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Problem Statement

Shape Optimization Problem.

domain Ω ⊂ Rn, 0 < α < β, 0 < m < |Ω|
B ⊂ Ω measurable; A = Ω \ B; |B| = m.

inf {λ(B) : B ⊂ Ω measurable, |B| = m.} .

−div(σ∇u) = λ(B)u in Ω

u = 0 on ∂Ω .

σ = αχA + βχB; λ(B) the first eigenvalue.
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Questions of Interest

Existence
General Domains - Open
Case of a Ball
Alvino, Lions, Trombetti - Nonlinear Analysis 1989 [1]
Conca, Mahadevan, Sanz - Appl. Math. Opt. 2009 [2]
Existence of a radially symmetric solution.

Uniqueness

Open Question.

Characterization
Can we find some explicit solutions?
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Asymptotic Expansion

Case when β = α + ε, ε > 0 small
σε = α + εχB

Theorem (Rellich)

The first eigenvalue λε of

− div(σε∇uε) =λεuε in Ω, (3.1)
uε =0 on ∂Ω, (3.2)

is an analytic function of ε in a neighbourhood of ε = 0 and the
positive eigenfunction uε satisfying the normalization condition∫

Ω

(uε)2 = 1 (3.3)

is analytic with respect to ε.
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...Asymptotic Expansion

So, we can introduce the series expansion

uε = v0 + εv1 + . . . , (3.4)
λε = λ0 + ελ1 + . . . , (3.5)

in equations (3.1)-(3.2) and gather terms of similar order in ε :

− div(α∇v0) =λ0v0 in Ω, (3.6)
v0 =0 on ∂Ω. (3.7)

− div(α∇v1)− λ0v1 =div(χB∇v0) + λ1v0 in Ω, (3.8)
v1 =0 on ∂Ω. (3.9)

Due to the Fredholm alternative, equation (3.8)-(3.9) has a solution if
and only if ∫

Ω

div(χB∇v0)v0 + λ1

∫
Ω

v2
0 = 0.
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...Asymptotic Expansion
As ∫

Ω

v2
0 = 1

we obtain
λ1 =

∫
B
|∇v0|2. (3.10)

Theorem (Conca, Laurain, M. )

For sufficiently small ε > 0

argmin|B|=m λ
ε(B) = argmin|B|=m λ1(B) (3.11)

Under additional hypotheses, the optimal solution for the problem
(1.1) is of the form

{x : |∇v0(x)| < c∗} .

argmin|B|=m λ
ε(B) = argmin|B|=m(λ0 + ελ1(B) + . . . )
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Conclusions - The Disk Case

Ω = B(0,1); 2- or 3- dimensional space.
solution of evp (3.6)-(3.7) is radial v0(x) = w(|x |)

r2w ′′0 (r) + (d − 1)rw ′0(r) + r2λ0

α
w0(r) = 0, (3.12)

w ′0(0) = 0, w0(1) = 0. (3.13)

In 2-D, w0(r) = J0(ηd r) where J0 is Bessel functions of the first
kind and ηd is it’s first zero.
So |∇v0|2(x) = (w1(r))2 . where w1(r) := −w ′0(r) and the solution
is then

{x : w1(r) < c∗}

where c∗ is such that |{x : w1(|x |) < c∗}| = m.
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....Conclusions - The Disk Case

Theorem

The solution of (1.1) is of two types. There exists mc such that
Type I: If m ≤ mc then B∗ = B(0, (m/π)1/2) or,
Type II: If m > mc then there exists ξ0 and ξ1 with
(m/π)1/2 < ξ0 < ξ1 < 1 such that

B∗ = B(0, ξ0) ∪
(

B(0,1) \ B(0, ξ1)
)
.

Figure: Functions w0(r) (plain), and w1(r) = −w ′
0(r) (dashed) in dimensions

d = 2 (left) and d = 3 (right). The function w1 is increasing on [0, r 1
d ] and

decreasing on [r 1
d , 1].
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Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the square case.
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...Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the crescent case.
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...Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the polygon case.
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...Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the ring case.
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A Descent Algorithm-general α, β

Variational formulation for λ

λ = min
u∈H1

0 (Ω)

∫
Ω

σ|∇u|2∫
Ω

u2
= min

u∈H1
0 (Ω),||u||2=1

∫
Ω

σ|∇u|2. (5.1)

A Descent Algorithm

Initial measurable set B0, |B0| = m.
m(B0, c) = |{x : |∇uB0 (x)| ≤ c}|. Non-decreasing m(B0, c)→ 0
as c → 0 whereas, m(B0, c)→ |Ω| as c →∞.

c0 := inf{c : m(B0, c) ≥ m}. (5.2)

Under suitable conditions |{x : |∇uB0 (x)| ≤ c0}| = m.
Actualization B1 = {x : |∇uB0 (x)| ≤ c0}.
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Conclusions

Theorem

λ(B1) ≤ λ(B0); equality holds if and only if B1 = B0 almost
everywhere (under extra hypotheses). If B0 is optimal, then B0 is
almost everywhere equal to the level set {x : |∇uB0 (x)| ≤ c0}.

The disk case. Ω = B(0,R). The optimal set B∗ should include
the origin.
The ring or torus case. If again we have radial symmetry, then
the gradient of u vanishes at one point along a radius of the
domain and by radial symmetry, the gradient of u vanishes on a
whole circle whose center is the center of the ring or torus. This
circle is in the optimal set.
Domains with corners in two dimensions. In this case the
optimal set B∗ contains a neighbourhood of the corners with
angle smaller than π while its complement A∗ = Ω \ B∗ contains
a neighbourhood of the corners with angle greater than π.
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The Disk Case

Figure: Initial domain B0 = B(0, 0.75)

Figure: The optimal distribution in the disk case.
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