Peipei Shang Joint work with Jean-Michel Coron and Frederique Clement

September 5, 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Introduction of the model and related control problems
- Some numerical results
- Theoretical result for Dirac masses based on Pontryagin's Maximum Principle (PMP)

- Numerical results based on PMP
- Optimal control result for PDE case
- Open problems
- References

The cell population in a follicle is represented by cell density functions $\rho_{j,k}(t, x, y)$ defined on each cellular phase $Q_{j,k}$ with age x and maturity y, which satisfy the following conservation laws

$$\frac{\partial \rho_{j,k}(t,x,y)}{\partial t} + \frac{\partial \rho_{j,k}(t,x,y)}{\partial x} + \frac{\partial (h(y,u)\rho_{j,k}(t,x,y))}{\partial y} = 0, \quad \text{in } Q_{j,k}$$
(1.1)

Here $k = 1, \dots, N$, and N is the number of consecutive cell cycles. j = 1, 2, 3 denotes Phase 1, Phase 2 and Phase 3.

$$h(y,u) = -y^{2} + (c_{1}y + c_{2})u, \qquad (1.2)$$

with c_1 and c_2 given positive constants.

Introduction of the model

Optimal control for a conservation law modeling the development of ovulation Introduction of the model

related control problems

• We define

$$M(t) := \sum_{j=1}^{3} \sum_{k=1}^{N} \int_{0}^{+\infty} \int_{0}^{+\infty} y \,\rho_{j,k}(t,x,y) \,dx \,dy \qquad (1.3)$$

as the follicular maturity.

- The control u(M(t)).
- Ovulation is triggered when the maturity reaches a given threshold value M_s . Hence, the optimal control problem is, for fixed observed time t_1 to maximize the maturity $M(t_1)$.
- Proliferative cells leave the cycle in an irreversible way, we get the restraint of control u ∈ [w, 1] with w ∈ (0, 1).

Numerical results

switching direction

black : $u = w \rightarrow u = 1$; red: $u = 1 \rightarrow u = w$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical results

Numerical result of optimal bang-bang control

red: $u = w \rightarrow u = 1$, black: u = w

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimal control for a conservation law modeling the development of ovulation Theoretical result based on PMP

simplified model

Consider the following balance law

$$\rho_t + \rho_x + (h(y, u)\rho)_y = c_s \,\chi(y), \quad t \ge 0, \ x \ge 0, \ y \ge 0,$$
(3.1)

with c_s a given positive constant, we denote

$$a(y) = -y^2, \quad b(y) = c_1 y + c_2.$$
 (3.2)

$$h(y, u) = a(y) + b(y)u.$$
 (3.3)

 $\chi(y)$ is a characteristic function

$$\chi(y) = \begin{cases} 1, & \text{if } y \in [0, y_s), \\ 0, & \text{if } y \in (y_s, \infty), \end{cases}$$
(3.4)

(日) (日) (日) (日) (日) (日) (日) (日)

Theoretical result based on PMP

(BC)

$$\rho(t,0,y) = \rho(t,x,0) = 0, \quad \forall x \ge 0, \ y \ge 0. \tag{3.5}$$

(IC)

The initial condition $\rho_0(x, y)$ is given as a positive Borel measure with compact support $\subset [0, 1]^2$. For any admissible control $u \in L^{\infty}([t_0, t_1]; [w, 1])$, the cost function is

$$J(u) = -\iint_{[0,+\infty)\times[0,+\infty)} y \, d\rho(t_1, x, y).$$
(3.6)

Optimal control for a conservation law modeling the development of ovulation Theoretical result based on PMP

one Dirac mass

We consider the following optimal control problem $(\mathcal{P}):$

$$\begin{cases} \dot{x} = f(x, u), & u \in L^{\infty}([t_0, t_1]; [w, 1]), & t \in [t_0, t_1], \\ x(t_0) = x^0, & \\ J(u) = \int_{t_0}^{t_1} (p(x, u) + q(x) \chi(x_2)) \, dt \end{cases}$$
(3.7)

where

$$p(x,u) := -(a(x_2) + b(x_2)u)x_3, \quad q(x) := -c_s x_2 x_3.$$
 (3.8)

$$f = \begin{pmatrix} 1 \\ a(x_2) + b(x_2) u \\ c_s \chi(x_2) x_3 \end{pmatrix}$$

 $x = (x_1, x_2, x_3)^{tr} \in \mathbb{R}^3$, x_1 denotes the age, x_2 denotes the maturity and x_3 denotes the mass.

The main difficulty of problem (\mathcal{P}) is that both f and the integrand χ of the functional J are discontinuous. First, we proved the existence of optimal control to problem (\mathcal{P}) by approximating method.

Theorem

The infimum of the functional J in $L^{\infty}([t_0, t_1]; [w, 1])$ is achieved, i.e., there exists $u \in L^{\infty}([t_0, t_1]; [w, 1])$ such that

$$J(u) = \inf_{u \in L^{\infty}([t_0, t_1]; [w, 1])} J(u).$$

Theoretical result based on PMP

Theorem

For any measurable optimal control u_* to problem (\mathcal{P}), the following property holds: There exists $t' \in [t_0, t_1)$ such that

$$u_* = w \text{ in } (t_0, t') \text{ and } u_* = 1 \text{ in } (t', t_1).$$
 (3.9)

Furthermore, under the assumption that

$$2y_s - c_1 > 0$$
 and $c_s > \frac{a(y_s) + b(y_s)}{y_s}$, (3.10)

this optimal switch time t' is the exit time \hat{t} .

Necessary optimal conditions for optimal control (PMP)

Necessary optimal conditions (A. I. Smirnov, 2008). Let us define the Hamilton-Pontryagin function and the Hamiltonian as

$$\mathcal{H}(x, u, \psi, \psi^{0}) := \langle f(x, u), \psi \rangle + \psi^{0} \Big(p(x, u) + q(x)\chi(x_{2}) \Big),$$
(3.11)

$$H(x, \psi, \psi^{0}) = \max_{u \in U} \mathcal{H}(x, u, \psi, \psi^{0}).$$
(3.12)

Let us denote \hat{t} as $x_{*2}(\hat{t}) = y_s$.

Let $u_* \in L^{\infty}([t_0, t_1]; [w, 1])$ and $x_* = (x_{*1}, x_{*2}, x_{*3})^{tr}$ be the optimal control and the corresponding optimal trajectory in problem (\mathcal{P}) . Then there exist a function $\psi = (\psi_1, \psi_2, \psi_3)^{tr}$, $\psi_1 \in W^{1,\infty}(t_0, t_1)$, $\psi_2 \in W^{1,\infty}(t_0, \hat{t}) \cup (\hat{t}, t_1)$, and $\psi_3 \in W^{1,\infty}(t_0, t_1)$ such that the following conditions hold:

(a) The function
$$\psi$$
 is a solution to the adjoint system:
 $\dot{\psi}_1(t) = 0,$
(3.13)
 $\dot{\psi}_2(t) = -\left(\frac{\partial a(x_{*2}(t))}{\partial x_2} + \frac{\partial b(x_{*2}(t))}{\partial x_2}u_*(t)\right)\psi_2(t)$
 $+ \frac{\partial p(x_*(t), u_*(t))}{\partial x_2} + \frac{\partial q(x_*(t))}{\partial x_2}\chi(x_{*2}(t)), \ t \neq \hat{t},$
(3.14)
 $\dot{\psi}_3(t) = -c_s \chi(x_{*2}(t))\psi_3(t) + (a(x_{*2}(t)) + b(x_{*2}(t))u_*(t))$
 $+ c_s x_{*2}(t)\chi(x_{*2}(t)).$
(3.15)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theoretical result based on PMP

(b) The jump when the
$$x_{*2} = y_s$$
:
 $\psi_2(\hat{t}+0) - \psi_2(\hat{t}-0) \in c_s x_3(\hat{t}) \Big(\frac{y_s + \psi_3(\hat{t})}{a(y_s) + b(y_s)}, \frac{y_s + \psi_3(\hat{t})}{a(y_s) + b(y_s)w} \Big).$
 $\psi_1(t_1) = \psi_2(t_1) = \psi_3(t_1) = 0.$
(c) The maximum condition holds:
 $H\Big(x_*(t), \psi\Big) \stackrel{a.e.}{=} \mathcal{H}\Big(x_*(t), u_*(t), \psi\Big).$

Optimal control for a conservation law modeling the development of ovulation Theoretical result based on PMP

proof of the Theorem

Now, the Hamilitonian becomes

$$H(t) = (a(x_2) + c_s \chi x_2) x_3 + \psi_1 + a(x_2) \psi_2 + c_s \chi x_3 \psi_3 + b(x_2) (x_3 + \psi_2) u.$$

Noting that $b(x_2) > 0$, one has

$$u_*(t) = 1 \quad \text{if} \quad x_3(t) + \psi_2(t) > 0, \tag{3.16}$$

$$u_*(t) = w$$
 if $x_3(t) + \psi_2(t) < 0.$ (3.17)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Under the assumption that $2y_s - c_1 > 0$, we have

$$(x_3 + \psi_2)(\hat{t} - 0) \leqslant x_3(t_1)(1 - c_s \frac{y_s}{a(y_s) + b(y_s)}).$$
(3.18)

Under the assumption that $c_s > \frac{a(y_s) + b(y_s)}{y_s}$, we have

$$(x_3 + \psi_2)(\hat{t} - 0) < 0. \tag{3.19}$$

Hence,

$$(x_3 + \psi_2)(t) < 0, \ t \in [t_0, \hat{t}).$$
 (3.20)

Moreover,

$$(x_3 + \psi_2)(t) > 0, \ t \in (\hat{t}, t_1].$$
 (3.21)

Above all, we have proved the Theorem.

proof of the necessary optimal conditions

Step 1: Mollifier the characteristic χ .

Step 2: Let u_* , x_* be an optimal pair in problem (\mathcal{P}) . Take a sequence $\{z_i\}$, $i = 1, 2, \cdots$, of functions $z_i \in C^1[t_0, t_1]$ that satisfy the following conditions

$$z_i \to u_* \text{ in } L^2[t_0, t_1] \text{ as } i \to \infty,$$
 (3.22)

$$\sup_{t_0 \leqslant t \leqslant t_1} \|z_i(t)\| \leqslant \|U\| + 1, \ i = 1, 2, \cdots,$$
(3.23)

$$\sup_{t_0 \leqslant t \leqslant t_1} \|\dot{z}_i(t)\| \leqslant \sigma_i < \infty.$$
(3.24)

We may assume without loss of generality that $\sigma_i \to \infty$ as $i \to \infty$.

Step 3: Now consider the following sequence of auxiliary optimal control problems (\mathcal{P}_i)

$$\begin{cases} \dot{x} = f_i(x, u), \quad u \in L^{\infty}([t_0, t_1]; [w, 1]), \quad t \in [t_0, t_1], \\ x(t_0) = x^0, \\ J_i(u) = \int_{t_0}^{t_1} \left(p(x, u) + q(x)\chi_i(x_2) \right) dt + \frac{1}{1 + \sigma_i} \int_{t_0}^{t_1} \|u(t) - z_i(t)\|^2 dt. \end{cases}$$

$$(3.25)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Here

$$f_i = \left(\begin{array}{c} 1\\ a(x_2) + b(x_2) u\\ c_s \chi_i(x_2) x_3 \end{array}\right)$$

For any $i = 1, 2, \cdots$, problem (\mathcal{P}_i) is a smooth optimal control problem. Hence, there exists an optimal control u_i in problem (\mathcal{P}_i) (L. Cesari, 1983). Let x_i be the corresponding optimal trajectory. We have the following result

Lemma

The following relations hold as $i \to \infty$

$$u_i \to u_*$$
 in $L^2[t_0, t_1],$ (3.26)
 $m \to m$ in $C^0[t_1, t_1]$ (3.27)

$$x_i \to x_*$$
 in $C^0[t_0, t_1].$ (3.27)

Suppose that x_i and u_i is an optimal pair in problem (\mathcal{P}_i) . Define the Hamilton-Pontryagin function and the Hamiltonian for problem (\mathcal{P}_i) as follows

$$\mathcal{H}_{i}(t, x, u, \psi, \psi^{0}) = \langle f_{i}(x, u), \psi \rangle + \psi^{0}(p(x, u) + q(x)\chi_{i}(x_{2})) \\ + \psi^{0}\Big(\frac{1}{1 + \sigma_{i}}\|u(t) - z_{i}(t)\|^{2}\Big),$$

and

$$H_i(t, x, \psi, \psi^0) = \max_{u \in U} \mathcal{H}_i(t, x, u, \psi, \psi^0).$$

By Pontryagin's maximum principle, there exists a number $\psi_i^0 \leq 0$ and an absolutely continuous function ψ_i on $[t_0, t_1]$ such that

$$\dot{\psi}_{i}(t) \stackrel{a.e.}{=} - \left[\frac{\partial f_{i}(x_{i}(t), u_{i}(t))}{\partial x}\right]^{*} \psi_{i} - \psi_{i}^{0} \frac{\partial p(x_{i}(t), u_{i}(t))}{\partial x} - \psi_{i}^{0} \left(\frac{\partial q(x_{i}(t))}{\partial x} \chi_{i}(x_{i}(t)) + q(x_{i}(t)) \frac{\partial \chi_{i}(x_{i}(t))}{\partial x}\right), \psi_{i}(t_{1}) = 0,$$
(3.28)

and

$$H_i(t, x_i(t), \psi_i(t), \psi_i^0) \stackrel{a.e.}{=} \mathcal{H}_i(t, x_i(t), u_i(t), \psi_i(t), \psi_i^0).$$
(3.29)

(日) (日) (日) (日) (日) (日) (日) (日)

Theoretical result based on PMP

Passing to the limit $i \to \infty$ in necessary optimal conditions for problem (\mathcal{P}_i) , finally we prove the necessary optimal conditions for problem (\mathcal{P}) .

Optimal control for a conservation law modeling the development of ovulation Theoretical result based on PMP

n Dirac masses

Using the same method as one Dirac mass, we get similar result that

Theorem

Under the assumption that

$$2y_s - c_1 > 0$$
 and $c_s > \frac{a(y_s) + b(y_s)}{y_s}$, (3.30)

For any optimal control u_* , the following property holds There exists $t' \in (t_0, t_1)$ such that

$$u_* = w \text{ in } (t_0, t') \text{ and } u_* = 1 \text{ in } (t', t_1).$$
 (3.31)

Optimal control for a conservation law modeling the development of ovulation Numerical study based on PMP

counter example with small c_s

Remark

The assumption (3.30) is important to guaranteen that the optimal switch time is once.

Optimal control for a conservation law modeling the development of ovulation Numerical study based on PMP

nonuniqueness of the optimal control for two Dirac masses

Remark

For more than one Dirac masses, the optimal control is not unique.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

optimal control for one Dirac mass with different c_s

For one Dirac mass, when c_s is small, the optimal control is always u = 1; when c_s is large, the optimal control is $u = w \rightarrow u = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PDE case

Recall the PDE case

$$\rho_t + \rho_x + (h(y, u)\rho)_y = c_s \,\chi(y), \quad t \ge 0, \, x \ge 0, \, y \ge 0.$$
 (5.1)

The cost function is

$$J(u) = -\iint_{[0,+\infty)\times[0,+\infty)} y \, d\rho(t_1, x, y).$$
 (5.2)

PDE case

We have the following result

Theorem

Under the assumption that

$$2y_s - c_1 > 0$$
 and $c_s > \frac{a(y_s) + b(y_s)}{y_s}$, (5.3)

we have that among all admissible controls $u \in L^{\infty}([t_0, t_1]; [w, 1])$, there exists an optimal control u_* to (5.2) such that the following property holds There exists $t' \in (t_0, t_1)$ such that

$$u_* = w \text{ in } (t_0, t') \text{ and } u_* = 1 \text{ in } (t', t_1).$$
 (5.4)

PDE case

Step 1: There exists a sequence

$$\rho_0^n = \sum_{i=1}^n \lambda_0^i \delta_{x_0^i, y_0^i},\tag{5.5}$$

such that for any given $\varphi \in C^0(K)$ we have

$$(\rho_0^n - \rho_0) \varphi \to 0 \quad \text{as} \quad n \to \infty.$$
 (5.6)

The cost function is

$$J(\rho_0^n, u) = -\sum_{i=1}^n y_i(t_1, u)\lambda_i(t_1, u).$$
(5.7)

For any $u \in L^{\infty}([t_0, t_1]; [w, 1])$, it is easy to prove that

$$\lim_{n \to \infty} J(\rho_0^n, u) = J(\rho_0, u).$$
(5.8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PDE case

Step 2: We assume that for each ρ_0^n , there exists an optimal control u_*^n such that

$$u_*^n := w \text{ in } (t_0, t'_n), \ u_*^n := 1 \text{ in } (t'_n, t_1).$$
 (5.9)

Without loss of generality, we may assume there exists $t' \in [t_0,t_1]$ such that

$$t'_n \to t' \text{ as } n \to \infty.$$
 (5.10)

Let u_* be defined as

$$u_* := w \text{ in } (t_0, t'), \ u_* := 1 \text{ in } (t', t_1).$$
 (5.11)

Then we prove that

$$\lim_{n \to \infty} J(\rho_0^n, u_*^n) = J(\rho_0, u_*).$$
(5.12)

Combining (5.8) and (5.12), we have proved that u_* defined an optimal control.

Discussion

- For PDE case, can we get the result that each measurable optimal control is bang-bang control?
- For the moment, we consider the open loop problem, what about the close loop problem, e.x. $u(t) = u(t, M^1(t))$?

Reference

References

- N. Echenim, D. Monniaux, M. Sorine, and F. Clément. Multi-scale modeling of the follicle selection process in the ovary. Math. Biosci., 198 :57–79, 2005.
- J.-M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs 136, American Mathematical Society, Providence, RI, 2007.
- J.-M. Coron, M. Kawski, and Z. Wang. Analysis of a conservation law modeling a highly re-entrant manufacturing system, preprint, arXiv:0907.1274v1.
- F. Clément. Optimal control of the cell dynamics in the granulosa of ovulatory follicles. Math. Biosci., 152:123-142, 1998.
- P. Shang and Z. Wang. Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing

Reference

- P. Shang. Cauchy problem for multiscale conservation laws: Application to stuctured cell populations, submitted.
- A. F. Filippov. On certain questions in the theory of optimal control, SIAM J. on Control and Optimization., 1:76–84, 1962.
- E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Wiley.
- A. I. Smirnov, Necessary Optimality Conditions for a Class of Optimal Control Problems with Discontinuous Integrand, Proceedings of the Steklov Institute of Mathematics, 262 (2008), pp. 213–230.
- L. Cesari, Optimization-Theory and Applications. Problems with Ordinary Differential Equations (Springer, New York, 1983).

Reference

Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ