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Motivation

To build convergent numerical schemes for nonlinear PDE.
Example: Schrodinger equation

Similar problems for other dispersive equations: Korteweg de Vries, wave
equation,...

Goal: To cover the classes of NONLINEAR Schrodinger equation that can
be solved nowadays with fine tools from PDE theory and Harmonic
analysis.
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Introduction

Key point: To handle nonlinearities one needs to use hidden properties of
the underlying linear differential operators (Strichartz, Ginibre, Velo,
Cazenave, Bourgain, Kenig, Ponce, Vega, Burq, Gérard, Linares, ...)

This has been done successfully for the PDE models.
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Introduction

Nonlinear problems

Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ur(t) = Au(t) + f(u(t)), t >0, u(0) = uo.

t
u(t) = ety eA1=5) £(4(s))ds.
(0 = eMu+ [ A u(e)

Assuming f : H — H is locally Lipschitz, allows proving local existence
and uniqueness in

ue C([0,T]; H)

But, often in applications, the property that f : H — H is locally Lipshitz
FAILS.

For instance H = L*(Q) and f(u) = |u|Pu, with p > 0. @&
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Introduction

Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): If et € X, then look for solutions of
the nonlinear problem in

C([0,T; H)) N X.
One then needs to investigate whether
t
u — et —|—/ A=) f(u(s))ds
0

is a contraction in C'([0,7; H]) N X.

Typically in applications X = L9(0,7; L"(€2)). This allows enlarging the
class of solvable nonlinear PDE in a significant way.
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Introduction

If working in C'([0,T; H]) N X is needed for solving the PDE, for proving
convergence of a numerical scheme we will need to make sure that it

fulfills similar stability properties in X (or X},)

THIS OFTEN FAILS!
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Linear Schrodinger equation

ur+Au=0,x € R, t#0,
u(0,z) = p(x), x € R,

Conservation of the L2-norm

1S@®)ellrzw) = llellLzw)
Dispersive estimate

1
[S(t)p(z)| < WH‘PHU(R)
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Space time estimates

The admissible pairs

2_1.1
q 2 r

Strichartz estimates for admissible pairs (g, r)

1SC)ellLar, ormy) < Cla, ) el L2 w)
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Introduction

Space time estimates

The admissible pairs

Strichartz estimates for admissible pairs (g, r)

1SC)ellLar, ormy) < Cla, ) el L2 w)

Local Smoothing effect

g [ [ At < Clelg,
zo,R B(zo,R
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Introduction

Nonlinear Schrodinger Equation

iug + Au = |ufPu, z e R, t #0
u(0,2) = p(z), z € R

For initial data in L?(R), Tsutsumi '87 proved the global existence and
uniqueness for p < 4

u e C(R, L*(R))N LY (R, L"(R))

This result can not be proved by methods based purely on energy

arguments.
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A first numerical scheme for NSE

dul

i— + Apul = [P, £ 0,
dt
u"(0) = ¢"
Ujg1 — 2U; + Ui
(Apu); = =S
Questions
e Does u" converge to the solution of NSE?

o Is u" uniformly bounded in LY (R,I"(hZ%))?

@ Local Smoothing ?

)
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A conservative scheme for LSE

h

In the Fourier space the solution @" can be written as

@'(t,6) = O ), e [T 7],

pu(§) = %SiHQ (?) :

where
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The two symbols in dimension one

1000

900 Continuous Case 4
2

P(E)=¢

800

700

600 -
Semidiscrete Case
500

P, (©=4 sin’(E h /2)

400

300

200+

100

40

o Lack of uniform i1 — [°: ¢ = +7/2h

e Lack of uniform local smoothing effect: £ = +n/h
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Introduction

Lemma

(Van der Corput) Suppose 1) is real-valued and smooth in (a,b), and that
| 5) (2)| > 1 for all z € (a,b). Then

b .
/ ez)\l/;(x) dr

h
6" (8)|l1oo (nz) < 1 N 1 -
[P O) 31 nzy ~ /2 (th)Y/3

< CkA_l/k

In dimension one:
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Introduction

These slight changes on the shape of the symbol are not an obstacle for
the convergence of the numerical scheme in the L?(RR) sense for LSE. But
produce the lack of uniform (in h) dispersion of the numerical scheme and
consequently, makes the scheme useless for nonlinear problems.
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Introduction

Various remedies have been proposed L.I and E. Zuazua (2003-2010)
Filtering the high frequencies

Artificial numerical viscosity

°
°

@ Two-grid methods

@ Error estimates for rough initial data
°

Wave packet analysis by A. Marica and E. Zuazua
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© Discrete Schrodinger equations
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Discrete Schrodinger equations

We consider
tus + Agqu = 0, jEZ,t%O,

u(0) = .

where

(Adu)j = Uj+1 — 2u]‘ + Uj—1
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Discrete Schrédinger equations

Discrete Schrodinger equations

We consider
tus + Agqu = 0, jEZ,t%O,

u(0) = .
where
(Aqu)j = ujp1 — 2uj + uj

Theorem (Stefanov 2005, LI & Zuazua 2005)
For any ¢ € 11(Z) the following holds

(@)@ < (O 2lleln

where (t) =t + 1.
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Discrete Schrédinger equations

A simple proof

ult, §) = (Kix 9)(§) = > Ki(j — k)e(k),
keZ
where

™
Kt (,7) — / e—4it sin? %€Z]$d£

—T
It remains to prove that

1K, ()] <t/
Apply Van der Corput and the fact that ¢ = 4 sin? satlsfles

W7+ "] = C > 0.

20 / 57
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DLSE with Dirichlet boundary condition

We consider the following equation

iw(t, ) + (Aqu)(t,j) =0, j=>1,
u(t,0) = 0, (3)
u(0,7) = »(j), Jj=> L
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DLSE with Dirichlet boundary condition

We consider the following equation

iug(t,7) + (Aqu)(t,j) =0, j>1,
u(t,0) =0,
u(07j) = (P(j)> Jj= 1

-2 1 0 0 0 O
1 -2 1 0 0 0

A= o 1 -2 1 0 O
o 0 .. 0
0 0 0
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Discrete Schrédinger equations

Theorem

For any ¢ € I2(Z%) there exists a unique solution u € C([0,00),12(Z7))
of problem (3) given by the following formula

u(t,§) = (Ki(G — k) — K (G + k)e(k), > 1.
k>1

Moreover

()l zy < O llelln -

Proof: Use odd extension of the function u to reduce the DLSE on the
whole Z.
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DLSE with Neumann boundary conditions

We consider the system

i (j) + (Aqu)(j) =0 j =1,
u(t,0) = u(t, 1), t>0, (4)
u(0,7) = »(j), j>1.

In the matrix formulation we have iU; + AU = 0 where

-1 1 O 0
1 0
0

o O O
o O o o
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Discrete Schrédinger equations

Theorem
For any ¢ € I>(Z*) there exists a unique solution u € C([0,0),1%(Z7T))
of problem (4) given by the following formula
ult,j+1) =Y (Kilk —j = 1) + Ki(k + 7)o (k).
k>1

Moreover

[u(®)lle z+y < &3l z+)-

Proof: Use the even extension of .
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Coupled DLSE

The equation we analyze is the following

iug(j) + (Aqu)(j) =0 Jj< -1,
i (J) + (Aqu)(j) =0 j>1,
u(t,0) = v(t,0), t>0, 5)
w(t.—1) — u(t, 0) = v(t,0) — v(t,1), ¢ >0 (
U(07j):g0j), jS—l,

\ U(O,j):gp(j), ]21

Theorem

For any @ € I?(Z*) there exist a unique solution (u,v) € C([0,00,12(Z*))
of equation (5) which satisfies the dispersive estimate

(s 0) (D) e ze) < et + 1) el o) (6)
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A simple proof

Define

) v(j) +u(—j5) . ) v(g) —ul—Jg) .
Observe that

(u,v) = ((S = D)(=), S+ D)
Key point: D and S satisfy two DLSE on the half line with Dirichlet,
respectively Neumann, boundary condition:

{ iDy(j) + (AaD)(5) =0 7 =1,
D(ta O) =0, (7)
D(O,j) — <P(J')*2‘P(*j)’ ] > 1
and
i5:(7) + (BaS)(j) =0 7 =1,
S(t,0) = S(t, 1), t>0, (8)
S(O ]) @(J)Jr;’( J)’ j>1. @
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Matrix formulation

Set U = (u,v)T where u = (u(j))j<—1 and v = (v(j));>1. It turns out
that U solves the following system

iU+ AU =0, t>0,

(9)
U(O) =¥,
where the operator A is given by

i e .. OO0 0 0 O
0o 1 -2 1 0O 0 0 O

4—|l 00 1 -5 5 0 00
o0 0 3 -2 1 00
0 0 0 0 1 -2 1 0
0 0 0 0 o0
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Open Problem

How we can obtain the [ — [* property directly from the properties of the
operator A?

Remarks: A is not a diagonal operator, so we cannot use the Fourier
analysis to obtain a symbol for A and to use oscillatory integrals
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A can be decomposed as A = Ay + B where

i e e 00 0 0 O
01 -2 1 0 0 0 0
A,—| 00 L 21 0 00
00 0 1 -2 1 0 0
00 0 0 1 -2 1 0
00 0 0 0
and
i e e 00 0 0 0
000 0 0 0 0 O
p_| 000 3 -3 000
000 -3 3 0 0 0
000 0 0 0 0 O
00 0 0 O

The solution of (9) is given by U(t) = ¢®(*4+5) How we can use the
dispersive properties of ¢?*2¢ and some properties of B in order to prove &
the l1 [>° estimate for U?

Dispersive properties 29 / 57



DLSE with "non-constant coefficients”

The model (D. Stan, L.I., JFAA 2011)

(i (§) + by 2 (Aqu)(§) =0 j< -1,
() + by *(Aqv)(j) = 0 j>1,
( 0) = v(t,0), t>0,
Pt 1>f u(t,0)) = by>(v(t,0) — v(t, 1)), >0
( ) ) .]S _la
[ v(0,4) = ( ), j>1

Question: [|(u, v)(#) oo < (1 + [t ™[I0l (2

Liviu Ignat (IMAR) Dispersive properties 30 / 57



Matrix formulation

U = (u(j)) 0 satisfies iU; + AU = 0 where A is given by

0 0 0 0 0
0 by% —2b2 b2 0 0 0 0
0 0 b? —b;Q—@ @ 0 0 0
0 0 0 wm mm bt bkt 00
0 0 0 0 by ? —2b,% by% 0
0 0 0 0 0

No chance to use Fourier transform, sums, etc... unless we answer to the
previous open problem.
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Use of the resolvent

Theorem

For any by and by positive the spectrum of the operator A satisfies

o(A) C I = [—4max{b;? by2},0].

(10)

For any w € I define

R*(w) = lif(f]l R(w =+ ie).

We can prove that

Then 1
= i [ R @) - B @)
A% I
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Discrete Schrédinger equations

Big Problem: computing the resolvent

Lemma

Let \ € C\ [—4max{b;?, by ?},0]. Any solution of the equation
(A= XI)f = g is given by

I
. —Ts K| |k|
fU)=—= — > " rylg(k) + ) (11)
by 2(1 —r2)+ by 2(1 — 1) [keb ’ kel }
b2 . .
Sl i), e,
p— (r T )g(k), J

kel

where rs, s € {1,2} is the unique solution with |rs| < 1 of the equation

7“2 —2rs+1= /\bgrs.
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A small part of the proof

Let assume by < by and take I = [—4b1_2,0]. " Essentially” we have to
prove that

| / ey (w)ra(w)] < CJt1/3
I

uniformly on j and k, where

12— 2r, +1 = wb?ry, s € {1,2}.
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A small part of the proof

Let assume by < by and take I = [—4b1_2,0]. " Essentially” we have to
prove that

[ eyt < Clep
uniformly on j and k, where
r2 —2rs+1 = wblry, s € {1,2}.
On I, 1y = €1(%) and ry = €?2(“) and we have to prove that
’/eitweijal(w)eikﬁz(w)dw| < O3
I
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Discrete Schrédinger equations

With a change of variables w = 2b1_2((:059 — 1) it remains to prove the
following result

Lemma

Let a € (0,1]. There exists a positive constant C'(a) such that the
following

’/ eit(2cos€+2zarcsin(asing))eityeSin9d9 SC(Q)(‘H—Fl)il/S (12)
0

holds for any real numbers y, z and t.

Obs: For z = 0 the estimate appears in the case of simpler DLSE.
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Discrete Schrédinger equations

Oscillatory integrals

Lemma (Van der Corput)

Suppose 1) is real-valued and smooth in I, and that [¢)*)(z)| > 1 for all

x € I. Then

/ M@ 3(2)dr| < R AV (|l oy + / 8.

I

We need to use two or three derivatives of the phase function

Pa(0) = 2cos 6 + yb + z arcsin(a sin g)
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Oscillatory integrals

Lemma (Van der Corput)

Suppose 1) is real-valued and smooth in I, and that [¢)*)(z)| > 1 for all

x € I. Then

< A VRl gy + / &),

/eiW(x)¢(x)d:L‘

I

We need to use two or three derivatives of the phase function

Pa(0) = 2cos 6 + yb + z arcsin(a sin g)

But there are cases when the above Lemma is not sufficient
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Discrete Schrédinger equations

Refinements of Van der Corput’'s Lemma

Lemma (Kenig, Ponce, Vega 91)
The following

b .
I/eWM*wW%@W%@MH

b
S%wlﬂwwmw@+/Wd@

holds for all real numbers x and t.

)|dg}-
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Discrete Schrédinger equations

Refinements of Van der Corput’'s Lemma

Lemma (Kenig, Ponce, Vega 91)
The following

b .
y/eWW@*@wwoﬁﬂmo&|

b
S%wlﬂwwmwm+/Wd@wa-

holds for all real numbers x and t.

But there are cases when the above Lemma is still not sufficient

@
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A new Lemma

Lemma (D. Stan, LI, JFAA 2011)

Assuming that at the critical points we have

&) ~E%a>2

then
I(z,t) = ‘ / GO0 4" ()3 de | < et}
Q
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A new Lemma

Lemma (D. Stan, LI, JFAA 2011)

Assuming that at the critical points we have
¢ ~ €% a>2

then

I(z,t) = ‘ /Q GO0 4" ()3 de | < et}

Finally apply careful Van der Corput and KpV with £k =2 or kK = 3 and
even brute force
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Some Open Problems

I. Give sufficient conditions for a symmetric matrix A with few diagonals
such that for the equation iU; + AU = 0 we can prove similar decay
properties, even with other type of decay: t=1/4 etc..

[l. Coupling more than two equations.
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Outline

© Schrédinger equation on trees
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Schrodinger equation on trees (or network trees)

O12

€122

Figure: A tree with the third generation formed by infinite edges
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Schrédinger equation on

Oy,
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Schrédinger equation on trees

iw(t,x) + Aru(t,z) =0, z eI, t#0,
(13)
u(0) = uy, zel.
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Schrédinger equation on trees

iwy(t,z) + Aru(t,x) =0, x|t #0,

(13)
u(O) = o, rel.
(wf(t,x) +ul,(tx) =0, z€(0,1),1<al<n,
() +ug,(t,x) =0, x€(0,00),|a| =n+1,
u@(t,1) =u®P(t,0), Be{l,2},1<]al<n,
u'(0,t) = u?(0,1), (14)
2 —
ug(t,1) = > ugf(t,0), 1<al <n,
p=1
ualc(07 t) + U%(O, t) =0,
[ u¥(0,7) = u (2).
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Schrédinger equation on trees

For regular trees we have similar dispersive estimates.
Main Tool: A result on LSE with discontinuous coefficients
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Schrédinger equation on trees

For regular trees we have similar dispersive estimates.
Main Tool: A result on LSE with discontinuous coefficients

Theorem (Banica, SIAM JMA 2003)

Consider a partition of the real axis —co = xg < 21 < +++ < Tp41 = 0O
and a step function o(x) = o; for x € (x;,x;1+1), where o; are positive
numbers.

The solution u of the Schrédinger equation

iug(t,x) + (o(z)ug)z(t,z) =0, forz e R,t#0,
U(0,$) = Uo(l'), T e R?

satisfies the dispersion inequality

u(t, )l poo(m) < C|t|_1/2HUOHL1(R)a t #0.
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|dea of the proof in the case of regular trees

Look to the tree in a different way

.....

The functions situated above each interval are defined on that interval, for
example u! and u? are defined on I3, etc... where

(k—1,k) if 1<k<mn,
I, =
(nyo0) if k=n-+1 a
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Schrédinger equation on trees

In order to obtain L' — L™ estimates we need to introduce some averages

Y udP
ZOLZ% on Mgt 0< (B <n+1—]af
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The first generation of Z's

Z(t,x) = (—Z(t,—x), Z*(t, v)) satisfies

12+ Zpy =0 x € R\{k,1 < |k| <n}
Z(t k=) = Z(t, k+), 1< [k <n
(15)
Zyp(t k=) =22, (t, k+), 1<kl <n
| Z0.0)=Zow).  w € R\{k1< [k <n}.
Using that Z satisfies
1Z()|| oo (m) < |75|_1/2HZ(0)”L1(R)
we have the same information about u! and u?:
n+1 1 B
mac{lJut (0l oo s 030 ey} < 172 Y0 o | D2 ],
k=1 2 al= Ll(Ik) a
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Schrédinger equation on trees

Next generations: induction
Question: What about a general tree? another ideas ...
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Schrédinger equation on trees

The general case

Theorem (V. Banica, L.I, JMP 2011)

The solution of the linear Schrodinger equation on a tree is of the form
. INCH))
" rug(e) = 30 T | oy dy. (16)

with gx(z,y) € R, I € {Ic}eck, D \cr lar] < 0o, and it satisfies the
dispersion inequality

- C
™A || ooy < ——=|uollpr(ry, t# 0. (17)
\/m ™)

v
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Schrédinger equation on trees

Ingredients for the proof

1. If Ryf = (—Ar + w?I)7!f then wR,f(x) can be analytically continued
in a region containing the imaginary axis
2. A spectral calculus argument to write

it A > itr2 dr
e"“Tug(z) = / """ TRirup(x)—.
™

o

3. The representation of the resolvent

TRirup(x ZbAem“(x / o(y)e ”'dey, (18)
AER

with w,\(x),@\ eR, I, e {Ie}eGE and E,BGJR |b)\| < 00.
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Schrédinger equation on trees

Main steps

1.0n each edge parametrized by I,
1
Rof(z) = ce™ + ™" + o~ / f(y) e " Ydy, x € I..
w I,

2. The continuity of R,f and of transmission of J, R, f at the vertices of

the tree give the system of equations on the coefficients c's
3.

N(I)

ni FTwdy () / f +wy 1
e DI ) ey (19)
1
— f —wlz—yl g 2
+ 5 [ twye =y, (20)
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Schrédinger equation on trees

4. Induction on the number of the vertices to prove that

der, er > 0, |det Dr(w)| > ¢r, Vw € C, |[Rw| < er.

5. Results on almost periodic functions to write

d
det Dr(i7) DF (i) Z ,\e
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Some Open Problems

@ Other coupling conditions A(v)f(v) + B(v)f'(v) = 0 where
@ the joint matrix (A(v), B(v)) has maximal rank, i.e. d(v),
@ A(v)B(v)T = B(v)A(v)T.
@ clarify if the dispersion is possible only on trees or there are graphs
(with some of the edges infinite) with suitable couplings where the
dispersion is still true

© Some applications to control/stabilization on trees/networks
@ Discrete Schrodinger equations on trees, graphs

© some magnetic operators: in the presence of an external magnetic
field the effect of the topology of the graph becomes more pronounced

@ Strichartz estimates for “exotic” graphs
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Schrédinger equation on

Exotic structures
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THANKS for your attention !!!
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