Numerical Methods for a Shape Optimization Problem ¹

C. Conca , A. Laurain , <u>R. Mahadevan</u>

Jornadad de Matemática de la Zona Sur 2011 Universidad de la Frontera, Temuco

Dedicated to S. Kesavan on his 60th birthday

rmahadevan@udec.cl

¹This work was realised with the support of FONDECYT Nº 1090305

C. Conca , A. Laurain , R. Mahadevan

Numerical Methods for a Shape Optimization Problem

Problem Statement

Shape Optimization Problem.

- domain $\Omega \subset \mathbb{R}^n$, $0 < \alpha < \beta$, $0 < m < |\Omega|$
- $B \subset \Omega$ measurable; $A = \Omega \setminus B$; |B| = m.

inf $\{\lambda(B) : B \subset \Omega \text{ measurable}, |B| = m.\}$

 $-\operatorname{div}(\sigma \nabla u) = \lambda(B)u \text{ in } \Omega$ $u = 0 \text{ on } \partial \Omega.$

• $\sigma = \alpha \chi_A + \beta \chi_B$; $\lambda(B)$ the first eigenvalue.

Problem Statement

Shape Optimization Problem.

- domain $\Omega \subset \mathbb{R}^n$, $0 < \alpha < \beta$, $0 < m < |\Omega|$
- $B \subset \Omega$ measurable; $A = \Omega \setminus B$; |B| = m.

inf { $\lambda(B) : B \subset \Omega$ measurable, |B| = m.}

 $-\operatorname{div}(\sigma \nabla u) = \lambda(B)u \text{ in } \Omega$ $u = 0 \text{ on } \partial \Omega.$

• $\sigma = \alpha \chi_A + \beta \chi_B$; $\lambda(B)$ the first eigenvalue.

Problem Statement

۲

Shape Optimization Problem.

- domain $\Omega \subset \mathbb{R}^n$, $0 < \alpha < \beta$, $0 < m < |\Omega|$
- $B \subset \Omega$ measurable; $A = \Omega \setminus B$; |B| = m.

inf {
$$\lambda(B) : B \subset \Omega$$
 measurable, $|B| = m$.}

$$-\operatorname{div}(\sigma \nabla u) = \lambda(B)u \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega.$$

• $\sigma = \alpha \chi_A + \beta \chi_B$; $\lambda(B)$ the first eigenvalue.

A (10) A (10)

Existence

- General Domains Open
- Case of a Ball
- Alvino, Lions, Trombetti Nonlinear Analysis 1989 [1]
- Conca, Mahadevan, Sanz Appl. Math. Opt. 2009 [2]
- Existence of a radially symmetric solution.

Uniqueness

Open Question.

Characterization

Can we find some explicit solutions?

Existence

- General Domains Open
- Case of a Ball
- Alvino, Lions, Trombetti Nonlinear Analysis 1989 [1]
- Conca, Mahadevan, Sanz Appl. Math. Opt. 2009 [2]
- Existence of a radially symmetric solution.

Uniqueness

Open Question.

Characterization

Can we find some explicit solutions?

Existence

- General Domains Open
- Case of a Ball
- Alvino, Lions, Trombetti Nonlinear Analysis 1989 [1]
- Conca, Mahadevan, Sanz Appl. Math. Opt. 2009 [2]
- Existence of a radially symmetric solution.

Uniqueness

Open Question.

Characterization

Can we find some explicit solutions?

Existence

- General Domains Open
- Case of a Ball
- Alvino, Lions, Trombetti Nonlinear Analysis 1989 [1]
- Conca, Mahadevan, Sanz Appl. Math. Opt. 2009 [2]
- Existence of a radially symmetric solution.

Uniqueness

Open Question.

Characterization

Can we find some explicit solutions?

Existence

- General Domains Open
- Case of a Ball
- Alvino, Lions, Trombetti Nonlinear Analysis 1989 [1]
- Conca, Mahadevan, Sanz Appl. Math. Opt. 2009 [2]
- Existence of a radially symmetric solution.

Uniqueness

Open Question.

Characterization

Can we find some explicit solutions?

• • • • • • • • • • • • •

Asymptotic Expansion.

- Conclusions-The Disk Case.
- Numerical Results.
- A Descent Algorithm.
- Conclusions.
- Numerical Results.

- Asymptotic Expansion.
- Conclusions-The Disk Case.
- Numerical Results.
- A Descent Algorithm.
- Conclusions.
- Numerical Results.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Asymptotic Expansion.
- Conclusions-The Disk Case.
- Numerical Results.
- A Descent Algorithm.
- Conclusions.
- Numerical Results.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Asymptotic Expansion.
- Conclusions-The Disk Case.
- Numerical Results.
- A Descent Algorithm.
- Conclusions.
- Numerical Results.

- Asymptotic Expansion.
- Conclusions-The Disk Case.
- Numerical Results.
- A Descent Algorithm.
- Conclusions.
- Numerical Results.

A (10) A (10) A (10)

- Asymptotic Expansion.
- Conclusions-The Disk Case.
- Numerical Results.
- A Descent Algorithm.
- Conclusions.
- Numerical Results.

• • • • • • •

Asymptotic Expansion

• Case when
$$\beta = \alpha + \varepsilon$$
, $\varepsilon > 0$ small

• $\sigma^{\varepsilon} = \alpha + \varepsilon \chi_B$

Theorem (Rellich)

The first eigenvalue λ^{ε} of

$$-\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = \lambda^{\varepsilon} u^{\varepsilon} \quad in \ \Omega, \tag{3.1}$$
$$u^{\varepsilon} = 0 \quad on \ \partial\Omega. \tag{3.2}$$

is an analytic function of ε in a neighbourhood of $\varepsilon = 0$ and the positive eigenfunction u^{ε} satisfying the normalization condition

$$\int_{\Omega} (u^{\varepsilon})^2 = 1 \tag{3.3}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

is analytic with respect to arepsilon.

Asymptotic Expansion

• Case when
$$\beta = \alpha + \varepsilon$$
, $\varepsilon > 0$ small

•
$$\sigma^{\varepsilon} = \alpha + \varepsilon \chi_B$$

Theorem (Rellich)

The first eigenvalue λ^{ε} of

$$-\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = \lambda^{\varepsilon} u^{\varepsilon} \quad \text{in } \Omega,$$
(3.1)

$$u^{\varepsilon} = 0 \quad on \ \partial \Omega,$$
 (3.2)

is an analytic function of ε in a neighbourhood of $\varepsilon = 0$ and the positive eigenfunction u^{ε} satisfying the normalization condition

$$\int_{\Omega} (u^{\varepsilon})^2 = 1 \tag{3.3}$$

is analytic with respect to ε .

Asymptotic Expansion

• Case when
$$\beta = \alpha + \varepsilon$$
, $\varepsilon > 0$ small

•
$$\sigma^{\varepsilon} = \alpha + \varepsilon \chi_B$$

Theorem (Rellich)

The first eigenvalue λ^{ε} of

$$-\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = \lambda^{\varepsilon} u^{\varepsilon} \quad \text{in } \Omega,$$
(3.1)

$$u^{\varepsilon} = 0 \quad on \ \partial \Omega,$$
 (3.2)

is an analytic function of ε in a neighbourhood of $\varepsilon = 0$ and the positive eigenfunction u^{ε} satisfying the normalization condition

$$\int_{\Omega} (u^{\varepsilon})^2 = 1 \tag{3.3}$$

is analytic with respect to ε .

...Asymptotic Expansion

So, we can introduce the series expansion

$$u^{\varepsilon} = v_0 + \varepsilon v_1 + \dots, \qquad (3.4)$$

$$\lambda^{\varepsilon} = \lambda_0 + \varepsilon \lambda_1 + \dots, \tag{3.5}$$

in equations (3.1)-(3.2) and gather terms of similar order in ε :

$$-\operatorname{div}(\alpha\nabla\nu_0) = \lambda_0\nu_0 \quad \text{in } \Omega, \tag{3.6}$$

$$v_0 = 0 \text{ on } \partial \Omega.$$
 (3.7)

$$-\operatorname{div}(\alpha\nabla v_{1}) - \lambda_{0}v_{1} = \operatorname{div}(\chi_{B}\nabla v_{0}) + \lambda_{1}v_{0} \text{ in } \Omega, \qquad (3.8)$$

$$v_1 = 0 \text{ on } \partial \Omega.$$
 (3.9)

Due to the Fredholm alternative, equation (3.8)-(3.9) has a solution if and only if

$$\int_{\Omega} \operatorname{div}(\chi_B \nabla v_0) v_0 + \lambda_1 \int_{\Omega} v_0^2 = 0.$$

...Asymptotic Expansion

As

$$\int_{\Omega} v_0^2 = 1$$

we obtain

$$\lambda_1 = \int_{\boldsymbol{B}} |\nabla \boldsymbol{v}_0|^2. \tag{3.10}$$

Theorem (Conca, Laurain, M.)

For sufficiently small $\varepsilon > 0$

$$\operatorname{argmin}_{|B|=m} \lambda^{\varepsilon}(B) = \operatorname{argmin}_{|B|=m} \lambda_1(B) \tag{3.11}$$

Under additional hypotheses, the optimal solution for the problem (1.1) is of the form

 $\{x: |\nabla v_0(x)| < c^*\}.$

 $\operatorname{argmin}_{|B|=m} \lambda^{\varepsilon}(B) = \operatorname{argmin}_{|B|=m}(\lambda_0 + \varepsilon \lambda_1(B) + \dots)$

Conclusions - The Disk Case

• $\Omega = B(0, 1)$; 2- or 3- dimensional space.

• solution of evp (3.6)-(3.7) is radial $v_0(x) = w(|x|)$

$$r^{2}w_{0}^{\prime\prime}(r) + (d-1)rw_{0}^{\prime}(r) + r^{2}\frac{\lambda_{0}}{\alpha}w_{0}(r) = 0, \qquad (3.12)$$

$$w_0'(0)=0, \ w_0(1)=0. \eqno(3.13)$$

In 2-D, $w_0(r) = J_0(\eta_d r)$ where J_0 is Bessel functions of the first kind and η_d is it's first zero.

• So $|\nabla v_0|^2(x) = (w_1(r))^2$. where $w_1(r) := -w'_0(r)$ and the solution is then

$$\{X: W_1(r) < C^*\}$$

where c^* is such that $|\{x : w_1(|x|) < c^*\}| = m$.

Conclusions - The Disk Case

- $\Omega = B(0, 1)$; 2- or 3- dimensional space.
- solution of evp (3.6)-(3.7) is radial $v_0(x) = w(|x|)$

$$r^{2}w_{0}^{\prime\prime}(r) + (d-1)rw_{0}^{\prime}(r) + r^{2}\frac{\lambda_{0}}{\alpha}w_{0}(r) = 0, \qquad (3.12)$$

$$w_0'(0)=0, \ w_0(1)=0. \eqno(3.13)$$

In 2-D, $w_0(r) = J_0(\eta_d r)$ where J_0 is Bessel functions of the first kind and η_d is it's first zero.

• So $|\nabla v_0|^2(x) = (w_1(r))^2$. where $w_1(r) := -w'_0(r)$ and the solution is then

$$\{X: W_1(r) < C^*\}$$

where c^* is such that $|\{x : w_1(|x|) < c^*\}| = m$.

Conclusions - The Disk Case

- $\Omega = B(0, 1)$; 2- or 3- dimensional space.
- solution of evp (3.6)-(3.7) is radial $v_0(x) = w(|x|)$

$$r^{2}w_{0}^{\prime\prime}(r) + (d-1)rw_{0}^{\prime}(r) + r^{2}\frac{\lambda_{0}}{\alpha}w_{0}(r) = 0, \qquad (3.12)$$

$$w_0'(0)=0, \ w_0(1)=0. \eqno(3.13)$$

In 2-D, $w_0(r) = J_0(\eta_d r)$ where J_0 is Bessel functions of the first kind and η_d is it's first zero.

• So $|\nabla v_0|^2(x) = (w_1(r))^2$. where $w_1(r) := -w'_0(r)$ and the solution is then

$$\{x : w_1(r) < c^*\}$$

where c^* is such that $|\{x : w_1(|x|) < c^*\}| = m$.

....Conclusions - The Disk Case

Theorem

The solution of (1.1) is of two types. There exists m_c such that

- Type I: If $m \le m_c$ then $B^* = B(0, (m/\pi)^{1/2})$ or,
- Type II: If $m > m_c$ then there exists ξ^0 and ξ^1 with $(m/\pi)^{1/2} < \xi^0 < \xi^1 < 1$ such that

$$B^* = B(0, \xi^0) \cup \left(B(0, 1) \setminus \overline{B(0, \xi^1)}
ight)$$
 .

C. Conca , A. Laurain , <u>R. Mahadevan</u> Numerical Methods for a Shape Optimization Problem

Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the square case.

...Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the crescent case.

...Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the polygon case.

...Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the ring case.

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

۲

 $c_0 := \inf\{c : m(B_0, c) \ge m\}.$ (5.2)

- Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.
- Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}$.

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

۲

$$c_0 := \inf\{c : m(B_0, c) \ge m\}.$$
 (5.2)

- Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.
- Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

۲

$$c_0 := \inf\{c : m(B_0, c) \ge m\}.$$
 (5.2)

- Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.
- Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

$$c_0:=\inf\{c:m(B_0,c)\geq m\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.

• Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

۲

$$c_0 := \inf\{c : m(B_0, c) \ge m\}.$$
 (5.2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.

• Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

٩

$$c_0 := \inf\{c : m(B_0, c) \ge m\}.$$
 (5.2)

- Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.
- Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$
(5.1)

A Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) = |\{x : |\nabla u_{B_0}(x)| \le c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

٩

$$c_0 := \inf\{c : m(B_0, c) \ge m\}.$$
 (5.2)

- Under suitable conditions $|\{x : |\nabla u_{B_0}(x)| \le c_0\}| = m$.
- Actualization $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ almost everywhere (under extra hypotheses). If B_0 is optimal, then B_0 is almost everywhere equal to the level set $\{x : |\nabla u_{B_0}(x)| \leq c_0\}$.

- The disk case. $\Omega = B(0, R)$. The optimal set B^* should include the origin.
- The ring or torus case. If again we have radial symmetry, then the gradient of *u* vanishes at one point along a radius of the domain and by radial symmetry, the gradient of *u* vanishes on a whole circle whose center is the center of the ring or torus. This circle is in the optimal set.
- **Domains with corners in two dimensions.** In this case the optimal set B^* contains a neighbourhood of the corners with angle smaller than π while its complement $A^* = \Omega \setminus B^*$ contains a neighbourhood of the corners with angle greater than π .

A (10) A (10) A (10) A

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ almost everywhere (under extra hypotheses). If B_0 is optimal, then B_0 is almost everywhere equal to the level set $\{x : |\nabla u_{B_0}(x)| \leq c_0\}$.

- The disk case. $\Omega = B(0, R)$. The optimal set B^* should include the origin.
- The ring or torus case. If again we have radial symmetry, then the gradient of *u* vanishes at one point along a radius of the domain and by radial symmetry, the gradient of *u* vanishes on a whole circle whose center is the center of the ring or torus. This circle is in the optimal set.
- **Domains with corners in two dimensions.** In this case the optimal set B^* contains a neighbourhood of the corners with angle smaller than π while its complement $A^* = \Omega \setminus B^*$ contains a neighbourhood of the corners with angle greater than π .

A (10) A (10)

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ almost everywhere (under extra hypotheses). If B_0 is optimal, then B_0 is almost everywhere equal to the level set $\{x : |\nabla u_{B_0}(x)| \leq c_0\}$.

- The disk case. $\Omega = B(0, R)$. The optimal set B^* should include the origin.
- The ring or torus case. If again we have radial symmetry, then the gradient of *u* vanishes at one point along a radius of the domain and by radial symmetry, the gradient of *u* vanishes on a whole circle whose center is the center of the ring or torus. This circle is in the optimal set.
- **Domains with corners in two dimensions.** In this case the optimal set B^* contains a neighbourhood of the corners with angle smaller than π while its complement $A^* = \Omega \setminus B^*$ contains a neighbourhood of the corners with angle greater than π .

• • • • • • • •

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ almost everywhere (under extra hypotheses). If B_0 is optimal, then B_0 is almost everywhere equal to the level set $\{x : |\nabla u_{B_0}(x)| \leq c_0\}$.

- The disk case. $\Omega = B(0, R)$. The optimal set B^* should include the origin.
- The ring or torus case. If again we have radial symmetry, then the gradient of *u* vanishes at one point along a radius of the domain and by radial symmetry, the gradient of *u* vanishes on a whole circle whose center is the center of the ring or torus. This circle is in the optimal set.
- **Domains with corners in two dimensions.** In this case the optimal set B^* contains a neighbourhood of the corners with angle smaller than π while its complement $A^* = \Omega \setminus B^*$ contains a neighbourhood of the corners with angle greater than π .

< 回 > < 三 > < 三 >

The Disk Case

Figure: Initial domain $B_0 = B(0, 0.75)$

Figure: The optimal distribution in the disk case.

References

A. Alvino, G. Trombetti, and P.-L. Lions.

On optimization problems with prescribed rearrangements. *Nonlinear Anal.*, 13(2):185–220, 1989.

C. Conca, R. Mahadevan, and L. Sanz.

An extremal eigenvalue problem for a two-phase conductor in a ball. *Appl. Math. Optim.*, 60:173–184, 2009.