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Introduction of the model

The cell population in a follicle is represented by cell density
functions ρj,k(t, x, y) defined on each cellular phase Qj,k with age
x and maturity y, which satisfy the following conservation laws

∂ρj,k(t, x, y)
∂t

+
∂ρj,k(t, x, y)

∂x
+
∂(h(y, u)ρj,k(t, x, y))

∂y
= 0, in Qj,k

(1.1)
Here k = 1, · · · , N , and N is the number of consecutive cell
cycles. j = 1, 2, 3 denotes Phase 1, Phase 2 and Phase 3.

h(y, u) = −y2 + (c1y + c2)u, (1.2)

with c1 and c2 given positive constants.
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Introduction of the model

related control problems

We define

M(t) :=
3∑

j=1

N∑
k=1

∫ +∞

0

∫ +∞

0
y ρj,k(t, x, y) dx dy (1.3)

as the follicular maturity.

The control u(M(t)).

Ovulation is triggered when the maturity reaches a given
threshold value Ms. Hence, the optimal control problem is,
for fixed observed time t1 to maximize the maturity M(t1).

Proliferative cells leave the cycle in an irreversible way, we get
the restraint of control u ∈ [w, 1] with w ∈ (0, 1).
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Numerical results

switching direction

black : u = w → u = 1; red: u = 1→ u = w
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Numerical results

Numerical result of optimal bang-bang control

red: u = w → u = 1, black: u = w

0 2 4 6 8 10 12
100

200

300

400

500

600

700

800

t0

M

Figure:



Optimal control for a conservation law modeling the development of ovulation

Theoretical result based on PMP

simplified model

Consider the following balance law

ρt + ρx + (h(y, u)ρ)y = cs χ(y), t ≥ 0, x ≥ 0, y ≥ 0, (3.1)

with cs a given positive constant, we denote

a(y) = −y2, b(y) = c1y + c2. (3.2)

h(y, u) = a(y) + b(y)u. (3.3)

χ(y) is a characteristic function

χ(y) =

{
1, if y ∈ [0, ys),
0, if y ∈ (ys,∞),

(3.4)
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Theoretical result based on PMP

(BC)
ρ(t, 0, y) = ρ(t, x, 0) = 0, ∀x ≥ 0, y ≥ 0. (3.5)

(IC)
The initial condition ρ0(x, y) is given as a positive Borel measure
with compact support ⊂ [0, 1]2.
For any admissible control u ∈ L∞([t0, t1]; [w, 1]), the cost
function is

J(u) = −
∫∫

[0,+∞)×[0,+∞)
y dρ(t1, x, y). (3.6)
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Theoretical result based on PMP

one Dirac mass

We consider the following optimal control problem (P):
ẋ = f(x, u), u ∈ L∞([t0, t1]; [w, 1]), t ∈ [t0, t1],
x(t0) = x0,

J(u) =
∫ t1
t0

(p(x, u) + q(x)χ(x2)) dt

(3.7)

where

p(x, u) := −(a(x2) + b(x2)u)x3, q(x) := −cs x2 x3. (3.8)

f =

 1
a(x2) + b(x2)u
cs χ(x2)x3


x = (x1, x2, x3)tr ∈ R3, x1 denotes the age, x2 denotes the
maturity and x3 denotes the mass.
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Theoretical result based on PMP

The main difficulty of problem (P) is that both f and the
integrand χ of the functional J are discontinuous.
First, we proved the existence of optimal control to problem (P)
by approximating method.

Theorem

The infimum of the functional J in L∞([t0, t1]; [w, 1]) is achieved,
i.e., there exists u ∈ L∞([t0, t1]; [w, 1]) such that

J(u) = inf
u∈L∞([t0,t1];[w,1])

J(u).



Optimal control for a conservation law modeling the development of ovulation

Theoretical result based on PMP

Theorem

For any measurable optimal control u∗ to problem (P), the
following property holds:
There exists t′ ∈ [t0, t1) such that

u∗ = w in (t0, t′) and u∗ = 1 in (t′, t1). (3.9)

Furthermore, under the assumption that

2ys − c1 > 0 and cs >
a(ys) + b(ys)

ys
, (3.10)

this optimal switch time t′ is the exit time t̂.



Optimal control for a conservation law modeling the development of ovulation

Theoretical result based on PMP

Necessary optimal conditions for optimal control (PMP)

Necessary optimal conditions (A. I. Smirnov, 2008). Let us define
the Hamilton-Pontryagin function and the Hamiltonian as

H(x, u, ψ, ψ0) := < f(x, u), ψ > +ψ0
(
p(x, u) + q(x)χ(x2)

)
,

(3.11)

H(x, ψ, ψ0) =max
u∈U
H(x, u, ψ, ψ0). (3.12)

Let us denote t̂ as x∗2(t̂) = ys.
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Theoretical result based on PMP

Let u∗ ∈ L∞([t0, t1]; [w, 1]) and x∗ = (x∗1, x∗2, x∗3)tr be the
optimal control and the corresponding optimal trajectory in
problem (P). Then there exist a function ψ = (ψ1, ψ2, ψ3)tr,
ψ1 ∈W 1,∞(t0, t1), ψ2 ∈W 1,∞(t0, t̂) ∪ (t̂, t1), and
ψ3 ∈W 1,∞(t0, t1) such that the following conditions hold:

(a) The function ψ is a solution to the adjoint system:

ψ̇1(t) = 0, (3.13)

ψ̇2(t) = −
(∂a(x∗2(t))

∂x2
+
∂b(x∗2(t))

∂x2
u∗(t)

)
ψ2(t)

+
∂p(x∗(t), u∗(t))

∂x2
+
∂q(x∗(t))
∂x2

χ(x∗2(t)), t 6= t̂, (3.14)

ψ̇3(t) = −cs χ(x∗2(t))ψ3(t) + (a(x∗2(t)) + b(x∗2(t))u∗(t))
+ cs x∗2(t)χ(x∗2(t)). (3.15)
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Theoretical result based on PMP

(b) The jump when the x∗2 = ys:

ψ2(t̂+ 0)− ψ2(t̂− 0) ∈ csx3(t̂)
( ys + ψ3(t̂)
a(ys) + b(ys)

,
ys + ψ3(t̂)

a(ys) + b(ys)w

)
.

ψ1(t1) = ψ2(t1) = ψ3(t1) = 0.
(c) The maximum condition holds:

H
(
x∗(t), ψ

)
a.e.= H

(
x∗(t), u∗(t), ψ

)
.
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Theoretical result based on PMP

proof of the Theorem

Now, the Hamilitonian becomes

H(t) = (a(x2)+csχx2)x3+ψ1+a(x2)ψ2+csχx3 ψ3+b(x2)(x3+ψ2)u.

Noting that b(x2) > 0, one has

u∗(t) = 1 if x3(t) + ψ2(t) > 0, (3.16)

u∗(t) = w if x3(t) + ψ2(t) < 0. (3.17)
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Theoretical result based on PMP

Under the assumption that 2ys − c1 > 0, we have

(x3 + ψ2)(t̂− 0) 6 x3(t1)(1− cs
ys

a(ys) + b(ys)
). (3.18)

Under the assumption that cs >
a(ys) + b(ys)

ys
, we have

(x3 + ψ2)(t̂− 0) < 0. (3.19)

Hence,
(x3 + ψ2)(t) < 0, t ∈ [t0, t̂). (3.20)

Moreover,
(x3 + ψ2)(t) > 0, t ∈ (t̂, t1]. (3.21)

Above all, we have proved the Theorem.
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Theoretical result based on PMP

proof of the necessary optimal conditions

Step 1: Mollifier the characteristic χ.
Step 2: Let u∗, x∗ be an optimal pair in problem (P). Take a
sequence {zi}, i = 1, 2, · · · , of functions zi ∈ C1[t0, t1] that satisfy
the following conditions

zi → u∗ in L2[t0, t1] as i→∞, (3.22)

sup
t06t6t1

‖zi(t)‖ 6 ‖U‖+ 1, i = 1, 2, · · · , (3.23)

sup
t06t6t1

‖żi(t)‖ 6 σi <∞. (3.24)

We may assume without loss of generality that σi →∞ as i→∞.
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Theoretical result based on PMP

Step 3: Now consider the following sequence of auxiliary optimal
control problems (Pi)
ẋ = fi(x, u), u ∈ L∞([t0, t1]; [w, 1]), t ∈ [t0, t1],
x(t0) = x0,

Ji(u) =
∫ t1

t0

(
p(x, u) + q(x)χi(x2)

)
dt+

1
1 + σi

∫ t1

t0

‖u(t)− zi(t)‖2dt.

(3.25)
Here

fi =

 1
a(x2) + b(x2)u
cs χi(x2)x3
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Theoretical result based on PMP

For any i = 1, 2, · · · , problem (Pi) is a smooth optimal control
problem. Hence, there exists an optimal control ui in problem (Pi)
(L. Cesari, 1983). Let xi be the corresponding optimal trajectory.
We have the following result

Lemma

The following relations hold as i→∞

ui → u∗ in L2[t0, t1], (3.26)

xi → x∗ in C0[t0, t1]. (3.27)
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Theoretical result based on PMP

Suppose that xi and ui is an optimal pair in problem (Pi). Define
the Hamilton-Pontryagin function and the Hamiltonian for problem
(Pi) as follows

Hi(t, x, u, ψ, ψ0) = < fi(x, u), ψ > +ψ0(p(x, u) + q(x)χi(x2))

+ ψ0
( 1

1 + σi
‖u(t)− zi(t)‖2

)
,

and
Hi(t, x, ψ, ψ0) = max

u∈U
Hi(t, x, u, ψ, ψ0).
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Theoretical result based on PMP

By Pontryagin’s maximum principle, there exists a number ψ0
i 6 0

and an absolutely continuous function ψi on [t0, t1] such that

ψ̇i(t)
a.e.= −

[∂fi(xi(t), ui(t))
∂x

]∗
ψi − ψ0

i

∂p(xi(t), ui(t))
∂x

− ψ0
i

(∂q(xi(t))
∂x

χi(xi(t)) + q(xi(t))
∂χi(xi(t))

∂x

)
,

ψi(t1) =0, (3.28)

and

Hi(t, xi(t), ψi(t), ψ0
i )

a.e.= Hi(t, xi(t), ui(t), ψi(t), ψ0
i ). (3.29)
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Theoretical result based on PMP

Passing to the limit i→∞ in necessary optimal conditions for
problem (Pi), finally we prove the necessary optimal conditions for
problem (P).
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Theoretical result based on PMP

n Dirac masses

Using the same method as one Dirac mass, we get similar result
that

Theorem

Under the assumption that

2ys − c1 > 0 and cs >
a(ys) + b(ys)

ys
, (3.30)

For any optimal control u∗, the following property holds
There exists t′ ∈ (t0, t1) such that

u∗ = w in (t0, t′) and u∗ = 1 in (t′, t1). (3.31)
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Numerical study based on PMP

counter example with small cs

Remark

The assumption (3.30) is important to guaranteen that the optimal
switch time is once.
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Numerical study based on PMP

nonuniqueness of the optimal control for two Dirac
masses

Remark

For more than one Dirac masses, the optimal control is not unique.
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Numerical study based on PMP

optimal control for one Dirac mass with different cs

For one Dirac mass, when cs is small, the optimal control is always
u = 1; when cs is large, the optimal control is u = w → u = 1.
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PDE case

Recall the PDE case

ρt + ρx + (h(y, u)ρ)y = cs χ(y), t ≥ 0, x ≥ 0, y ≥ 0. (5.1)

The cost function is

J(u) = −
∫∫

[0,+∞)×[0,+∞)
y dρ(t1, x, y). (5.2)
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PDE case

We have the following result

Theorem

Under the assumption that

2ys − c1 > 0 and cs >
a(ys) + b(ys)

ys
, (5.3)

we have that among all admissible controls u ∈ L∞([t0, t1]; [w, 1]),
there exists an optimal control u∗ to (5.2) such that the following
property holds
There exists t′ ∈ (t0, t1) such that

u∗ = w in (t0, t′) and u∗ = 1 in (t′, t1). (5.4)
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PDE case

Step 1: There exists a sequence

ρn
0 =

n∑
i=1

λi
0δxi

0,yi
0
, (5.5)

such that for any given ϕ ∈ C0(K) we have

(ρn
0 − ρ0)ϕ→ 0 as n→∞. (5.6)

The cost function is

J(ρn
0 , u) = −

n∑
i=1

yi(t1, u)λi(t1, u). (5.7)

For any u ∈ L∞([t0, t1]; [w, 1]), it is easy to prove that

lim
n→∞

J(ρn
0 , u) = J(ρ0, u). (5.8)
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PDE case

Step 2: We assume that for each ρn
0 , there exists an optimal

control un
∗ such that

un
∗ := w in (t0, t′n), un

∗ := 1 in (t′n, t1). (5.9)

Without loss of generality, we may assume there exists t′ ∈ [t0, t1]
such that

t′n → t′ as n→ ∞. (5.10)

Let u∗ be defined as

u∗ := w in (t0, t′), u∗ := 1 in (t′, t1). (5.11)

Then we prove that

lim
n→∞

J(ρn
0 , u

n
∗ ) = J(ρ0, u∗). (5.12)

Combining (5.8) and (5.12), we have proved that u∗ defined an
optimal control.
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Discussion

open problems

For PDE case, can we get the result that each measurable
optimal control is bang-bang control?

For the moment, we consider the open loop problem, what
about the close loop problem, e.x. u(t) = u(t,M1(t))?
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