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Physical context

Maxwell System in harmonic regime: exp(−iωt)
ω : angular frequency: ω

c = 2π
λ = k ( wave number)

Finite scatter Ω ⊂ R3 filled (periodically or not) with high permittivity
inclusions:

ε = ε′ + i ε′′ with |ε| � 1 (permittivity) , µ ∼ µ0 (permeability)

GOAL: Find geometries and good scalings for
d (period) , ε permittivity , θ (volume fraction)

 Negative effective permittivity tensor εeff(ω) ?

 Negative permeability tensors µeff(ω) ?
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Singular limit of 3D- Maxwell system

• The distance between inclusions d is viewed as an infinitesimal
parameter η (although in practice d ∼ wavelength

10 )
• The relative permittivity εη(x) is very large.
• The metallic inclusions have a filling ratio θη which may vanish in the
limit process.
• The electromagnetic field (Eη,Hη) satisfies on all R3{

curl Eη = iωµ0Hη

curl Hη = −iωε0 εη Eη
(1)

(Eη − E i ,Hη − H i ) satisfies the O.W.C. (2)

where εη is the stiff parameter and O.W.C. means ’outgoing radiation
condition at infinity’ ( Silver Müller)
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Arrays of metallic nanorods

Ω

Figure: metallic fibers ||, lenght ∼ period, diameter � period

Finite obstacle in R3, volume fraction of fibers θη � 1.

Each block of fibers acts as an electrostatic resonator

 εeff (ω) negative (all symmetric tensor are realizable)
joined work with C. Bourel , to appear CICP
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Pendry split rings structure
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• The scatter Ω ⊂ R3 contains O(η−3) split-rings of size O(η).
• θη = θ is positive.
with Ben Schweizer (Siam MMS 2010)  negative µeff (ω)
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Dielectric inclusions and artificial magnetism

An Alternative to metallic Pendry split rings ?

η

YΣη

e1

e3

e2

Σ

εη = εr
η2

Ω

εη = εe

εη = 1

η is a small parameter (period)

Finite domain Ω ⊂ R3 contains O(η−3) periodic inclusions of diameter O(η)

filled with high permittivity
εr

η2
.

Volume fraction (of dielectric) constant as η → 0
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Oscillations of the magnetic field

The zero order term in the expansions in

Hη(x) = H0(x , x/η) + ηH1(x , x/η) + η2 H2(x , x/η)

Jη := ηεηEη = J0(x , x/η) + η J1(x , x/η) + η2 J2(x , x/η)

saisfies a cell problem

curly H0 + iωε0J0 = 0 in Y , divy H0 = 0 in Y (3)

curly J0 + iεrωµ0H0 = 0 in Σ , J0 = 0 in Y \ Σ (4)

Observations :
• By (3), H0(x , ·) belongs to the Sobolev space H1

] (Y ; C3).
• In contrast J0(x , ·) (supported in Σ) which may have a tangential jump
across ∂Σ.
• Exploiting (3)(4), on subset Σ: ∆y H0 + k2

0 ε
r H0 = 0
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Micro-resonator problem on Q = (0, 1)3

b0(ϕn, ψ) = λn

∫
ϕn · ψ dy , ∀ψ ∈ X0 , (5)

where b0 and Hilbert space X0 are given by

b0(u, v) :=

∫
Q

(curl u · curl v + div u · div v) dy ,

X0 =

{
u ∈W 1,2

] (Q; C3) : curl u = 0 on Q \ Σ ,

∮
u = 0

}
Remark

- non zero constant functions are ruled out in previous definition.
- Contributing eigenvectors in expansion (6) are all divergence-free.
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Effective permeability law

µeff
ij (k) = δij +

∑
n∈N

εr k2

λn − εr k2

(
ej .

∫
Y
ϕn

)(
ei .

∫
Y
ϕn

)
, (6)

where the λn, ϕn’s are related to a spectral problem on the unit cell
satisfied by the microscopic magnetic field (Micro resonator problem)

Remarks:

The real positive λn and periodic eigenfunctions ϕn depend only on
the geometry.

The validity of homogenized law (6) requires that

dist(εr k2,S) > 0 , where S := {λn , n ∈ N} .

(for instance =(εr ) > 0)

The effective permittivity law εeff is the same as for perfect metallic
inclusions (Electric field vanishes)
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TM-Polarized case

Assume the obstacle consists of e3 parallel cylindrical rods with length
L =∞. The magnetic H = u(x1, x2)e3 field is assumed to be e3-parallel
 2D-analysis

Ei,Hi

L
x1

x2

x3
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Let u = u(x1, x2) e3 such that u ∈ X0 and Σ = D × [−1/2, 1/2]. Then

curl u = 0 in Q \ Σ and

∮
u = 0 ⇒ u(x1, x2) = 0 on Y \ D

Thus solving solving cell system (3), (4) reduces to a 2D Laplace spectral
problem

−∆ϕn = λn ϕn , ϕn = 0 on ∂D

Comment: The micro-resonances are localized on each inclusion and no
interactions between inclusions is expected is the limit as η → 0.

D.Felbacq, GB Theory of mesoscopic magnetism in photonic crystals, Phys.
Rev. Lett. 94, 183902 (2005) , Phys. Rev. Lett. 94, (2005)

C.Bourel,D. Felbacq, GB: Homogenization of the 3D Maxwell system near
resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris I, Volume
347, 2009, 571–576
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Aim and outline

GOAL: Study the stability of the dielectric resonator model under
random perturbations
Method: Stochastic homogenization
NB: we only consider the 2D case and TM polarization

Outline of the talk

Stochastic framework

Homogenization result

About the proof

Limit of validity and vanishing dissipation
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1- Stochastic framework

Randomly perturbed geometry in finite B ⊂ R2

Note: ω denotes now the random event !
Dη(ω)

1

1

η

η

Y

θi(ω)

ρi(ω)

δ

Dη(ω) :=
⋃

i∈Jη(ω)

D i
η(ω) , D i

η(ω) := η
[
i − y(ω) + B

(
θi (ω),ρi (ω)

)]
(7)

where Jη(ω) = {i ∈ Z2 | η(i − y(ω) + Y ) ⊂ B}, y(ω) random lattice
translation.
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Diffraction problem

The diffracting obstacle Dη(ω) ⊂ B is illuminated by a monochromatic
incident wave traveling in the H|| mode. The magnetic field takes the
form uη(x1, x2, ω) e3 and is characterized by{

div (aη(x , ω)∇uη(x , ω)) + k2uη(x , ω) = 0 x ∈ R2,

uη − ui verifies the outgoing Sommerfeld radiating condition,
(8)

The scalar random function aη(x , ω) ∈ C represents the inverse of the
permittivity at the point x and is given by

aη(x , ω) = 1B\Dη(ω)(x) +
∑

i∈Jη(ω)

η2

εi (ω)
1D i

η(ω)(x) (9)
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Probability space

The random variables {mi := (θi , ρi , εi ) : i ∈ N2} are independent and
identically distributed with a given probability law p on

M := {(θ, ρ, ε) ∈ Y × [0, 1/2]× C+ : dist(θ, ∂Y ) ≥ ρ+ δ}

and the translation parameter y(ω) follows a uniform density law on Y .
The probability space (Ω,B,P) is therefore

Ω :=
∏
Z2

M × Y , P :=
⊗
Z2

p(dm)⊗ dy ,

being B the Borel tribe.
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Dynamical system (A.Piatnitski, S.Kozlov, V. Zhikov)

For x ∈ R2, [x ] = ([x1], [x2]), we denote the element of Z2 made of integer
parts. We introduce the group of transformations in Ω

Tx : ω =
(

(mi )i∈Z2 , y
)
−→ Tx (ω) =

(
(mi+[x+y ])i∈Z2 , x + y − [x + y ])

)
One checks that Tx is a group preserving the measure P and ergodic (i.e.

P(Tx A∆A) = 0⇒ P(A) ∈ {0, 1}). Now let

Σ = {ω ∈ Ω : |y − θ0| < ρ0}, Σ∗ = Ω \ Σ.

P(Σ) represents the volume fraction of inclusions
We may rewrite (9) as

aη(x , ω) = 1B(x)

(
η2

ε(T x
η
ω)

1Σ

(
T x

η
ω
)

+ 1Σ∗
(
T x

η
ω
))

+ 1R2\B(x) (10)
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2- The homogenization result

Let S0 = {λn, n ∈ N} be the eigenvalues and {ϕn, n ∈ N} the normalized
eigenvectors of the 2D-Dirichlet Laplace operator on the unit disk
(
∫
ϕ2

n = 1). Let [ϕn] :=
∫
ϕn.

• Frequency dependent effective permeability

µeff(k) = 1 +
∑

n

E
[

ερ4k2

λn − ερ2k2

]
[ϕn]2 (∗)

• Real positive effective permittivity: εeff = E
[

1
A(ρ)

]
where, for θ, e arbitrary (e unit vector)

A(ρ) = inf

{∫
Y \B(θ,ρ)

|e +∇w |2 , w Y -periodic

}
.

(Neumann problem on perforated domain)
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Stability condition and Main result

To avoid a blow-up of solutions uη(ω, x), we need the folllowing

p({=(ε) > 0}) > 0 ,

∫
M

(
ερ

dist
(
ερ2k2,S0

))2+h

dp <∞ (∗∗)

for a suitable h > 0 (higher integrability)

Theorem

Under (**), for almost all event ω, the sequence uη does converge in
L2

loc(R2 \ B) to the unique (deterministic) solution of the diffraction
problem where the scatterer B is filled with an homogeneous material of
permittivity and permeability εeff , µeff(k) given in (**).

The pointwise convergence holds only outside of the scatter.
Q: What happens inside ?
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What happens inside ?

Recalling that ω = ((mi )i∈N, y), we define the random function

Λ(ω, k) := 1 + 1Σ(ω)
∑
n∈N

k2ε(ω)ρ2
0(ω)[ϕn]

λn − k2ε(ω)ρ2
0(ω)

ϕn

(
y − θ0(ω)

ρ0(ω)

)
(11)

As expected the field uη oscillates inside B. Precisely, for P a.a. ω

lim
η→0

∫
B
|uη(x , ω)− u(x) Λ(Tx/η(ω), k)|2 dx = 0 , (12)

being u the unique solution of the limit diffration problem
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Comments

Under (**), the effective medium is dissipative
For every k , =(µeff(k)) > 0 ⇒ well posed limit Pb

Our result includes the determinist case (GB, Felbacq ,
PRL(2005)) Let p be a Dirac mass at some (θ0, ρ0, εr ), then:
- the probality space Ω reduces to (θ0, ρ0, εr )× Y
- Tx/η(ω) ≡ x/η
- Λ(ω, k) becomes the periodic solution wk (y) of

∆w + k2w = 0 , w = 1 on B(θ0, ρ0)

- From (12) follows the strong two-scale convergence

lim
η→0

∫
B
|uη(x)− u(x) wk (x/η)|2 dx = 0 .
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3- About the proof

We use a variant of the stochastic two scale convergence introduced by
Bourgeat , Kozlov and Wright (1994).
NB: The realization ω̃ is fixed (following Piatnitski)

Definition: uη(x , ω̃)⇀⇀ u0(x , ω, ω̃) if for every Ψ continuous on Ω,

uη(·, ω̃) Ψ(Tx/η(ω̃) ⇀ E[(u0(x , ·)Ψ(·)]

Remark: By Birkhoff’s Thm, for every ω̃ ∈ Ω̃ of full measure

Ψ(Tx/η(ω̃) ⇀ E(Ψ(ω))

In our case the two scale limit of uη(x , ω) we find is independant of ω̃:

u0(x , ω) = u(x)(1R2\B(x) + Λ(ω)1B(x)) .
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Ergodicity and stochastic derivative

The constancy of u0(x , ·) outside B is deduced from the ergodicity of the
dynamical system (Ω,P,Tx ) thanks to

Lemma

Let U ⊂ Ω, Q(ω) := {x : Txω ∈ U} ⊂ R2, and f ∈ L1(U ; P). If
f (Txω) = f (ω) for almost all ω ∈ U , x ∈ Q(ω) then f is constant on U .

Definition The map f 7→ (Ux f )(ω) = f (Txω) defines a continuous group
in L2(Ω,P) with infinitesimal generators

D(∂s
i ) =

{
f ∈ L2(Ω,P) : ∃ lim

t→0

Utei f − f

t
∈ L2(Ω,P)

}
Accordingly we define Sobolev spaces H1

s (Ω),H2
s (Ω). Then

f ∈ H1
s (Ω) ⇒ for a.a.ω f (Txω) ∈ H1

loc (R2) , ∂i (f (Txω) = (∂s
i f )(Txω) .
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Identification of u0

Lemma

The two-scale limit u0 belongs to L2(B,H1
s (Ω)) and for a.a. x ∈ B, u0, ·)

satisfies

∇su0(x , ·) = 0 in Ω \ Σ , ∆su0(x , ω) + ε0(ω)k2u0(x , ω) = 0 in Σ .
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L2 estimate

The L2- bound for {uη} requires an estimate involving the distance of k to
the resonance frequencies kn in the rods where k2

n = λn
ε ρ2

Lemma

Fix δ ∈ (0, 1/2) and let S0 = {λn}. Then there exists cδ > 0 such that, for
any α ∈ C and u ∈ H1(Y ) such that ∆u ∈ L2(B(θ, ρ)) where
dist(θ, ∂Y ) ≥ ρ+ δ, it holds for every α ∈ C∫

B(θ,ρ)
|u|2 ≤ 2

dist2
(
α, S0

ρ2

) ∫
B(θ,ρ)

|∆u + αu|2 +

2 cδ

(
1 +

|α|
dist

(
α, S0

ρ2

))2 ∫
Y \B(θ,ρ)

(|u|2 + |∇u|2)

We apply this to vη(x) = uη(x , ω̃)− u0(x ,T x
η
ω̃).
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Lemma

Let {Xi , i = 1, 2, . . . , n, . . . } be a sequence of independent and identically
distributed non negative random variables in L1(Ω,A,P). Define

Zn := sup{Xi , 1 ≤ i ≤ n}

Then we have

lim
n→∞

1

n
E(Zn) = 0 ,

Zn

n
a.s.−→ 0

.

We apply the Lemma above to show that

bη := sup
j∈Jη

η2

dist(εjρ
2
j k2,S0)

a.s.−→ 0 .
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4- Limit of validity of the model

Random fluctuations on the radius or permittivity should reduce the
amplitude of large terms in the series expansion (*)

Are negative permittivities stable ?

Can we start with permittivity laws on the real axis ? ( condition (**))
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Influence of the law p
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On the left, the radius of inclusions are fixed to 0.35.

On the right radius follows an uniform law between 0.32 and 0.38. In both the

law of permittivity is a Dirac mass in 100 + 5i .
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Larger fluctuations
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Figure: The radius follows an uniform law between 0.3 and 0.4. The permittivity
law is a Dirac mass in 100 + 5i .
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Small vanishing dissipation

Q: What happens if ε is randomly distributed on the reals, for instance

p(θ, ρ, a, b) := δ(θ − θ0, ρ− ρ0)⊗ g(a) da⊗ δ(b) ??

It seems natural to approximate p̃ introducing some small loss

pδ(θ, ρ, a + ib) = δ(θ − θ0, ρ− ρ0)⊗ g(a) da⊗ 1

δ
ζ(

b

δ
)

being ζ a probability on ]0,+∞[ compatible with (**).
Owing to expansion (*), we expect the effective permeability to be the
limit δ → 0 of

µeff
δ (k) := 1 +

∑
n

∫
M

ερ4

νn − ρ2ε
pδ(dθ dρ dε), νn :=

λn

k2
.
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The vanishing loss limit

Assume that the density g(a) is smooth (Lipschitz) in the vicinity of the
λn’s. Then, as δ → 0:

µeff
δ (k)→ µeff(k) = 1 +

∑
n

[ϕn]2 In(k) ,

where (PV refers to the Cauchy principal value)

<(In(k)) = PV
(∫

aρ4
0

λn − aρ2
0

g(a) da

)
,

=(In(k)) =
πλn

k2
g
( λn

k2
0ρ

2
0

)
.
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We take ζ to be Dirac masses at b = 1 and b = 5
g(a) is smooth supported in [90, 110] and ρ0 = 0.35.
The black line repesents the limit as δ → 0 (ζ Dirac at b = 0).
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Figure: Dependence of <(µeff ).

0 5 10 15
−1

0

1

2

3

4

5

6

7

8

9

λ/d

!(εr) = 1

!(εr) = 5

!(εr) = 0

Figure: Dependence of =(µeff )
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5- Conlusions and open issues

• Conclusion: The limit medium has positive loss whenever the density
law for permittivity ε(ω) is positive close to the resonance frequencies.
The classical homogenization fails when starting with lossless
dielectric
Due to asymptotic analysis in harmonic regime ??

• Open problems:
- Full 3D case ? (random resonators are coupled to each other)
- How to manage more general random perturbations ?
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