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Problem Statement

Shape Optimization Problem.

@ domainQcR", O0<a<f, 0<m<|Q
@ B C Q measurable; A=Q\ B; |B| = m.
(]

inf{A\(B) : B C Q measurable, |B| = m.} .

—div(eVu) = XB)uinQ
u = 0ondN.

@ 0 = axa + Bxa; A\(B) the first eigenvalue.
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@ Alvino, Lions, Trombetti - Nonlinear Analysis 1989 [1]
@ Conca, Mahadevan, Sanz - Appl. Math. Opt. 2009 [2]
@ Existence of a radially symmetric solution.
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Questions of Interest

Existence

@ General Domains - Open

@ Case of a Ball

@ Alvino, Lions, Trombetti - Nonlinear Analysis 1989 [1]
@ Conca, Mahadevan, Sanz - Appl. Math. Opt. 2009 [2]
@ Existence of a radially symmetric solution.

o’

Open Question.

Characterization
Can we find some explicit solutions?
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Asymptotic Expansion

@ Casewhen 8 =a+e¢, > 0small
@ o =a-+¢exB

Theorem (Rellich)

The first eigenvalue \¢ of

—div(c°VU®) =X°U° inQ, (3.1)
u® =0 on o9, (3.2)

is an analytic function of ¢ in a neighbourhood of e = 0 and the
positive eigenfunction u® satisfying the normalization condition

/Q(us)2 =1 (3.3)

is analytic with respect to e.
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Asymptotic Expansion

..Asymptotic Expansion

So, we can introduce the series expansion

U=vw+ev+..., (3.4)
AX=Xo+er+..., (3.5)

in equations (3.1)-(3.2) and gather terms of similar order in ¢ :

— diV(aVVo) =XoVo in Q, (36)

Vo =0 on dQ. (3.7)

- diV(aVV1) — AoV :diV(XBVVO) + MV inQ, (3.8)
vi =0 on 0% (3.9)

Due to the Fredholm alternative, equation (3.8)-(3.9) has a solution if
and only if

/diV(XBVVQ)Vo +)\1/ Vg =0.
Q Q
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Asymptotic Expansion

..Asymptotic Expansion

As

/v§:1
0

A\ :/|VV0|2. (3.10)
B

we obtain

Theorem (Conca, Laurain, M. )

For sufficiently small ¢ > 0
argmin g _, A°(B) = argmin g _p, A1(B) (8.11)

Under additional hypotheses, the optimal solution for the problem
(1.1) is of the form

{x:|Vw(x)| <c'}.

argmin g _, A°(B) = argming,_p, (Ao + A1 (B) +...)
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Conclusions - The Disk Case

@ Q= B(0,1); 2- or 3- dimensional space.
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Conclusions - The Disk Case

@ Q= B(0,1); 2- or 3- dimensional space.
@ solution of evp (3.6)-(3.7) is radial vo(x) = w(|x|)

, (3.12)

rPwg (r) + (d — 1)mwg(r) + rz%wo(r)
1)=0. (3.13)

=0
W(,)(O) = 0, W()( ): 0

In 2-D, wy(r) = Jo(nar) where Jy is Bessel functions of the first
kind and ny is it’s first zero.
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Conclusions - The Disk Case

@ Q= B(0,1); 2- or 3- dimensional space.
@ solution of evp (3.6)-(3.7) is radial vo(x) = w(|x|)

, (3.12)

rPwg (r) + (d — 1)mwg(r) + rz%wo(r)
1)=0. (3.13)

=0
W(,)(O) =0, W()( ) =0
In 2-D, wo(r) = Jo(ngr) where Jy is Bessel functions of the first
kind and ny is it’s first zero.
@ So |V vol?(x) = (wi(r))?. where wy(r) := —w(r) and the solution
is then
{x:w(r)<c'}

where c¢* is such that [{x : wy(|x|) < ¢*}| = m.

C. Conca, A. Laurain, R. Mahadevan Numerical Methods for a Shape Optimization Problem



Asymptotic Expansion

..Conclusions - The Disk Case

Theorem

The solution of (1.1) is of two types. There exists m; such that
e Type I: If m < m then B* = B(0, (m/x)"/?) or,

@ Type II: If m > m, then there exists £° and ¢' with
(m/7)1/2 < €9 < ¢' <1 such that

B* = B(0,¢%) U (B(0,1)\ B0,€")) -

of 0z 03 04 05 08 07 08 04 |
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Numerical Results-1

Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the square case.
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Numerical Results-1

...omall Conductivity Gap-Other Domains

Figure: The optimal distribution in the crescent case.
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Numerical Results-1

..Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the polygon case.
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Numerical Results-1

..Small Conductivity Gap-Other Domains

Figure: The optimal distribution in the ring case.
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A Descen

A Descent Algorithm-general «,

Variational formulation for A

/ o|Vul?
Q

A= min 22— min /J|Vu|2. (5.1)
ueH} () U2 ueH} (Q),|lull2=1 Jq
Q
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Variational formulation for A
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A Descent Algorithm

@ Initial measurable set By, |By| = m.

@ m(By,c) = |{x : |Vug,(x)| < c}|. Non-decreasing m(By,c) — 0
as ¢ — 0 whereas, m(Bp, c) — 2] as ¢ — c.
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A Descent Algorithm-general «,

Variational formulation for A

/ o|Vul?
Q

A= min 22— min /J|Vu|2. (5.1)
ueH} () U2 ueH} (Q),|lull2=1 Jq

Q

A Descent Algorithm

@ Initial measurable set By, |By| = m.

@ m(By,c) = |{x : |Vug,(x)| < c}|. Non-decreasing m(By,c) — 0
as ¢ — 0 whereas, m(Bp, c) — 2] as ¢ — c.

°
Co ;= inf{c : m(By, ¢) > m}. (5.2)

@ Under suitable conditions |[{x : |Vug,(X)| < co}| = m.
@ Actualization By = {x : [Vug,(x)| < co}.
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Conclusions

A(B1) < X(Bp); equality holds if and only if By = By almost
everywhere (under extra hypotheses). If By is optimal, then By is
almost everywhere equal to the level set {x : |Vug,(x)| < co}.
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the gradient of u vanishes at one point along a radius of the
domain and by radial symmetry, the gradient of u vanishes on a
whole circle whose center is the center of the ring or torus. This
circle is in the optimal set.
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Conclusions

A(B1) < X(Bp); equality holds if and only if By = By almost
everywhere (under extra hypotheses). If By is optimal, then By is
almost everywhere equal to the level set {x : |Vug,(x)| < co}.

@ The disk case. 2 = B(0, R). The optimal set B* should include
the origin.

@ The ring or torus case. If again we have radial symmetry, then
the gradient of u vanishes at one point along a radius of the
domain and by radial symmetry, the gradient of u vanishes on a
whole circle whose center is the center of the ring or torus. This
circle is in the optimal set.

@ Domains with corners in two dimensions. In this case the
optimal set B* contains a neighbourhood of the corners with
angle smaller than 7 while its complement A* = Q \ B* contains
a neighbourhood of the corners with angle greater than .
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The Disk Case

Figure: Initial domain By = B(0,0.75)

Figure: The optimal distribution in the disk case.
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