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The Goal

The Geometric Control Condition (GCC) of Bardos, Lebeau and
Rauch ( 92 ) is equivalent to the controllability of the scalar wave

equation.

Provide some Geometric Control Condition (s) as sharp as possible
allowing exact controllabilty for sytems of coupled wave equations.

More precisely, we seek for ( sharp ) microlocal conditions.
Boundary or internal control.

2 cases: Lamé system ( boundary coupling ) and a system of two
wave equations with internal coupling.
Stabilization.

Joint works with: M.Léautaud, J.Le Rousseau and J-P. Raymond.
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The Bardos-Lebeau-Rauch theorem

Ω a bounded open set of Rd or a compact Riemannian manifold.

8<:
∂2t u � ∆u = 1ωg in ]0,+∞[�Ω
u = 0 on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 H10 (Ω)� L2(Ω)

8<:
∂2t u � ∆u = 0 in ]0,+∞[�Ω
u = 1Σh on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 L2(Ω)�H�1(Ω)
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Geometry
a) In the interior: In T �(R�Ω), the wave front ( C∞ or Hs )
propagates along the bicharacteristic curves of the wave operator.

p(t, x , τ, ξ) = �τ2 + jξj2

The null bicharacteristic issued from ρ0 = (t0, x0, τ0, ξ0) is the integral
curve of the hamiltonian �eld of p.(

γ0(s)
.

= Hp(γ(s))
γ(0) = ρ0

In this case, τ20 = jξ0j
2 , (τ, ξ) = (τ0, ξ0) 6= (0, 0), and

γ(s) = (t0 � 2τ0s, x0 + 2sξ0, τ0, ξ0)

These are straight lines.
The projection of a bicharacteristic on Ω is a geodesic.
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b) Near the boundary
Assumption: ∂Ω has no in�nite order contacts with its tangents.

We have to work in the compressed contangent bundle of Melrose and
propagate along the generalized bicharacteristic �ow of Melrose-Sjöstrand.
Denote M = R�Ω, ∂M = R� ∂Ω.

T �bM = T �M [ T �∂M
Local coordinates: (t, x) = y = (y0,...,yn) = (y 0, yn), η = (η0, ηn)

∂M = fyn = 0g, M = fyn > 0g

P = D2yn � R(y ,Dy 0)
R is a second order tangential di¤erential operator with principal symbol
r(y , η0)

B. DEHMAN Faculté des Sciences de Tunis & Enit-Lamsin ()GCC & Systems 5 / 50



b) Near the boundary
Assumption: ∂Ω has no in�nite order contacts with its tangents.

We have to work in the compressed contangent bundle of Melrose and
propagate along the generalized bicharacteristic �ow of Melrose-Sjöstrand.
Denote M = R�Ω, ∂M = R� ∂Ω.

T �bM = T �M [ T �∂M
Local coordinates: (t, x) = y = (y0,...,yn) = (y 0, yn), η = (η0, ηn)

∂M = fyn = 0g, M = fyn > 0g

P = D2yn � R(y ,Dy 0)
R is a second order tangential di¤erential operator with principal symbol
r(y , η0)

B. DEHMAN Faculté des Sciences de Tunis & Enit-Lamsin ()GCC & Systems 5 / 50



p = η2n � r(y , η0)

T �∂M is subdivided into three subsets:

E = f(y 0, η0) 2T �∂M, r(y 0, 0, η0) < 0g elliptic set

H = f(y 0, η0) 2T �∂M, r(y 0, 0, η0) > 0g hyperbolic set

G = f(y 0, η0) 2T �∂M, r(y 0, 0, η0) = 0g glancing set

Theorem (Melrose-Sjöstrand 82�): The wave front up to the boundary
WFb(u) propagates along the generalized bicharacteristic curves.
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Hyperbolic Di¤ractive
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Glancing Non di¤ractive
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Glancing ray
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The geometric control condition

Consider Ω an open subset of Rd , and T > 0,
! ω � Ω, an open subset,
! Σ an open subset of the boundary ∂Ω.

a) (G.C.C) for interior control
The couple (ω,T ) satis�es (G.C.C) if every geodesic of Ω, travelling with
speed 1 and issued at t = 0 enters the open set ω before the time T .

b) (G.C.C) for boundary control
The couple (Σ,T ) satis�es (G.C.C) if every generalized bicharacteristic of
the wave operator, travelling with speed 1 and issued at t = 0 intersects
the set Σ at a non di¤ractive point, before the time T .

! Almost equivalent to exact controllability ( Burq-Gérard (98)).
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Control results

Theorem
Internal Control
Assume that (ω,T ) satis�es (GCC); then for every
(u0, u1) 2 H10 (Ω)� L2(Ω), there exists g 2 L2(]0,T [�Ω),
supp g � ω, s.t the unique solution of

(W )

8<:
∂2t u � ∆u = g in ]0,+∞[�Ω
u = 0 on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 H10 (Ω)� L2(Ω)

satis�es (u(T ), ∂tu(T )) = (0, 0).
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Theorem
Boundary Control
Assume that (Σ,T ) satis�es (GCC); then for every
(u0, u1) 2 L2(Ω)�H�1(Ω), there exists h 2 L2(]0,T [�∂Ω),
supp h � Σ, s.t.the unique solution of

(W )

8<:
∂2t u � ∆u = 0 in ]0,+∞[�Ω
u = h on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 L2(Ω)�H�1(Ω)

satis�es (u(T ), ∂tu(T )) = (0, 0).
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A brief Idea on the proof ( Boundary control )

Contradiction argument

k(v0, v1)k2H 10�L2 � C
Z T

0

Z
Σ
j∂nv j2 dxdt




(v k0 , v k1 )



H 10�L2

= 1,
Z T

0

Z
Σ

���∂nv k ���2 dxdt � 1/k

(v k ) is bounded in H1(]0,T [�Ω) and the weak limit v satis�es8<:
∂2t v � ∆v = 0 in ]0,T [�Ω
v = 0 on ]0,T [�∂Ω
∂nv = 0 on ]0,T [�Σ

So v � 0 ( unique continuation).
µ a microlocal defect measure attached to (v k ) in H1(]0,T [�Ω). Every
non di¤ractive point of T �(]0,T [�Σ) is not in suppµ.
Then, by propagation, µ = 0 in ]0,T [�Ω, and v k ! 0 strongly !
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The main tools

! A unique continuation property.

! A propagation result ( regularity/compactness ).

! A lifting lemma ( boundary control ).
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The Lamé system

Ω bounded open subset of R3, with smooth boundary ∂Ω.

(L)

8<:
∂2t u � ∆eu = 0 in ]0,+∞[�Ω
u = 0 on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 H = (L2(Ω))3 � (H�1(Ω))3

∆e is the elasticity operator, i.e. the 3� 3 matrix with di¤erential operator
coe¢ cients

∆eu = µ∆u + (λ+ µ)rdiv u, u =t (u1, u2, u3),

The Lamé coe¢ cients µ and λ are constant and > 0

Unique solution in C 0(R+, (L2)3) \ C 1(R+, (H�1)3).
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Decoupling the solution

(L)
�

∂2t u � µ∆u � (µ+ λ)rdiv u = 0 in ]0,+∞[�Ω
u = 0 on ]0,+∞[�∂Ω

One can split the solution u into

u = uT + uL

with 8<:
(∂2t � c2L∆)uL = 0, rot uL = 0, c2L = λ+ 2µ
(∂2t � c2T∆)uT = 0, div uT = 0, c2T = µ
u = uL + uT = 0 on ∂Ω

Moreover, uL and uT are of bounded energy

kuLk2H 1((0,T )�Ω) + kuT k
2
H 1((0,T )�Ω) � C (T )Eu(0)

uL is the longitudinal wave and uT is the transversal wave.
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The Geometry of the Lamé System

P = ∂2t � ∆e

det p(t, x ; τ, ξ) = (µjξj2 � τ2)2
�
(λ+ 2µ)jξj2 � τ2

�
.

We have to deal with two characteristic manifolds:

pL(t, x ; τ, ξ) = c
2
L jξj2 � τ2 and pT (t, x ; τ, ξ) = c

2
T jξj2 � τ2

In the interior: The two waves uL and uT propagate independently.

At the boundary: Possibility of energy transfert.
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γ� : incident half-bicharacteristic at the point ρ of the boundary.

γ+ : re�ected half-bicharacteristic at the point ρ of the boundary.

The possible paths are:

γ�T ! γ+T , γ�L ! γ+L , γ�T ! γ+L , γ�L ! γ+T
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De�nition: The bicharacteristic path
A generalized bicharacteristic path Γ is a curve in

T �bM = T �M [ T �∂M

constituted by generalized bicharacteristics of P, with the possibility of
moving from a bicharacteristic manifold to another, at each point of
T �(∂M), in the way indicated above.
The projection of a generalized bicharacteristic path on Ω is a geodesic
path.

De�nition: Non di¤ractive point
We say that a point ρ 2 T �(∂M)n0, is non di¤ractive i¤ none of the two
corresponding bicharacteristic rays γT or γL is glancing di¤ractive at ρ.

In other words, the projection on the (t, x) space of both ( free ) rays γT
and γL crosses the boundary ∂M at this point.
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The Geometric Control Condition for Lamé

Take T > 0, ω an open subset of Ω and Σ and open subset of ∂Ω.

The condition (G.C.L) for internal control
We say that (ω,T ) satis�es the (G.C.L) if every geodesic path issued from
Ω at time t = 0, intersects the region ω before time T .

The condition (G.C.L) for boundary control
We say that (Σ,T ) satis�es the (G.C.L) if every generalized
bicharacteristic path Γ issued from Ω at time t = 0, intersects the region
Σ before time T , at a non di¤ractive point.
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The Control Results (with J-P. Raymond)

Theorem
Internal Control: Assume that (ω,T ) satis�es (G.C.L); then for every
(u0, u1) 2 H10 (Ω)� L2(Ω), there exists g 2 L2(]0,T [�Ω),
supp g � ω, s.t the unique solution of

(L)

8<:
∂2t u � ∆eu = g in ]0,+∞[�Ω
u = 0 on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 H10 (Ω)� L2(Ω)

satis�es (u(T ), ∂tu(T )) = (0, 0).
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Theorem
Boundary Control: Assume that (Σ,T ) satis�es (G.C.L); then for every
(u0, u1) 2 L2(Ω)�H�1(Ω), there exists h 2 L2(]0,T [�∂Ω),
supp h � Σ, s.t the unique solution of

(L)

8<:
∂2t u � ∆eu = 0 in ]0,+∞[�Ω
u = h on ]0,+∞[�∂Ω
(u(0), ∂tu(0)) = (u0, u1) 2 L2(Ω)�H�1(Ω)

satis�es (u(T ), ∂tu(T )) = (0, 0).
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Comments

1 Exact controllability result by J-L Lions (88) under the (local)
Γ�condition.

2 Analogy
Scalar wave Lamé system

geodesic rays geodesic paths

(G .C .C ) (G .C .L)

3 Is (G.C.L) necessary for control ? Open problem.
4 In the same setting, one can prove a stablization result with internal
damping.
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Theorem
Assume that (fa(x) > 0g,T ) satis�es (G.C.L). then there exsit two
positive constants C and α s.t every solution u of8<:

∂2t u � ∆eu + a(x)∂tu = 0 in ]0,+∞[�Ω
u = 0 on ]0,+∞[�∂Ω

(u (0, x) , ∂tu (0, x)) = (u0 , u1) 2 H10 (Ω)� L2(Ω)

satis�es

E (u) (t) =
Z

Ω
(µ jruj2 + (λ+ µ) jdiv uj2 + j∂tuj2)(t, x)dx

� C exp(�αt)E (u)(0), t � 0
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Some references

1 K.Yamamoto (89�): propagation of the wave front up to the boundary
for the Lamé system.

2 C.Bardos-T.Masrour-F.Tatout (95).
3 G.Lebeau-E.Zuazua (99�): Thermoelasticity system.
4 N.Burq-G.Lebeau (01�): microlocal defect measures for systems and
propagation results for Lamé.

5 M.Bellassoued (01�) : Carleman estimates and approximate
controllability for Lamé.

6 M.Bellassoued (08�) : Internal stabilization in a bounded domain with
Neumann boundary condition.

7 M.Daoulatli-B.D-M.Khénissi (10�): stabilization on an exterior
domain of R3 ( outside a trapping obstacle ).
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Proof: The main ingredients

Regularity estimate

8<:
∂2t v � ∆ev = 0 in ]0,+∞[�Ω

v = 0 on ]0,+∞[�∂Ω
(v (0, x) , ∂tv (0, x)) = (v0 , v1) 2 H10 (Ω)� L2(Ω)

µ
Z T

0

Z
∂Ω

����∂v∂n
����2 dσdt + (µ+ λ)

Z T

0

Z
∂Ω
(div u)2dσdt � C (T )Ev(0)

! Take the inner product of the equation by H(x , ∂x )v = (∑3
1 aj (x)∂xj )v

and integrate by parts.
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The regularity lifting lemma

Denote by π : T �(∂M)! ∂M the canonical projection.

Lemma Let ρ be a non di¤ractive point of T �(∂M)n0 and u a ( vector )
distribution de�ned near π(ρ) in M, solution of

∂2t u � ∆eu 2 C∞(π(ρ)), uj∂M 2 Hsρ ,
∂u
∂n
j∂M 2 Hs�1ρ

Then ρ /2 WF sb (u).
! Bardos-Lebeau-Rauch (88) for scalar waves.

Lemma In the same setting, if ρ /2 WF (uj∂M ), ρ /2 WF ( ∂u
∂n j∂M )

then ρ /2 WFb(u).
! Andersson-Melrose (77) for scalar waves.
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Microlocal defect measures for Lamé

We remind that8<:
(∂2t � c2L∆)uL = 0, rot uL = 0, c2L = λ+ 2µ
(∂2t � c2T∆)uT = 0, div uT = 0, c2T = µ
u = uL + uT = 0 on ∂Ω

pL = c
2
L jξj2 � τ2 and pT = c

2
T jξj2 � τ2

Let (uk ) be a sequence of solutions to the Lamé system.

uk = ukT + u
k
L

If uk * 0 in H1(]0,T [�Ω), so do ukT ,L.

Denote by µT and µL the m.d.m�s associated to these sequences ( they
are orthogonal in the sense of the measures).

Remark: In our case, GL and HL are contained in HT .
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Propagation

a) In the interior: µT ( resp. µL) propagates along the null
bicharacteristics of pT (resp. pL).
! Independant propagations .

b) At the boundary
Theorem (D-D-K): At a point ρ of the boundary,

1 If ρ 2 EL, then µL = 0 near ρ and

1 if ρ 2 ET , then µT = 0 near ρ
2 if ρ 2 GT [HT , then µT propagates from γ�T to γ+T .

2 If ρ 2 GL, then (γ�L \suppµL) = ∅ ) µT propagates from γ�T to
γ+T .

3 If ρ 2 HL, then

(γ�L,T\suppµL,T ) = ∅ ) µT ,L propagates from γ�T ,L to γ+T ,L.
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bicharacteristics of pT (resp. pL).
! Independant propagations .

b) At the boundary
Theorem (D-D-K): At a point ρ of the boundary,

1 If ρ 2 EL, then µL = 0 near ρ and

1 if ρ 2 ET , then µT = 0 near ρ

2 if ρ 2 GT [HT , then µT propagates from γ�T to γ+T .

2 If ρ 2 GL, then (γ�L \suppµL) = ∅ ) µT propagates from γ�T to
γ+T .

3 If ρ 2 HL, then
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Corollary
(γ�T \ suppµT ) [ (γ�L \ suppµL) = ∅

m

(γ+T \ suppµT ) [ (γ+L \ suppµL) = ∅

In this case, we get ρ /2suppµT ,L.

Remark: This is the "measures" analogous of the Yamamoto propagation
theorem for C∞ singularities:

(γ�L [ γ�T ) \WFb(u) = ∅ , (γ+L [ γ+T ) \WFb(u) = ∅

Remark: Propagation of the Sobolev wave front set (Yamamoto 06) ???
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A lifting lemma for the measures
Denote MT =]0,T [�Ω and ∂MT =]0,T [�∂Ω.

Lemma

Let (v k ) be a sequence weakly converging to 0 in H1(MT ) satisfying

∂2t v
k �∆ev k = 0 in MT , v k j∂MT

= 0,
∂v k

∂n
j∂MT

! 0 in L2(∂MT )

and µL,T the m.d.m respectively attached to the sequence (v kL,T ).
Then if ρ is a non di¤ractive point of T �(∂MT )n0, one has
ρ /2supp(µL,T ).
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Proof of observability from the boundary

8<:
∂2t v � ∆ev = 0 in MT

v = 0 on ∂MT

(v (0, x) , ∂tv (0, x)) = (v0 , v1) 2 H10 (Ω)� L2(Ω)

k(v0 , v1)k2H 10�L2 � C
Z T

0

Z
Σ

����∂v∂n
����2 dσdt

Contradiction argument:8><>:
∂2t v

k � ∆ev k = 0 , in MT

v k j∂MT
= 0, ∂v k

∂n j∂M ! 0 in L2(]0,T [�Σ)

(v k0 , v k1 )

H 10�L2 = 1
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Killing the weak limit�
∂2t v � ∆ev = 0 , in MT

v j∂MT
= 0, ∂v

∂n j∂M = 0 on ]0,T [�Σ
(*)

The space

G = fv 2 H = H10 � L2, v solution of (*)g

is constituted of smooth functions and closed in H. So dimG < ∞.
Moreover ∂/∂t operates on G and has no eigenvalues.

Therefore G = f0g.
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End of the proof: vk ! 0 in H1(]0,T [�Ω) strongly.

Assume that some q 2 T �(]0,T [�Ω) lies in suppµT[suppµL.

Consider then γ (γT or γL ) a bicharacteristic issued from q.

Denote by ρ a point at which γ hits the boundary ∂Ω.

One of the two re�ected half- bicharacteristics γ+T ( or γ+L ) is in
suppµT ( or suppµL).

We follow this half- bicharacteristic.

We construct by iterating this process a bicharacteristic path Γ
contained in suppµT [ suppµL.

By (G.C.L), Γ intersects Σ at a non di¤ractive point ρ0 before the
time T .

ρ0 /2 (suppµT [ suppµL). Contradiction.
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Two wave equations with internal coupling

8>><>>:
�u1 + b(x)u2 = 0 in ]0,+∞[�M

�u2 = bω(x)f in ]0,+∞[�M
Initial Data

(S)

! (M, g) compact Riemannian manifold without boundary.
! � = ∂2t � ∆g .
! f is the control.
! ω open subset of M � fx 2 M, bω(x) 6= 0g.
! b(x) , bω(x) both real and smooth, and b(x) � 0.
! Energy space: (H2 �H1)� (H1 � L2).
! Notice the shift between the two energy levels.
! Denote

O = fx 2 M, b(x) > 0g coupling set
ω = fx 2 M, bω(x) 6= 0g control set
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Some References

F.Alabau-Boussouira ( starting from 99�).

F.Alabau-Boussouira-M.Leautaud (11�) ( symmetric systems, long
control time).

L.Rosier - L.de Teresa (11�) ( 1-D , geometric but not sharp control
time ).

The crucial point: what are the geometric constraints on the open sets
O and ω ?
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Preliminary remarks: Exact controllabilty fails if

The propagation speeds of the two waves are di¤erent.

One of the open sets O or ω does not satisfy (GCC).

γ2 6= 1, 8<:
(∂2t � γ2∆)u1 = �b(x)u2 H2 �H1

(∂2t � ∆)u2 = bω(x)f H1 � L2

For f 2 L2 (]0,T [�M),

u2 2 H2 outside fτ2 = jξj2g

Therefore, starting from (0, 0), u1 2 C (]0,T [,H3).
) We can not reach any state in H2 �H1 !
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Theorem
For any bicharacteristic curve Γ of the wave operator �, there exists a
�nite energy function u solution of �u = 0 in ]0,T [�M such that
WFu � Γ (resp. WF su � Γ).

Theorem

There exists a sequence of solutions uk , such that

lim inf



(uk (0) , ∂tuk (0))


2

L2�H�1
� 1, uk * 0 in L2(]0,T [�M)

and the m.d.m µ of uk satis�es supp(µ)� Γ.
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Assumption

(O,TO ) and (ω,Tω) satisfy (GCC)

The optimal control time

De�nition
Tω!O!ω is the in�mum of the times T > 0 satisfying the following:
Every geodesic travelling with speed 1 in M meets ω in a time t0 < T ,
then meets O in a time t1 2 (t0,T ) and meets again ω in a time
t2 2 (t1,T ).
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Remarks
In general

Tω!O!ω 6= TO!ω!O .
max(Tω,TO ) � Tω!O!ω � 2Tω + TO .
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Theorem
( D-Le Rousseau-Leautaud )
Assume that ω and O both satisfy (GCC). Then system (S) is controlable

if T > Tω!O!ω and is not controlable if T < Tω!O!ω.

Remark: Case of a smooth domain of Rd : work in progress.
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The observabilty estimate

The adjoint system

8>>>><>>>>:
�v1 = 0 in ]0,+T [�M

�v2 + b(x)v1 = 0 in ]0,T [�M

I. D in (H�1 �H�2)� (L2 �H�1)

(S*)

E�1(v1) + E0(v2) � c
Z T

0

Z
M
jbωv2j2 dxdt

where
E�1(v) = k(v , ∂tv)(0)k2H�1�H�2
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Change of functions

w1 = (1� ∆)�1/2v1, w2 = v2

8>>>><>>>>:
�w1 = 0 in ]0,+T [�M

�w2 + b(x)(1� ∆)1/2w1 = 0 in ]0,T [�M

I. D in (L2 �H�1)� (L2 �H�1)

Observability Estimate

E0(w1) + E0(w2) � c1
Z T

0

Z
M
jbωw2j2 dxdt + c2(E�1(w1) + E�1(w2))
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Sketch of the proof

Contradiction argument

(
E0(w k1 ) + E0(w

k
2 ) = 1R T

0

R
M

��bωw k2
��2 dxdt + E�1(w k1 ) + E�1(w k2 ) � 1/k

(w kj ) is bounded in L
2(]0,T [�M) and converges to 0 in H�1.

Hence
w kj * 0 in L2(]0,T [�M) weakly

It remains to:
a) Prove the strong convergence ( propagation of the m.d.m�s ).
b) Drop the compact term in the RHS of the relaxed observabilty
estimate. ( unique continuation ).
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Proof of b) assuming a).

The weak limit (w1, w2) satisfy8>>>><>>>>:
�w1 = 0 in ]0,+T [�M

�w2 + b(x)(1� ∆)1/2w1 = 0 in ]0,T [�M

w2 = 0 in ]0,T [�ω

(L.S)

N (T ) = f(w1,w2) 2 L2 �H�1, solution of (L.S)g

N (T ) is of �nite dimension and stable by the action of ∂/∂t.
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8<:
∆w1 = λ2w1

∆w2 � b(x)(1� ∆)1/2w1 = λ2w2

Z
M
b(x)

���(1� ∆)1/2w1
���2 = 0

So w1 = w2 � 0 . Contradiction.
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Proof of a) 8>>>><>>>>:
�w k1 = 0

�w k2 + b(x)(1� ∆)1/2w k1 = 0

w k2 ! 0 in L2(]0,T [�ω)

µ1 a microlocal defect measure attached to (w
k
1 ) in L

2(]0,T [�M)
µ2 ................................................................ to (w

k
2 ) in .............

µ12 .......................................................... to (w
k
1 ,w

k
2 ) in ............
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8>>>>>>>><>>>>>>>>:

Hpµ1 = 0

Hpµ2 = 2b jηj Im µ12

Hp Im µ12 = b jηj µ1

Hp Re µ12 = 0

And
µ2 = µ12 = 0 over ]0,T [�ω

Take ρ 2 B � S�(]0,T [�O) where B is a small borelian set of
S�(]0,T [�M).

Im µ12(Φ�T1(B))� Im µ12(ΦT2(B))) =
Z T2

�T1
b jηj µ1(Φs (B))ds = 0

Hence ρ /2supp( µ1).....and conclude by (GCC).
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