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The damped nonlinear wave equation

{
�u = ∂2

t u−∆u = −γ(x)∂tu + f (u)
(u(0),∂tu(0)) = (u0,u1) ∈ X = H1×L2.

(1)

Ω is a connected bounded open set with boundary in dimension 3 (for
simplicity)
f ∈ C1(R,R) satisfies

f (0) = 0, 0 is an equilibrium solution

sf (s)≥ 0, f is defocusing

|f (s)| ≤ C(1 + |s|)p , |f ′(s)| ≤ C(1 + |s|)p−1 with 1≤ p < 5 f is subcritical.

E(t) =
1
2

(∫
Ω
|∂tu|2 +

∫
Ω
|∇u|2

)
+

∫
Ω

V (u)

where V (u) =
∫ u

0 f (s)ds.
local theory by Strichartz estimates (Burq-Lebeau-Planchon 2006)
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Bibliography
Linear results with Geometric Control Condition : Rauch-Taylor (75),
Bardos-Lebeau-Rauch (92)

Assumption (Geometric Control Condition)
There exists T0 > 0 such that every ray of geometric optic travelling at
speed 1 meets ω in a time t < T0.

Nonlinear stabilization results : If ω is the exterior of a ball of Rd :
• Dehman-Lebeau-Zuazua (03) (subcritical case, controllability in

large time)
• Dehman-Gérard (02) (critical case on R3 using profile

decomposition)
• Aloui-Ibrahim-Nakanishi (09) (any nonlinearity for weak solutions,

uses Morawetz-type estimates)
Other type of nonlinear result, controllability at high frequency :
Dehman-Lebeau (09) : in subcritical case, (same time and geometrical
assumption as linear case),
C.L. (10) in critical case with non-focusing assumptions
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Stabilization theorem

Theorem (R.J.,C.L.)
Let R0 > 0, ω satisfying assumption Geometric Control Condition and
γ ∈ C∞(Ω,R+) satisfying γ(x) > η > 0 for all x ∈ ω. Assume
moreover that f satisfies the previous assumptions and is analytic.
Then, there exist C,λ > 0 such that for any (u0,u1) in H1×L2, with

‖(u0,u1)‖H1×L2 ≤ R0;

the unique strong solution of (1) satisfies E(u)(t)≤ Ce−λtE(u)(0) for
t ≥ 0.
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Idea of proof in the subcritical case
(Dehman-Lebeau-Zuazua)

We have

E(T ) = E(0)−
∫ T

0

∫
Ω

γ(x)|∂tu|2.

So to get exponential decay, we need to prove an observability
estimate ∫ T

0

∫
Ω

γ(x)|∂tu|2 ≥ CE(0)

for solutions of the damped wave equation bounded in energy by R0.
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Idea of proof in the subcritical case (DLZ)
By contradiction : let un be a bounded sequence of solutions with :∫ T

0

∫
Ω

γ(x)|∂tun|2 ≤
1
n

E(un)(0). (2)

Assume E(un)(0)→ α > 0 (otherwise linear behavior : easier)
We prove un→ 0 in energy which is a contradiction.
We can assume un ⇀ u where u is solution of the same equation.

• Using propagation of regularity and then unique continuation, we
get u ≡ 0. That is un ⇀ 0.

• By linearizability property, ‖un− vn‖L∞([0,T ],X) −→n→∞
0 where vn is

solution of �vn = 0 with same initial data as un.
• ∂tvn →

L2([0,T ]×ω)
0 by (2). So, by propagation of compactness for

linear equation (using propagation of microlocal defect measure
along Hamiltonian flow), vn→ 0 in energy and the same holds for
un.

Contradiction to α > 0.
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Main assumptions

Their method of proof could allow to prove the stabilization in more
general domains under the more general assumptions

• Geometric Control Condition

• Unique Continuation u ≡ 0 is the unique strong solution in the
energy space of{

�u + f (u) = 0 on [0,T ]×Ω
∂tu = 0 on [0,T ]×ω.
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The problem of unique continuation

Classical technique : use Carleman estimate for w = ∂tu solution of{
�w + Vw = 0 on [0,T ]×Ω

w = 0 on [0,T ]×ω.

with V = f ′(u).

Problem : the geometric assumptions are not so natural, we often
need to check them "by hands" on each geometric situation

There are some other available unique continuation results using
partial analyticity.
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Unique continuation under partial analyticity

Theorem (Zuily-Robbiano, a particular case)
Let v be a solution on an open set U of

�v + d(x , t)v = 0

where d is smooth, analytic in time.
Let ϕ ∈ C2(U,R) such that ϕ(x0, t0) = 0 and (∇ϕ,∂tϕ)(x , t) 6= 0 for
all (x , t) ∈U.
Moreover, assume

• v ≡ 0 in {(x , t) ∈U , ϕ(x , t)≤ 0}.
• ϕ not characteristic at (x0, t0).

Then, v ≡ 0 in a neighbourhood of (x0, t0).

Pbm : in our case, V = f ′(u) has no reason to be analytic in time...
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A result of analyticity

Theorem – J.K. Hale and G. Raugel (2003)
Let U(t) be a global solution of

∂tU(t) = AU(t) + F(U(t)) ∀t ∈ R .

We assume that

(i) ‖eAt‖L(X) ≤Me−λt .
(ii) {U(t), t ∈ R} is contained in a compact set K of X .
(iii) F is a compact and lipschitzian map and is analytic in a
neighbourhood of K .
(iv) there exist projectors (Pn) converging to the identity and
commuting with the unbounded part of A.

Then, the solution U(t) is analytic from t ∈ R into X.
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Idea of the proof

Goal : prove that t 7→ U(t) is C 1 with t in a complex strip R+ i(−ε,ε).

Idea : use the fixed point theorem for contracting maps as in the proof of
Cauchy-Lipschitz theorem.

U(t) 7−→ eA(t−t0)U0 +
∫ t

t0
eAsF(U(t− s)) ds .
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Proof of our main result

Let (un) solutions with E(un(0))≤ E0 and Tn→+∞ such that∫ Tn

0

∫
Ω

γ(x) |∂tun|2 dtdx ≤ 1
n

E(un(0))≤ 1
n

E0.

Assume that E(un(0))→ α > 0 and set u∗n(·) = un(·+ Tn/2).
It remains to :

• show that (u∗n) converges strongly to a global solution u∗ which
does not dissipate energy.

• apply previous theorem to show that u∗ is analytic in time and
smooth in space.

• use the unique continuation property of Robbiano and Zuily to
show that u∗ is constant in time and so u∗ ≡ 0.
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Asymptotic compactness

U∗n (0) = eATn/2Un(0) +
∫ Tn/2

0
eA(Tn/2−τ)

(
0

f (un(τ))

)
dτ

We use that :

• ‖eAt‖ ≤ Ce−λt

• Un(t) is bounded in H1(Ω)×L2(Ω)

• for f (u) = o(|u|3), f maps a bounded set of H1(Ω) into a
compact set of L2(Ω).
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Compactness for f (u) = o(|u|5)

For f (u)∼ |u|p with p < 5, we use

Theorem – B. Dehman, G. Lebeau and E. Zuazua (2003)
Let s ∈ [0,1), R > 0 and T > 0.
There exist ε > 0 and (q, r) satisfying 1

q + 3
r = 1

2 , q ∈ [7/2,+∞] and
C > 0 such that,
if v ∈ L∞([0,T ],H1+s(Ω)) has a Strichartz Lq([0,T ],Lr (Ω)) norm
bounded by R, then

‖f (v)‖L1([0,T ],Hs+ε(Ω)) ≤ C‖v‖L∞([0,T ],H1+s(Ω)) .

(proof by using Meyer’s multipliers)
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Regularity of u∗

U∗(t) =
∫ t

−∞

eA(t−τ)F(U∗(τ)) dτ .

We use several times the result of Dehman, Lebeau and Zuazua until
u∗ belongs to H2(Ω) and then the usual Sobolev imbeddings are
sufficient for the bootstrap argument.

=⇒ u∗ is C ∞

=⇒ we can apply the analyticity result of Hale and Raugel (F(U∗) well
defined)
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Conclusion of the proof

We know that u∗ is analytic in time, smooth in space and does not
dissipate energy. Set v = u∗t , we have

v ≡ 0 on the support of γ

vtt = ∆v + f ′(u(t))v .

A global version of the unique continuation result of Robbiano and
Zuily Uniqueness in the Cauchy problem for operators with partially
holomorphic coefficients shows that v ≡ 0.
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Control/Dynamical point of view

• Stabilisation / existence of a compact global attractor

• Propagation of compactness / asymptotic compactness

• Propagation of space regularity / asymptotic smoothness
(regularity of the trajectories of the attractor)

• ? ? ? / asymptotic analyticity (the solutions of the attractor are
analytic in time if the nonlinearity is analytic)

• Unique continuation properties / gradient structure (equilibria
are the only trajectories which do not dissipate the energy)
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Further results

• The stabilisation also holds for unbounded manifolds with
bounded C ∞−geometry if γ≥ α > 0 outside a bounded set.

• The stabilisation also holds for almost all the nonlinearities f ,
even non-analytic ones (generic result).

• We get control of the wave equation by using the stabilisation
and a local control near 0.

• Same kind of technics can be used to show existence of a
compact global attractor for a more complex nonlinearity
f (x ,u).
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THANK YOU FOR YOUR ATTENTION ! ! ! ! !
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