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EULER’S EQUATIONS: GEOMETRIC DEFINITION
One can describe the motion of an incompressible fluid inside a
bounded domain D in Rd by a time-dependent family t→ Mt of
maps, in the Hilbert space H = L2(D,Rd), valued in the subset
VPM(D) of all Lebesgue measure-preserving maps

VPM(D) = {M ∈ H,
∫

D
q(M(x))dx =

∫
D

q(x)dx, ∀q ∈ C(Rd)}

Solutions of the Euler equations, introduced in 1755, correspond
to those curves t→ Mt ∈ VPM(D) for which there exists a time
dependent scalar function pt, called ’pressure field’, defined on D,
such that

d2Mt

dt2 + (∇pt) ◦Mt = 0

where ∇ is the gradient operator on Rd (with respect to the
Euclidean norm | · |).
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THE PRINCIPLE OF LEAST ACTION
THEOREM Assume D to be convex. Let (Mt,pt) a solution of the
Euler equations, with a constant λ such that

d∑
i,j=1

∂2pt(x)
∂xi∂xj

ξiξj ≤ λ|ξ|2, ∀ξ ∈ Rd, ∀x ∈ D, ∀t

Then, for every t0 < t1 so that (t1 − t0)
2λ < π2, Mt is the unique

minimizer, among all curves along VPM(D) that coincide with Mt
at t = t0, t = t1, of the following ACTION

1
2

∫ t1

t0

∫
D
|dMt(x)

dt
|2 dxdt

In other words, such a curve is nothing but a (constant speed)
geodesic along VPM(D) , with respect to the metric induced by
H = L2(D,Rd)
see Arnold 1966, Ebin-Marsden 1970, Arnold-Khesin book 1998
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THE DUAL ACTION

Minimizing the action can be written as a saddle point problem,
just by using a time-dependent Lagrange multiplier to relax the
constraint for Mt to belong to VPM(D)

inf
M

sup
p

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

This is trivially bounded from below by

sup
p

inf
M

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

which naturally leads to a dual least action principle
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THE DUAL LEAST ACTION PRINCIPLE

THEOREM Under exactly the same conditions (D convex and
(t1 − t0)

2λ < π2), the pressure p is the unique maximizer of the
CONCAVE DUAL ACTION

I[p] =
∫

D
Jp(Mt0(x),Mt1(x))dx +

∫ t1

t0

∫
D

pt(x)dxdt

Jp(y, z) = inf
∫ t1

t0

(
1
2
|dξt

dt
|2 − pt(ξt)) dt

where the infimum is taken over all curves ξt ∈ D such that
ξt0 = y ∈ D, ξt1 = z ∈ D
As for the previous theorem, the proof is elementary and directly follows from
the 1D Poincaré inequality, which explains the role of constant π. Notice that Mt

is never assumed to be smooth or one-to-one and the case d = 1 is fine.
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GEOMETRIC ANALYSIS ISSUES I
1) DENSITY OF DIFFEOMORPHISMS IN VPM(D) It is customary to
consider the subset SDiff(D) of VPM(D) made of
Lebesgue-measure preserving maps that are, in addition,
orientation preserving diffeomorphisms. For d ≥ 2, VPM(D) is
precisely the L2 closure of SDiff(D). This is a relatively easy
result.

The identification of the closure of SDiff(D) for the a priori finer
geodesic distance induced by L2 is a much more difficult issue.
For simple (say contractile) domains D, this closure is still
VPM(D) for d ≥ 3 (but definitely not for d = 2) as shown by
Shnirelman in his landmark paper (Math USSR Sb 1985).
These results have striking consequences: in particular maps of
form

M(x) = (h(x1),x2,x3)

where h is any Lebesgue-measure preserving map of the unit
interval, are in the closure of SDiff([0,1]3).
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GEOMETRIC ANALYSIS ISSUES II

2) DENSITY OF PERMUTATIONS IN VPM(D) Another interesting
subset of VPM([0,1]3) is made of all "permutations" of all dyadic
divisions of the unit cube in sub-cubes of equal volumes.

The set of all such permutations, denoted P(D) turns out to be L2

dense in VPM([0,1]3) for all dimensions.
Combined with the previous result, this justifies the use of 1D
calculations by (simple) combinatorial optimization methods to
understand the geometry of 3D volume preserving maps.
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GEOMETRIC ANALYSIS ISSUES III

3) GEODESIC COMPLETENESS This amounts to globally solving
the initial value problem for the Euler equations. This is an
outstanding problem for nonlinear evolution PDEs, which will not
be discussed here.

4) MINIMIZING GEODESICS Shnirelman has proven (Math USSR
Sb 1986) that existence of minimizing geodesics along SDiff(D)
may fail when d ≥ 3. Remarkably enough, as we will see, the case
d ≥ 3 turns out to be "easy", with a crucial use of the convex
structure of the dual problem.
The case d = 2 is clearly linked to symplectic geometry and
seems extremely difficult: a fascinating strategy has been
developed by Shnirelman, by adding braid constraints to the
minimization problem, which certainly deserves further
investigations.
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APPROXIMATE MINIMIZING GEODESICS

DEFINITION Let us assume D to be convex, fix t0 = 0, t1 = 1 and
consider two maps M0,M1 ∈ VPM(D). We say that (Mε

t) ∈ SDiff(D)
is an ε-minimizing geodesic if

∫
D

∫ t1

t0

|
dMε

t(x)
dt

|2 dtdx ≤ d(M0,M1)
2 + ε

∫
D
|Mε

1(x)−M1(x)|2dx +

∫
D
|Mε

0(x)−M0(x)|2dx ≤ ε

where 1
2d(M0,M1)

2 denotes the maximal dual action. The
existence of such approximations is in no way trivial and is a
consequence of a key density results due to Shnirelman (GAFA
1994) that we will use later.
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MINIMIZING GEODESICS:
EXISTENCE OF A UNIQUE PRESSURE GRADIENT

MAIN THEOREM Let us assume D to be convex, with d ≥ 3, fix
t0 = 0, t1 = 1 and consider two maps M0,M1 ∈ VPM(D). Then,
there is a UNIQUE pressure-gradient ∇pt such that for all (Mε

t)
ε-minimizing geodesics, we have in the sense of distributions

d2Mε
t

dt2 ◦ (M
ε
t)

−1 +∇pt → 0, ε→ 0

In addition p belongs to the functional space L2
t (BVx)loc

This result essentially goes back to YB CPAM 1999, with important
improvements in Ambrosio-Figalli ARMA 2008. It is a combination of solving the
dual least action problem and using Shnirelman’s density result for
"generalized flows", GAFA 1994.
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MINIMIZING GEODESICS: FINAL COMMENTS
1) UNIQUENESS OF THE PRESSURE GRADIENT This is a
remarkable feature of the theory. There is no equivalent result for
finite dimensional configuration spaces such as SO(3), on which
geodesic curves (for appropriate metrics) correspond to the
motion of solid bodies in classical mechanics. We believe this
strange phenomenon to be the consequence of the "hidden
convexity" of the problem in dimension 3 and more. Of course
thr case d=2 is completely different .

2) LIMITED REGULARITY OF THE PRESSURE GRADIENT The
pressure gradient was proven first (YB CPAM 1999) to be a locally
bounded measure. Recently, Ambrosio and Figalli have shown a
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