboration with S. Ervedoza - IMT and CNRS.

Benasque - September 2011

Outline

Presentation of the inverse problem

Generalities

Reconstruction

Previous stability result for the continuous wave equation

Carleman estimate

Method

Our approach

Lax type Theorem

Uniform stability estimates

Results

Conclusion

An inverse problem for the wave equation

Let us consider the wave equation in a smooth bounded domain Ω :

$$\begin{cases} \partial_{tt}y - \Delta_x y + \mathbf{p}(\mathbf{x})y = f, & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = g(t, x), & (t, x) \in (0, T) \times \partial \Omega, \\ (y(0, x), \partial_t y(0, x)) = (y^0(x), y^1(x)), & x \in \Omega. \end{cases}$$

Unknown: the potential p = p(x).

Known quantities:

- ▶ Initial data : (y^0, y^1) ; source terms f, g.
- An additional information $\partial_{\nu}y(t,x)$ on $(0,T)\times\partial\Omega$.

Goal: Find the potential p.

→ Applications : geology, medical imagery, oil prospection,...

Is it possible to retrieve the potential $p = p(x), x \in \Omega$ from measurement of the flux $\partial_{\nu} y(t,x)$ on $(0,T) \times \partial \Omega$?

- Several related questions
 - ▶ Uniqueness : Given two potentials $p_1 \neq p_2$, can we guarantee $\partial_{\nu}y_1 \neq \partial_{\nu}y_2$?
 - ▶ Stability : Given two potentials p_1, p_2 , if $\partial_{\nu} y_1 \simeq \partial_{\nu} y_2$, can we guarantee that $p_1 \simeq p_2$?
 - **Reconstruction**: Given $\partial_{\nu} y$, can we compute p?
- Known results: Uniqueness (Klibanov 92) and stability (Yamamoto 99, Imanuvilov Yamamoto 01), using Carleman estimates.
- Main Open Problem : Reconstruction, how to compute the potential from the boundary measurement?

A natural idea for reconstruction

Given a continuous measure $m(t,x) = \partial_{\nu} y[p]|_{(0,T)\times\partial\Omega}(t,x)$

Discretize the wave equation

$$\begin{cases} \partial_{tt}y_h - \Delta_h y_h + p_h y_h = f_h, \\ y_h|_{(0,T)\times\partial\Omega} = g_h \simeq g, \\ (y_h, \partial_t y_h)(t=0) = (y_h^0, y_h^1) \simeq (y^0, y^1). \end{cases}$$

Solve the following discrete inverse problem: Find a potential p_h so that the corresponding discrete solution $y_h[p_h]$ approximates at best the measure :

$$\partial_h y_h[p_h]|_{(0,T)\times\partial\Omega} \simeq m(t,x)$$

Question : Do we get $p_h \simeq p$?

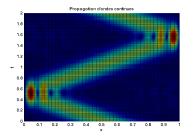
Goal: Analyze the convergence of the discrete inverse problems and propose a convergent numerical method.

Remarks:

- Natural question for all inverse problems in infinite dimensions: Finding a source term, a conductivity...
- Depends a priori on the numerical scheme employed.

Difficulties:

- ▶ Non-linear problem in p.
- The wave equation and its discrete approximations have different dynamics, cf Ervedoza - Zuazua 11:
 - → Numerical artefacts: High-frequency spurious waves, generated by the schemes.



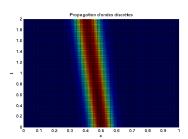


FIGURE: Wave propagation in continuous and discrete media

Continuous dynamics ≠ Discrete dynamics

Stability result for the continuous wave equation

Let $x_0 \in \mathbb{R}^N \setminus \Omega$ and let Γ_0 and T satisfy

$$\{x\in\partial\Omega,\,(x-x_0)\cdot\nu(x)>0\}\subset\Gamma_0,\quad T>\sup_{x\in\Omega}\{|x-x_0|\}.$$

One can prove uniqueness and local Lipschitz stability for $p \in L^{\infty}(\Omega)$, $||p||_{L^{\infty}} \leq m$ under the assumptions

$$\inf_{\Omega} \{ |y^{0}(x)| \} \neq 0, \quad y[p] \in H^{1}(0, T; L^{\infty}(\Omega)).$$

Stability result for the continuous wave equation

Let $x_0 \in \mathbb{R}^N \setminus \Omega$ and let Γ_0 and T satisfy

$$\{x\in\partial\Omega,\,(x-x_0)\cdot\nu(x)>0\}\subset\Gamma_0,\quad T>\sup_{x\in\Omega}\{|x-x_0|\}.$$

One can prove uniqueness and local Lipschitz stability for $p \in L^{\infty}(\Omega)$, $||p||_{L^{\infty}} \leq m$ under the assumptions

$$\inf_{\Omega} \{ |y^{0}(x)| \} \neq 0, \quad y[p] \in H^{1}(0, T; L^{\infty}(\Omega)).$$

Remark : In 1D, the quantity $||y[p]||_{H^1(0,T;L^{\infty}(0,1))}$ can be uniformly bounded for $p \in L^{\infty}_{\leq m}(0,1)$ by taking smooth data such as $(y^0, y^1) \in H^2 \times H^1$, $g \in H^2((0,T) \times \{0,1\})$, $f \in W^{1,1}(0,T;L^2(0,1)) + CC.$

Theorem (Yamamoto 99, revisited LB 01)

Assume the above geometric constraints on (Γ_0, T, Ω) .

Let m>0 and $q\in L^{\infty}_{\leq m}(\Omega)$. Then $\exists C>0$ depending only on

$$\inf_{\Omega}\{|y^0(x)|\}\;(\neq 0)\quad \text{ and }\quad \|y[p]\|_{H^1(0,T;L^\infty(\Omega))}\,,$$

such that for all $q \in L^{\infty}_{\leq m}(\Omega)$,

$$\frac{1}{C} \|p - q\|_{L^{2}(\Omega)} \le \|\partial_{\nu} y[p] - \partial_{\nu} y[q]\|_{H^{1}((0,T);L^{2}(\Gamma_{0}))} \le C \|p - q\|_{L^{2}(\Omega)}.$$

Theorem (Yamamoto 99, revisited LB 01)

Assume the above geometric constraints on (Γ_0, T, Ω) .

Let m>0 and $q\in L^\infty_{\leq m}(\Omega).$ Then $\exists C>0$ depending only on

$$\inf_{\Omega}\{|y^0(x)|\}\;(\neq 0)\quad \text{ and }\quad \|y[p]\|_{H^1(0,T;L^\infty(\Omega))}\,,$$

such that for all $q \in L^{\infty}_{\leq m}(\Omega)$,

$$\frac{1}{C} \|p - q\|_{L^{2}(\Omega)} \le \|\partial_{\nu} y[p] - \partial_{\nu} y[q]\|_{H^{1}((0,T);L^{2}(\Gamma_{0}))} \le C \|p - q\|_{L^{2}(\Omega)}.$$

→ In our setting, it will be important to have an idea of how this proof works.

Weights for a Carleman estimate

For the wave operator with potential

$$L = \partial_{tt} - \Delta_x + q(x),$$

let $\lambda > 0$ and $\beta \in (0,1)$ and define $\psi = \psi(x,t)$, $\varphi = \varphi(x,t)$ by

$$\psi(x,t) = |x - x_0|^2 - \beta t^2 + C_0,$$

$$\varphi(x,t) = e^{\lambda \psi(x,t)}$$

where $C_0 > 0$ is such that $\psi \geq 1$ on $\Omega \times [0, T]$.

Carleman Estimate (Zhang 99, Imanuvilov 02)

Assuming
$$p \in L^{\infty}_{\leq m}(\Omega)$$
, $L = \partial_{tt} - \Delta_x + q(x)$ and

$$\{x \in \partial\Omega, (x - x_0) \cdot \nu(x) > 0\} \subset \Gamma_0,$$

 $\exists s_0 > 0, \lambda > 0$ and $M = M(s_0, \lambda, T, \beta, x_0, m) > 0$ such that :

$$s \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} (|\partial_t w|^2 + |\nabla w|^2) + s^3 \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} |w|^2$$

$$\leq M \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} |Lw|^2 dx dt + Ms \int_{-T}^{T} \int_{\Gamma_0} e^{2s\varphi} |\partial_{\nu} w|^2 dt d\sigma$$

for all $s > s_0$ and w satisfying

$$\left\{ \begin{array}{l} Lw \in L^2(\Omega \times (-T,T)) \\ w \in L^2(-T,T;H^1_0(\Omega)), \\ w(x,\pm T) = \partial_t w(x,\pm T) = 0, \; \forall x \in \Omega. \end{array} \right.$$

How to use it?

Let z = y[p] - y[q]. Then z solves

$$\begin{cases} \partial_{tt}z - \Delta_x z + q(x)z = (q-p)y[p], & (t,x) \in (0,T) \times \Omega, \\ z(t,x) = 0, & (t,x) \in (0,T) \times \partial \Omega, \\ (z(0,x), \partial_t z(0,x)) = (0,0), & x \in \Omega. \end{cases}$$

Set $Z = \partial_t z$ and extend the equation in negative time :

$$\begin{cases} \partial_{tt}Z - \Delta_x Z + q(x)Z = (q-p)\partial_t y[p], & (t,x) \in (-T,T) \times \Omega, \\ Z(t,x) = 0, & (t,x) \in (-T,T) \times \partial \Omega, \\ (Z(0,x), \partial_t Z(0,x)) = (0, (q-p)y^0), & x \in \Omega. \end{cases}$$

• Apply the Carleman estimate to $w = \eta(t)Z$, where η is a cut-off function vanishing close to $t = \pm T$.

$$\begin{cases} \partial_{tt}w - \Delta_x w + q(x)w = \eta(q-p)\partial_t y[p] + \eta'\partial_t Z + \eta'' Z, \\ w(t,x) = 0, \\ (w(0,x), \partial_t w(0,x)) = (0, (q-p)y^0). \end{cases}$$

- \rightsquigarrow that creates a source term localized in Supp $\eta' \cup$ Supp η'' localized close to +T.
- But assuming $T > \sup\{|x x_0|\}$,

$$\sup_{x \in \Omega} \psi(\pm T, x) = \sup\{|x - x_0|^2\} - \beta T^2 + C_0 \le \inf_{x \in \Omega} \psi(0, x).$$

We conclude by an energy estimate.

Discretized setting

Consider the 1D wave equation observed at x = 1 (ie $x_0 < 0$).

Discretization using the finite-difference method:

$$\begin{cases} \partial_{tt}w_j - (\Delta_h w_h)_j + \mathbf{p}_j w_j = f_j, & j \in \{1, \dots, N\} \\ w_0(t) = w_{N+1}(t) = 0, \\ (w_h, \partial_t w_h)(t = \pm T) = 0, \end{cases}$$

where N + 1 = 1/h,

$$(\Delta_h w_h)_j = \frac{1}{h^2} (w_{j+1} - 2w_j + w_{j-1}).$$

The observation is then denoted by

$$(\partial_h^- w)_{N+1} = \frac{w_{N+1}(t) - w_N(t)}{h} = -\frac{w_N(t)}{h}.$$

A Lax type argument

We shall develop a two steps proof of convergence

Consistency: For any potential q, one can find discrete potentials q_h so that $q_h \xrightarrow[h \to 0]{} q$ in $L^2(\Omega)$ and

$$\partial_t(\partial_h^- y_h[q_h])_{N+1} \xrightarrow[h\to 0]{} \partial_{tx} y[q](t,1) \text{ in } L^2(0,T).$$

Uniform Stability: There exists a constant C independent of h>0 such that for all p_h,q_h ,

$$\|p_h - q_h\|_{L^2(\Omega)} \le C \|\partial_t (\partial_h^- y_h[p_h])_{N+1} - \partial_t (\partial_h^- y_h[q_h])_{N+1}\|_{L^2(0,T)}.$$

The convergence follows from the same ideas than Lax theorem for numerical analysis.

→ We shall focus on the uniform stability estimates.

Discrete Carleman estimate

There exists $s_0 > 0$, $\lambda > 0$, $\varepsilon > 0$ and a constant

$$M=M(s_0,\lambda,arepsilon,T,eta,x_0)>0$$
 such that for all $h\in(0,1)$,

$$s \in (s_0, \varepsilon/h)$$

$$s \int_{-T}^{T} \int_{[0,1)} e^{2s\varphi} (|\partial_{t} w_{h}|^{2} + |\partial_{h}^{+} w_{h}|^{2}) dt + s^{3} \int_{-T}^{T} \int_{(0,1)} e^{2s\varphi} |w_{h}|^{2} dt$$

$$\leq M \int_{-T}^{T} \int_{(0,1)} e^{2s\varphi} |f_{h}|^{2} dt + Ms \int_{-T}^{T} e^{2s\varphi(t,1)} |(\partial_{h}^{-} w_{h})_{N+1}|^{2} dt$$

$$+ Ms \int_{-T}^{T} \int_{[0,1)} e^{2s\varphi} |h\partial_{h}^{+} \partial_{t} w_{h}|^{2} dt.$$

and for all w_h satisfying $w_{0,h}(t) = w_{N+1,h}(t) = 0$ on (-T,T) and $w_h(\pm T) = \partial_t w_h(\pm T) = 0.$

Remarks

- Similarities with the continuous Carleman estimate: the weight function φ and the powers of s are the same.
- The range of s is limited to $s \leq \varepsilon/h$, expected in view of Boyer
- Hubert Le Rousseau 09.10.
- On the extra term in $s e^{2s\varphi} |h \partial_h^+ \partial_t w_h|^2$
 - ▶ Needed! Otherwise, this would imply observability for the discrete waves, uniformly with respect to h > 0, see Zuazua 05 SIREV. Sharp scale.
 - ► Concentrated at high-frequencies : $(h\partial_h^+ w_h)_i = w_{i+1} w_i$ and $h\partial_h^+ = o(1)$ for frequencies in o(1/h), $h\partial_h^+ \simeq 1$ for frequencies larger than 1/h.

Consequence

Instead of getting the stability estimate

$$||p_h - q_h||_{L^2(\Omega)} \le C ||\partial_t(\partial_h^- y_h[p_h])_{N+1} - \partial_t(\partial_h^- y_h[q_h])_{N+1}||_{L^2(0,T)}$$

we get the following one:

$$||p_{h} - q_{h}||_{L^{2}(\Omega)}$$

$$\leq C ||\partial_{t}(\partial_{h}^{-}y_{h}[p_{h}])_{N+1} - \partial_{t}(\partial_{h}^{-}y_{h}[q_{h}])_{N+1}||_{L^{2}(0,T)}$$

$$+ C ||h\partial_{h}^{+}\partial_{tt}(y_{h}[p_{h}] - y_{h}[q_{h}])||_{L^{2}((0,T);L^{2}([0,1)))}.$$

This is enough to our purpose, since the added term weakly converges to 0.

We introduce, for h > 0, the following operator

$$\Theta_h: L^{\infty}_{h,\leq m}(0,1) \rightarrow L^2(0,T) \times L^2(0,T;L^2(0,1))$$

$$p_h \mapsto \left(\partial_t(\partial_h^- y_h)_{N+1}[p_h], h \partial_h^+ \partial_{tt} y_h[p_h]\right),$$

and its continuous analogous

$$\Theta_0: L^{\infty}_{\leq m}(0,1) \to L^2(0,T) \times L^2(0,T; L^2(0,1))$$

$$p \mapsto (\partial_t \partial_x y[p](\cdot,1), 0).$$

m>0 is fixed, and we know a priori that $p\in L^{\infty}_{\leq m}(0,1)$.

Theorem

Under some regularity, mild convergence and positivity assumptions on the data, let $q_h \in L^{\infty}_{h, \le m}(0, 1)$ be such that

$$\Theta_h(q_h) \xrightarrow[h \to 0]{} \Theta_0(p)$$
 strongly in $L^2(0,T) \times L^2((0,T) \times (0,1))$.

Then

$$q_h \xrightarrow[h \to 0]{} p$$
 in $L^2(0,1)$.

→ The proof is based on the following consistency result

Theorem

Under the same assumptions, for any potential $p \in L^{\infty}_{\leq m}(0,1)$, there exists $p_h \in L_{h, \leq m}^{\infty}(0, 1)$ such that

$$p_h \xrightarrow[h \to 0]{} p$$
 in $L^2(0,1)$ and

$$\Theta_h(p_h) \xrightarrow[h \to 0]{} \Theta_0(p) \quad \text{ in } L^2(0,T) \times L^2((0,T) \times (0,1)).$$

Moreover

$$\sup_{h \in (0,1)} \|y_h[p_h]\|_{H^1(0,T;L_h^\infty(0,1))} < \infty.$$

Further comments and open problems

- Proofs can easily be adapted to fully discrete case or (more tedious) to 2D uniform mesh in a square;
- An extra Tychonoff term appears. Consistent with the theory of observability of discrete waves;
- ▶ Finding q_h such that $\Theta_h(q_h) \to \Theta_0(q)$ is a difficult problem since Θ_h is highly non-linear.
 - → a Carleman based approach for waves is being developed. with M. de Buhan, F. de Gournay and S. Ervedoza;
- Other discretization schemes:
- Obtaining convergence rates;
- Non-uniform meshes.

Thank you for your attention!