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Introduction

Main theme: Lie algebraic approach of geometric control to
controllability of nonlinear distributed parameter systems.

Example of implementation of such approach - study of approximate
controllability and controllability in finite-dimensional projections
(cf. A.Agrachev, A.Sarychev, S.Rodrigues) for 2D Navier-Stokes/Euler
equation of fluid motion controlled by low-dimensional forcing.

Extension onto 3D-case A.Shirikyan, H.Nersisyan



Introduction ctd.

Goal: developing similar technique for cubic defocusing 2D Schroe-
dinger equation

—i0u(t, z) + Au(t,z) = |u(t, ) [Pu(t, z) + F(t,z) (NLS)

controlled via source term F'(t,x). Problem setting is distinguished
by the type of control:

e it enters additively and is 'generated by few functions':

F(t,z) = ) vk(t)Fk(x), 72 > K - finite,
kek

i.e. Vt — F(t,z) takes values in finite-dim. space span{F*(z)| k € K}.
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In 2D periodic case, x € Tz, it is natural to choose

Fl(z) =% ke 72

Control functions vy (t) € Lso[0,T].



Controlled NLS equation: controllability problem settings

Let defocusing cubic NLS on T2

—idpu(t, ©) + Au(t,z) = |ut, z)Put,z) + Y vp(t)er?
kekl
evolve in (functional) Hilbert space H. We will study:

controllability in finite-dimensional projections -

- V finite-dimensional subspace £ C H proper controls v, (t) may
steer the system in time T > O from ug € H to a point with
preassigned orthogonal projection on L;

approximate controllability, when set of 'points’, attainable in
time T'> 0, from each ug € H is dense in H,

(exact) controllability, when set of 'points’, attainable in time
T > 0, from each ug € H coincides with H.



Few references

to other approaches to controllability of linear and semilinear
Schroedinger equation controlled via bilinear or additive control.

Surveys [Z:Zuazua, CRM Lecture Notes, 2003],
[ILT: Illner,Lange, Teismann, ESAIM COCV, 2006]

Results on:

° exact controllability for linear Schroedinger equation with
additive control (numerous publications starting from [Lebeau,1992]);



References -2

e controllability of linear Schroedinger equation with control
entering bilinearly.

Results by [Beauchard 2005, B. & Coron 2006] on local (exact)
controllability in H’ of 1-D equation, obtained by 'return method’
and Nash-Moser th.;

Criterion (obtained by geometric control methods) [Chambrion,
Mason, Sigalotti, Boscain, 2009] for approximate controllability
for the case of 'drift Hamiltonian’ with discrete non-resonant
spectrum.

Talk by J.-P. Puel at present workshop.



References -3

e exact controllability of semilinear Schroedinger equation by
means of internal additive ( 'infinite-dimensional’ ) control [Dehman,
Gerard, Lebeau, 2006], [Rosier, B.-Y. Zhang 2009] for 2D and
1D cases.

In semilinear case: key tool - 'linearization principle’, going back
to [Lasiecka & Triggiani, App.Math.Optim., 1991].

In contrast our approach makes direct and exclusive use of
the nonlinear term.

What regards approaches to non-controllability we mention classical
paper[Ball,Marsden,Slemrod, SICON, 1982] on bilinear systems
and [Shirykian, Physica D, 2008] on Euler equation.



Controllability of NLS equation: criterion of approximate
controllability and controllability in projections

Theorem 1. There exists a set K = {k!, k2 k3,k*} C Z? of 4 modes,
such that cubic defocusing Schroedinger equation

4
—iu(t,x) + Au(t, z) = |u(t,z)[Pult,z) + Y vs(t)e™ 7,

s=1
evolving in H11t7(T2), & > 0, is controllable in finite-dimensional

projections and approximately controllable. [



Controllability of NLS equation: negative result on exact
controllability

T heorem 2.

Given 2D periodic defocusing Schroedinger equation

—idpu(t, ) + Ault,z) = |[ult,z)Pu(t,z) + 3 v (t)eF?,
ke

with initial data in H11t7(T?),

controlled via source term F(t,x) = Zke,@vk(t)e“ﬂ'fC acting on arbitrary
finite set K C Z? of controlled modes,

vI' > 0, the time-7T attainable set Ar,, from u® is contained in a
countable union of compact subsets of H11t? and therefore the complement
Ho\ Ar,.0 is dense in H1To.[



Remark.

Ball, Marsden , Slemrod 1982 result on lack of controllability
regarded a bilinear control system

uw= (A4 v(t)B) u,

with scalar control v(t), A generator of a CO9-semigroup, B -
bounded operator.



Preliminaries on existence, uniqueness and continuous dependence
of trajectories of NLS

Consider semilinear equation
(—id + AN)u = G(t,u), uw(0) =a°,

an its integral reformulation according to Duhamel formula

u(t) = A (uo + i/ot e TAG(T, u(*r))d*r) :

Local existence results are valid for the right-hand sides under
some boundedness and Lipschitz conditions. To guarantee those
we opt for very regular setting: NLS equation will be evolving in
Sobolev space H = H1T9(T?), & > 0.
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Semilinearities - such as polynomials in u, u with integrable coefficients
c(t) - are 'well behaving’ in this space due to

'Product Lemma’ (cf. [T.Tao, Nonlinear Dispersive Equations,
AMS, 2006]) For Sobolev spaces H5(T%), s > d/2 of functions
there holds: for s > d/2 : ||fgllgs < (C'(s, DI fllgsllgllgs. O

Controlled source term F' is trigonometric polynomial in x with
measurable essentially bounded in ¢t controlled coefficients v (t).

Local existence of solutions in regular setting is standard
and can be established by fixed point argument for a contracting
map in C([0,T]; H1T(T?)).



Preliminaries-2

Global existence/uniqueness result for cubic NLS with source
term:

—i0wu(t, ) + Au(t,z) = |u(t, ) |Pu(t, z) + F(t, ), (1)

Proposition 2. For the source term F(t, z) from Loo([0,T], H1T7(T?)).
for each @ € H117 the Cauchy problem with the initial condition
u(0) = @ possesses unique strong solution u(-) € C([0,T], H1T7(T2)). O
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Preliminaries-3 Consider semilinear equation

(—id + A)u = G(t,v), u(0) = @P. (2)
and its semilinear 'perturbation’:
(—i0 + A)u = G(t,u) + ¢(t,u),u(0) = uP. (3)

Proposition 3 (continuity in the right-hand side) Let u(t) €
C([0,T],H) be solution of (2). Then 3§ > 0, ¢ > 0 such that
whenever

- % + / sup, l9(t,w)lmdt < 3 (4)

then solution w(t) of the perturbed equation (3) exists on the
interval [0,T], is unique and admits an upper bound

~ 0] ~0 I
sup ||u<t>—u<t>||§c(||u @)+ | |s?gb||¢<t,u>||ﬂdt).m

te[0,T]
12



For our construction we will need a stronger version of continuity
in the r.-h. side, where ¢(t,u) is fast oscillating in t and condition
(4) is substituted by smallness of ¢ in relaxation metric.



Controllability proof by geometric control approach

Study of controllability of NLS equation is based (as well as
earlier work on Navier-Stokes/Euler equation) on method of
iterated Lie extensions.

Lie extension of control system z = f(x,u), v € U is a way to add
vector fields to the right-hand side of the system guaranteeing
(almost) invariance of its controllability properties.

The additional vector fields are expressed via Lie brackets of
f(-,u) for various u € U. If after a series of extensions one arrives
to a controllable system, then the controllability of the original
system will follow.
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Controlled NLS equation

—idpu(t, z) + Ault, ) = |u(t, z)[Pult,z) + > vy (t)e*?
ke
IS a particular type of infinite-dimensional control-affine system

Bru = fOu) + 3 fE(u)u(t).

ke

For each Lie extension following Lie brackets are significant:

LF™ L™ 91, U LF™ LF™ #9100, mymo € K.

The 3rd-order Lie brackets [f™, [f™, f°]] are obstructions to controllabilit
which have to be 'compensated’.

The 4th-order Lie bracket [F™, [f™, [f™, fO]]] are constant vector
fields or directions along which the extended control acts.



Geometric control in infinite dimensions

Obstacles:

e instead of flows one often has to deal with semigroups of
operators;

e r.-h. sides of equations ('vector fields') include unbounded
operators; lack of adequate infinite-dimensional differential
geometry for this case;
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Lie-algebraic computations are used as a guiding principle for
establishing controllability.

To justify their application in infinite-dimensional setting we use
fast-oscillating controls, which underly Lie extensions method.
Specially designed resonances between such controls result in
a motion which provides (approximates) motion in extending
direction, along a Lie bracket. We also manage to compensate
'in average’ the obstructions.

We arrive to final result proceeding with (finite) sequence of

elementary extensions.
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Cubic Schroedinger equation on T2 as infinite-dimensional
system of ODE

We invoke Fourier Ansatz seeking solution of NLS equation as
series expansion

u(t,z) = 3 qp(t)el etk
kcZ2

with respect to modes e, = ¢i(k-a+[k*t).

The source term will be
. 2
Ft,a) = Y Rty @),
keKcCz?
notation wvi(t) is kept for controls.

Note that (—i0; + A)e, = 0.
16



Substituting the expansions of v and F into NLS equation we
get infinite system of ODE'’s for the coefficients ¢(t):

g 2 2 _ w(K
—igr(t) = —qrlarl® +2q; > a1+ > Gy Tz’ T+
JEZ2 k1—ko+kz=k k#k1,k3

\ 7

Sk(q,t)

+x e (k)vg(t),

W(K) = [k1|* = |ka|* + |ks|* — |k[*.

Controls v (t) appear in the equations, indexed by k € K.
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This is also infinite-dimensional control-affine system

i= %)+ Y fR(@u®),

ke

with S.(q,t), being components of the drift vector field f9(q,t),

and with constant controlled v.f. f¥ = ie;, = z’aiqk, kek.

Computing Lie bracket [f™, [Ff™, [f™, fOl]] for m,n € K we get
linear combination of vector fields f™, f* f2m—7_ 1In the case,
where 2m —n € K we get a new direction es,,,_,,, Or an extension.
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Extension design

Pick two of the controlled modes is {m,n} € K, such that 2m—n ¢
JC. "Modulating’ in clever way controls in the modes e, en, One
manages to get an extended control for the mode ey,,_,, and
'‘affects little’ (in average, on given time interval) all other modes.

Feed into the r.-h. side of the ODEs for gm, gn control functions
Um(t) + on(t), om(t) + vn(t) respectively, where v, (t),vn(t) are
Lipschitzian functions. We get
—igm(t) = Sm(q,t) + vm(t) + Om,
—ign(t) = Sn(q,t) + vn(t) + n.

Introduce new variables g, by relations

qm = qp, — wr(t), qn = q, — ivp(t), qp = qi, for k # m,n,
19



or
g=q +:iV(), V() = vm)em + vn(t)en.

The equations for components of ¢* are:

it (t) = { Sj(Q‘I‘ V(t),t) _I'ﬂj(t)a j € {m,n};
J S](q_l_v(t)at)) J #m7n°

S; are cubic polynomials in vm, vn, Um, On, Gk, G, k € Z°.

We impose 'isoperimetric condition’ V(0) = V(T') = 0, to preserve
the end-points of the trajectory:

q(0) = ¢"(0), ¢(T) = ¢"(T).

Time-T controllability of equations for ¢ = controllability of
the original equation.



Fast oscillations

Now we introduce fast-oscillations, choosing the controls v, (1), vn(t)
of the form

om(t) = fETPOIG (1) v (1) = 2/55,(1), (0SC)

where v, (t), vn(t) are real-valued Lipschitzian functions, p(¢) and
e > 0 will be specified later.

The monomials of S;(¢* + V(t)) are classified in resonant and
non-resonant. We call a monomial non-resonant if, after substitution
of (OSC) into it, we get a fast-oscillating factor ewt/g, B > 0.
All other, resonant, monomials are classified as bad resonances

- obstructions, and good resonances - extending controls.

Non-resonant monomials are present in each ODE.
20



Obstructions

For each j € Z? r.-h. side S;(¢ + V (t),t) ODE contains term
—iq5 (t) = -+ 424} (|8 (D> + [0u (D7) + -,

corresponding to Lie brackets [f™, [f™, fOI1, [f™, [, f°]] mentioned
above. These are obstructions; motion "along’ obstructing v.f. is
unilateral. BUT for Schroedinger equation it is unilateral ROTATION.

We can get rid of the obstructing term by time-variant substitution
for the variables

. t
q* — q*e—QZR(t)’ R(t) :/O (l,ﬁmlz + 2|6n|2> (T)d’]'.

In order to guarantee ¢*(T) = ¢*(T) = q(T) one can impose
additional (isoperimetric) conditions on o0y, (t), on(t):

T 5 T 5
/O [Om (t)|“dt = T Nm, /O 1O (t)|“dt = Ny, Nm, Nn € Z.
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Extending control via resonance

Now we study resonance cubic monomial which appears at the
r.-h. side of ODE for ¢35, ., and equals

v%(t)vn(t)e—QiR(t) — eQi(p(t)_R(t)_|m_n|2t)@?n(t)@n(t), (&)

R(t) = /Ot (|omI? + 2/8n]2) (r)dr.

Lemma. For each w(t) € Loo[0,T] and any € > 0 one can
find Lipschitzian v, (t), on(t), p(t) which satisfy all the introduced
‘isoperimetric conditions’ and ({>) e-approximates w(t) in L1[0,T]-
metric. [

Thus we can approximately simulate any extending control in
the ODE for ¢5,, ...
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Effect of non-resonant terms

We managed to extend the original two-control system
(=10 + A)u(t, z) = |u(t, z)[*u(t, z) + vm(t)em + vn(t)en
to three-control system
—i0u(t, z) + Au(t,z) = |u(t, ) ?u(t,z)+ (OSC)
+Um(t)em + On(t)en + w(t)eo,,—, + ¢°(t, x,u)
'burdened’ with (noised by) fast-oscillating term ¢¢(t, xz,u), which
IS Nemytskii-type operator, 2nd degree polynomial in w,u with

coefficients a(t,z), which are sums of terms e®Frt/ecttqy(¢) with
Br &= 0 and w(t) are equibounded in norm Wy4[0,T].

Introduce 'limit equation’ for (OSC)

(—i0; + D)u(t, z) = |u(t, z)|%u(t, z)+

23



We wish to prove that, when rate of oscillation grows (¢ — 0),

solutions of the noised equation (OSC) converge to solutions of
the limit equation (LIM).

This fact is part of relaxation result for semilinear evolution
equations™®

Relaxation seminorm || - ||;* is defined by formula:
t/
I'X
= max / T, 2, u)dT
||¢||b £€[0,T] . |ul | <b / ¢( y Ly )

Fast-oscillating (in ¢) functions have small seminorms || - ||"*.

*compare with results by H.Frankowska (1990), H.Fattorini (1994), N.Ahmed
(1987), on relaxation of evolution equations.



The following theorem affirms continuous dependence of trajectories
in r.-h. side w.r.t. the relaxation seminorm.

Theorem. Let solution u(t) of the (LIM) equation exist on [0,T],
belongs to C([0,T], H) and sup,c(o 7y llu(t)|| <b. Then Ve > 036 >
O such that whenever ||¢||;* < §, then the solution u(t) of the
perturbed equation exists on [0,T1], is unique and

sup ||lu(t) —a(t)|| <e. O
t€[0,T7]

The 'extension technique’ shows that controllability properties
that NLS equation with controls applied to the modes em,en
and em, en, €2,_pn are 'approximately the same’.
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Saturation and approximate controllability

The extension design can be repeated in iterative way: starting
from a set K = K1 we construct a sequence of expanding sets

. . m .
K) = {2m—n| m,nE/C]_l,};j=2,..., K* = ] K.
j=1
We call k! saturating if X = 7Z2.
It is easy to prove that

whenever set K1 of controlled modes is saturating one can
conclude controllability of NLS in each finite-dimensional
projection and approximate controllability in H?Z2.
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It is not difficult to describe some classes of saturating sets.

Lemma. If k¢ € 72 and kA ¢ = +1, then the 4-element set
{0,k, ¢,k + ¢} is saturating.

Example. Set {(0,0),(1,0),()0,1),(1,1)} is saturating and controls,
applied to this modes, guarantee controllability in fin.-dim. projections
and approximate controllability.



Lack of exact controllability: sketch of the proof

Consider again NLS equation

—i0wu(t, x) + Au(t,z) = |u(t,w)|2u(t,m) + > op(®er(t,x) (NLS)
kel

with integrable controls v (t) applied to any finite set K of modes.

Introducing function V(t,z) = vi(t)e(t,x), and proceeding with
time-variant substitution v = u* 4+ V' (¢t,z) we transform the
equation (NLS) into the form

—io* + Aut = ju+ iV |?(uF + V) (REDU)

which can be seen as semilinear control system with absolutely-
continuous inputs V (entering nonlinearly).
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Lemma. Input-trajectory map E* : V() — u*(-) and time-T

map ET : V(-) — u*(T) for the equation (REDU) are Lipschitzian

in the space W1 1([0,T],C") of inputs V (t), endowed with L1([0,T],C")-
metric, if the space of trajectories is endowed with C([0,T], H119)-
metric. [

Each ball in Wy 1([0,T],CF) is precompact in Li-metric and so
IS its image under E;. Hence the attainable set, which is image
of time-1" map is contained in a union of countable family of
compacts.



