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Multidimensional rearrangement with convex potential

Theorem
Given a bounded domain D ⊂ Rd

and an L2 map x ∈ D→ z(x) ∈ Rd,

there is a unique rearrangement with convex potential
z](x) = ∇p(x),
p(x) lsc convex in x ∈ Rd, a.e. differentiable on D, such that∫

D
f(∇p(x))dx =

∫
D

f(z(x))dx

for all continuous function f such that |f(x)| ≤ cst(1 + |x|2)
This is a typical result in optimal transport theory, see YB, CRAS Paris 1987 and
CPAM 1991, Smith and Knott, JOTA 1987, cf. Villani’s book, Topics in optimal
transportation, AMS, 2003, see also books by Rachev-Rüschendorf, Evans,
Villani, Ambrosio-Gigli-Savaré and many others contributions...
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A rearrangement-scheme

Setting:
-a smooth bounded domain x ∈ D ⊂ Rd

-a vector-valued field: y(t,x) ∈ Rd (generalized temperature)
-a vector-valued source term: G = G(x) ∈ Rd with bounded
derivatives

Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
-predictor: yn+1/2(x) = yn(x) + h G(x)
-corrector: yn+1 = y]n+1/2
as the unique rearrangement with convex potential yn+1 = ∇pn+1
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Interpretation of the multi-d rearrangement scheme

What can we say about this multi-d rearrangement scheme?

It turns out that the scheme can be interpreted as a singular limit
of a Navier-Stokes Boussinesq model with (generalized)
buoyancy forces.
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The NS-Boussinesq model

Let D be a smooth bounded domain D ⊂ R3 in which moves an
incompressible fluid of velocity v(t,x) at x ∈ D, t ≥ 0, subject to

the Navier-Stokes equations

NSB ε2(∂tv + (v · ∇)v)− ν∇2v +∇p = y ∇ · v = 0

with ε, ν > 0 and v = 0 along ∂D.

The force field y is a "generalized buoyancy", vector-valued,
force, subject to the advection equation

∂ty + (v · ∇)y = G(x)

where G is a given smooth source term with bounded derivatives.
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Remark 1: In the concrete convection model we considered with
Mike Cullen (UK met’office), there is no x2 dependence and
G1 = 0. Then the force field y is vector-valued and combines both
Coriolis (in the x1 direction) and buoyancy (in the x3 direction)
effects.

Remark 2: From the PDE viewpoint, global existence of weak
solutions in 3D follows from Leray/Diperna-Lions theory, while
global existence of smooth solutions in 2D follows from Hou-Li
2005 and Chae 2006. (See also recent work by Danchin-Paicu.)

Remark 3: The smallness of ε is also equivalent to the action, on
a long time interval, of a small "global change" source term ,
through the following rescaling:
G→ εG(x), t→ t/ε, v→ εv(tε,x).
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Remark 4: for any suitable test function f we have
INDEPENDENTLY of ε,v, ν the following key property

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(x)dx

Remark 5: when both the source term and the initial force are
gradients and the fluid initially is at rest

G(x) = ∇g(x), y(0,x) = ∇p0(x), v(0,x) = 0

the system has a trivial but interesting "convection-free" solution,
independently of ε, ν, namely

v(t,x) = 0, y(t,x) = ∇p(t,x), p(t,x) = p0(x) + tg(x)
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A natural convexity condition for the HB system

The Hydrostatic Boussinesq HB system formally obtained by
setting ε, ν to zero

HB : ∂ty + (v · ∇)y = G(x), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.

Notice that, (v · ∇)y = (D2
xp · v) and v = ∇× A, for some

divergence-free vector potential A = A(t,x) ∈ R3, when d = 3.
Taking the curl of the evolution equation, we get

∇× (D2
xp(t,x) · ∇ × A) = ∇×G

This linear ’magnetostatic’ system in A is elliptic whenever p is
strongly convex: cst Id < D2

xp(t,x) < cst′ Id
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Derivation of the HB model under strong convexity
condition
Theorem
Assume D = R3/Z3, (y,p,v) to be a smooth solution of the HB

hydrostatic Boussinesq model, with cst Id < D2
xp(t,x) < cst′ Id

Then, as ν = ε→ 0, any Leray solution (yε,pε,vε) to the full NSB
Navier-Stokes Boussinesq equations, with same initial condition,
converges to (y,p,v).

Idea of the proof: Do not try to estimate plain L2 distances (which
completely fails) but rather use the non-quadratic functional∫

D
{K(t,yε(t,x),y(t,x)) +

ε2

2
|vε − v|2}dx

K(t,y′,y) = p∗(t,y′)− p∗(t,y)−∇p∗(t,y) · (y′ − y) ∼ |y− y′|2,

built on the Legendre-Fenchel transform
p∗(t, z) = supx∈D x · z− p(t,x) of the limit convex potential p.
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Breakdown of convexity and global solutions

Solutions of the HB model cannot be expected to stay globally
strictly convex. This is obvious, in particular, for solutions of form

v(t,x) = 0, y(t,x) = ∇p(t,x), p(t,x) = p0(x) + tg(x)

As a matter of fact, such solutions presumably get very unstable
as ε << 1, unless g is convex.

Thus, in the limit, it seems reasonable to enforce (what is known
as the Cullen-Purser condition for semi-geostrophic equations)

p(t,x) is a CONVEX function of x ∈ D, i.e. D2p(t,x) ≥ 0

in which case, the force field y(t,x) = ∇p(t,x) is completely
determined by the knowledge of all ’observables’

f→
∫

D
f(y(t,x))dx by MULTI-D REARRANGEMENT THEORY
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A concept of "entropy" solutions for the HB system

By analogy with hyperbolic conservation laws, we introduce the
concept of "entropy" solution, formally self-consistent, for the HB
system
DEFINITION

We say that (t→ y(t, ·)) ∈ C0(R+,L2(D,R3)) is a solution with
convex potential to the HB system, if

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(x)dx, ∀f

with y(t,x) = ∇p(t,x) for some CONVEX function p.
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Global existence of "entropy" solutions
Theorem
As h→ 0, the multi-d rearrangement scheme has converging
subsequences.
Each limit y belongs to the space C0(R+, L2(D,Rd)) and has a
convex potential: y(t, ·) = ∇p(t, ·) for each t ≥ 0.

In addition,

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(x)dx

for all smooth function f such that |∇f(x)| ≤ (1 + |x|)cst
See YB, JNLS 2009. Notice that the system is self-consistent, thanks to the
rearrangement theorem. However, our global existence result does not imply
stability with respect to initial conditions, except for d = 1, where we can use
the theory of scalar conservation laws, or d > 1 and G(x) = −x , where we can
use maximal monotone operator theory
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Sketch of proof: consistency part

Take a smooth function f. Then∫
D

f(yn+1(x))dx =

∫
D

f(yn+1/2(x))dx

(because yn+1 is a rearrangement of yn+1/2)

=

∫
D

f(yn(x) + hG(x))dx

(by definition of predictor yn+1/2)

=

∫
D

f(yn(x))dx + h
∫

D
(∇f)(yn(x)) ·G(x)dx + o(h)
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Open problems

Stability and singularities
Global "entropy" solutions are known to be stable with respect to
initial conditions only in some special cases, such as d = 1 or
G(x) = −x. Clearly, this needs to be extended to all cases.
Moreover, strict convexity clearly breaks down in finite time for
some data, but is it generically true? This is known only for d = 1
thanks to scalar conservation law theory.

Convergence beyond singularities
It is much more challenging to prove, after strict convexity breaks
down, that the "extended" solutions which obey the convexity
principle, correctly describe the limit of the NSB solutions in the
HB regime. They may be just crude (but relevant) approximations,
in some suitable sense for which a right mathematical framework
has to be found. A similar situation occurs in shallow water
theory when shock waves ("hydraulic jumps") appear.

Yann Brenier (CNRS) Convexity a,d Convection Benasque Sept 2011 15 / 16



Open problems

Stability and singularities
Global "entropy" solutions are known to be stable with respect to
initial conditions only in some special cases, such as d = 1 or
G(x) = −x. Clearly, this needs to be extended to all cases.
Moreover, strict convexity clearly breaks down in finite time for
some data, but is it generically true? This is known only for d = 1
thanks to scalar conservation law theory.
Convergence beyond singularities
It is much more challenging to prove, after strict convexity breaks
down, that the "extended" solutions which obey the convexity
principle, correctly describe the limit of the NSB solutions in the
HB regime. They may be just crude (but relevant) approximations,
in some suitable sense for which a right mathematical framework
has to be found. A similar situation occurs in shallow water
theory when shock waves ("hydraulic jumps") appear.

Yann Brenier (CNRS) Convexity a,d Convection Benasque Sept 2011 15 / 16



Some references
1-The 1D rearrangement scheme
a) convergence to the subdifferential equation in L2:
YB Methods Appl. Anal. 2004 see also YB Arma 2009 and Bolley,
B, Loeper J. Hyp. DE 2005,
b) convergence to Kruzhkov’s solutions in L1:
YB, CRAS 1981 and JDE 1983
2-The multi-D rearrangement scheme and its relationship with
convection theory
a) General discussion: YB, JNLS 2009, b) Global existence theory
see YB, JNLS 2009, following unpublished note 2002, in the case
G(x) = −x and Loeper SIMA 2008 in the case of semigeostrophic
(SG) equations, namely G(x) = Jx , J symplectic
c) Local smooth solutions: G. Loeper 2008 (for SG equations)
d) Derivation from the NSB equations
YB and M. Cullen, CMS 2010 (derivation of the "xz" SG equations,
to be fixed for domains with boundaries)
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