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Two Inequalities, One Equation

Sharp Hardy-Littlewood-Sobolev inequality

“ It states that for all non-negative measurable functions f on R?, and all 0 < A < d
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Moreover, there is equality if and only if for some xo € R and s € R, f is a

non-zero multiple of A(x/s — xo).
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Two Inequalities, One Equation

Sharp Gagliardo-Nirenberg-Sobolev inequality
“ Tt states that for all locally integrable functions f on R d > 2, witha square
integrable distributional gradient, and p with 1 < p < d/(d —2)
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Two Inequalities, One Equation

Sharp Gagliardo-Nirenberg-Sobolev inequality
“ Tt states that for all locally integrable functions f on R d > 2, witha square
integrable distributional gradient, and p with 1 < p < d/(d —2)
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Moreover, there is equality if and only if for some xo € RY and s € R, f is a

non-zero multiple of g(x/s — xo).

4DelPino & Dolbeault, IMPA, 2002.
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The Fast Diffusion Equation
The equality cases are steady states for nonlinear Fokker-Planck equations related to

the fast diffusion equation:

8 m
au(x, 1) = Au"(x,1).
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Two Inequalities, One Equation

The Fast Diffusion Equation
The equality cases are steady states for nonlinear Fokker-Planck equations related to

the fast diffusion equation:

8 m
au(x, 1) = Au"(x,1).

u(x, t) solves the fast diffusion equation if and only if

v(x, 1) := e“u(e'x, e™)

with o = 2 — d(1 — m) satisfies

oe%v(x, 1) = AV"(x,1) + V- ov(x, )] .

ot
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Two Inequalities, One Equation

The Fast Diffusion Equation
The equality cases are steady states for nonlinear Fokker-Planck equations related to

the fast diffusion equation:

8 m
au(x, 1) = Au"(x,1).

u(x, t) solves the fast diffusion equation if and only if
v(x, 1) := e“u(e'x, e™)
with o = 2 — d(1 — m) satisfies

oe%v(x, 1) = AV"(x,1) + V- ov(x, )] .

ot
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(1 —m) 1+ |x|?

is a stationary solution with certain mass M.
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The connection

@ The relation between the HLS optimizers, the GNS optimizers and the FD
equation is more than a superficial coincidence, at least for certain A, p and m.
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The connection

@ The relation between the HLS optimizers, the GNS optimizers and the FD
equation is more than a superficial coincidence, at least for certain A, p and m.

@ Ford > 3, the A = d — 2 case of the sharp HLS inequality can be proved by
using the fast diffusion flow for m = d/(d + 2) to deform any reasonably nice
trial function into a multiple of 4.
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The connection

@ The relation between the HLS optimizers, the GNS optimizers and the FD
equation is more than a superficial coincidence, at least for certain A, p and m.

@ Ford > 3, the A = d — 2 case of the sharp HLS inequality can be proved by
using the fast diffusion flow for m = d/(d + 2) to deform any reasonably nice
trial function into a multiple of 4.

Motivation: We choose m for the fast diffusion equation and A for the HLS inequality
in order to have & as stationary solution/equality case. Thus,
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The connection

@ The relation between the HLS optimizers, the GNS optimizers and the FD
equation is more than a superficial coincidence, at least for certain A, p and m.

@ Ford > 3, the A = d — 2 case of the sharp HLS inequality can be proved by
using the fast diffusion flow for m = d/(d + 2) to deform any reasonably nice
trial function into a multiple of 4.

Motivation: We choose m for the fast diffusion equation and A for the HLS inequality
in order to have & as stationary solution/equality case. Thus,
1 d+2 d

= = = .
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The exact value of the exponent for the GNS inequality

| < _d+1< d
P=a-1>4d=2

will be dictated by the evolution of the HLS functional along the flow of the FD
equation. Note p is in the correct range of the sharp GNS inequalities.
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The proof

The HLS functional
For A\ = d — 2, the HLS inequality can be rewritten as F[f] > 0 for all

f c LZ(I/((H»Z)(R(/) where

F= e ([ e wa) T [ o [ o ar,
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The proof

The HLS functional
For A\ = d — 2, the HLS inequality can be rewritten as F[f] > 0 for all

f c L2(1/(d+2) (Rd) where
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F= e ([ e wa) T [ o [ o ar,
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with
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The GNS inequality
The GNS inequality with p = (d + 1)/(d — 1) can be written as D[g] > 0 for all g
with a square integrable distributional gradient on R where

dld—-2 " od)(d-1) e 2 " (2d42)/(d—1)
Dlg] := Cs—— g dx Ve[ dx— [ ¢ dx.
(d - 1) JRd JRd .
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The proof

Dissipation of the HLS functional by the FD equation

Letf € L'(RY) N 1>+ (R?) be non-negative, and suppose that
flx) dx = h(x)dx=M
JRA JRd
Let u(x, t) be the solution of the FD equation with u(x, 1) = f(x). Then, for all

t>1,
S Flu( )] = 2D/ )
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The proof

Dissipation of the HLS functional by the FD equation

Letf € L'(RY) N 1>+ (R?) be non-negative, and suppose that
flx) dx = h(x)dx=M
JRd JRd
Let u(x, t) be the solution of the FD equation with u(x, 1) = f(x). Then, for all

t>1,
S Flu( )] = 2D/ )

HLS inequality via FD flow
Letf € L'(RY) N 1>+ (R?) be non-negative, and suppose that

f(x) dx= / h(x)dx=M and sup f(x)x[ ™ < o0
Rd R |x| >R

Then F[f] > 0.
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The proof

Same steps as in the log-HLS case. The only difference is that the scaling relation

implies now for all r > 0,
FI, 0] = D Flu(, /).



A new proof of HLS inequalities

0000000800
A New Proof of the HLS inequality with Equality Cases

The proof

Same steps as in the log-HLS case. The only difference is that the scaling relation

implies now for all r > 0,
FI, 0] = D Flu(, /).

And thus
8 g/ pp - ) (/@)

% (e_z(d—ﬂf[v(-,t)}) Y EY)



A new proof of HLS inequalities

0000000800
A New Proof of the HLS inequality with Equality Cases

The proof

Same steps as in the log-HLS case. The only difference is that the scaling relation

implies now for all r > 0,
FI, 0] = D Flu(, /).
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Passing to the limit + — oo and using Bonforte-Vazquez result with the assumptions

on f, gives

Flf] = dL;z /0 DD/ (L MDY g )
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The proof

Same steps as in the log-HLS case. The only difference is that the scaling relation

implies now for all r > 0,
FI, 0] = D Flu(, /).

And thus
8 g/ pp - ) (/@)

% (e_z(d—2>f[v(-,t)}) Y EY)

from which
t
S G L e o A e R
0

Passing to the limit + — oo and using Bonforte-Vazquez result with the assumptions

on f, gives

Flf] = diz /0 DD/ (L MDY g )

By the sharp GNS inequality, the right hand side is non-negative.
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The proof

Given a solution to 5
‘iu(x, 1) = Au® D (x,1)

ot
we compute
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The proof

Define
2= LD /@+2)

Then one computes

s 2\’
/ 1176/((]+2)‘VLt|h dx = <di> / |Vg\2 dr .
Jrd d—1 Jrd



A new proof of HLS inequalities
000000000 e
A New Proof of the HLS inequality with Equality Cases

The proof

Define
¢ = =D/ @+2)

Then one computes

2 2\?
/ u” D |7y dx = (di> |Vg|* dx.
Jrd d—1 Jrd

Now rewriting the right hand side in terms of g, one finds

/d
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Expressing this in terms of D, we have the result.
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