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Consider a linear control system
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Stabilization & intermittent control

Consider a linear control system
& = Ax + Bu

and a feedback u = Kz stabilizing at 0.

Let v : [0,00) — {0,1} (or, more generally, « : [0,00) — [0, 1])
represent a switching signal which determines whether the
feedback u = Kx is active:

T =Ax +aBKz.

a may model
m Unfaithful transmission of the control law («(t) € {0,1})
m Cyclic parameter affecting the control efficiency
m Allocation of control resources
PB: under which conditions is the switched system
asymptotically stable at 07



A nonlinear multiD-signal example

Model studied by Astolfi and Lovera [2004]: attitude control of
a spacecraft by means of magnetic actuators

R = RS(w)
Ju = JwXxw+u(t) x b(t)

(R attitude, w angular velocity, J inertia matrix, b Earth’s
magnetic field) by applying a feedback transformation of the
control which changes the second equation in

Jo = Jw x w — S(b(t)S(b(t)Tv(t)
The stability is obtained from the inequality
t+T
[ sesem)Tar =
t

due to the cyclical rotation of the satellite around the earth



Rationale of the talk

m Finite-dimensional behavior
m New phenomena for PDE evolution

m Exponential /strong/weak stability for PDE evolution



Finite dimension: stabilizable linear control system

A linear control system
&t =Axr+ Bu, z€R", ueR™ (A, B)

is stabilizable at the origin if there exists a feedback u = K«
such that A + BK is Hurwitz.



Finite dimension: stabilizable linear control system

A linear control system
&t =Axr+ Bu, z€R", ueR™ (A, B)

is stabilizable at the origin if there exists a feedback u = K«
such that A + BK is Hurwitz.

If (A, B) is controllable, than the system can be stabilized with
an arbitrary rate of convergence, ie, for every A > 0 the exist K
and C > 0 such that

lz()]] < Cllz(0)[|le™*

for every trajectory x of & = Ax + BKx.



Persistent excitation

Definition

Let 0 < pu <T. A (7. )-signal is a function o € L*(R, [0, 1])
satisfying

t+T
/ a(s)ds > p, VYteR.
t

Definition ((7', 1)-stabilizer)

Let 0 < u <T. The feedback u = K= is said to be a

(T, p)-stabilizer if there exist C,~y > 0 such that, for every
(T, p)-signal «, and every zp € R", the solution = of

& = (A+ aBK)zx, x(0) = xo, satisfies

|z(@)|| < Ce ™ "||zo]l, Vt>0.



A neutrally stable

Lemma

Let (A, B) be stabilizable and A neutrally stable (Re(a(A)) <0
and the eigenvalues with real-part equal to zero have trivial
Jordan blocks). Then there exists K which is a (T, p)-stabilizer
for every 0 < u <T.
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A neutrally stable

Lemma

Let (A, B) be stabilizable and A neutrally stable (Re(a(A)) <0
and the eigenvalues with real-part equal to zero have trivial
Jordan blocks). Then there exists K which is a (T, p)-stabilizer
for every 0 < pu <T.

Without loss of generality A skew-symmetric and K = —B
(independent on (T, 1)). V(t) = ||=(t)||> Lyapunov function.

T

V = —2a(t)||BTz|?.
The a-uniform exponential decay of V' follows by compactness:
if to+T T ,
/t aj ()| B 2;(t)["dt — 0, [z (to)]| =1,
0

then, aj = e and z; — o in C([to, to + T]). Hence,
0 = aco(t)[| B oo (1)|* = coo (1) | BT ez (t0) |-
Contradiction



Spectra with non-positive real part

Theorem (Y. Chitour, M. S., SICON, 2010)

Let (A,b) € Mp(R) x R™ be a controllable pair and assume that
Re(o(A)) < 0. Then, for every 0 < u < T there exists a
(T, p)-stabilizer.

The uncontrolled system & = Ax can have trajectories such that
|x(t)|] — oo as t — 4o0.

The proof is based on a compactness argument and a
time-contraction procedure, transforming asymptotically the
integral constraint in a pointwise one.



On the maximal rate of convergence

Proposition (Y. Chitour, M. S., SICON, 2010)

There exists ps € (0,1) such that for every controllable pair
(A,b) € My(R) x R? and every T > 0, if u/T < p. then the
mazimal rate of exponential convergence is finite.

In particular, there exist controllable pairs (A,b) that are not
(T, pv)-stabilizable for some 7' > p > 0.

A= Jy+ Adg, A large, T/p < ps



On the maximal rate of convergence

Proposition (Y. Chitour, M. S., SICON, 2010)

There exists ps € (0,1) such that for every controllable pair
(A,b) € My(R) x R? and every T > 0, if u/T < p. then the
mazimal rate of exponential convergence is finite.

In particular, there exist controllable pairs (A,b) that are not
(T, pv)-stabilizable for some 7' > p > 0.

A= Jy+ Adg, A large, T/p < ps

Proposition (Y. Chitour, M. S., SICON, 2010)

There exists p* € (0,1) (only depending on n) such that for
every controllable pair (A,b) € M,(R) x R"™ and every T > 0,
the system & = Az + abu can be (T, p)-stabilized with an
arbitrarily large rate of convergence if u/T > p*.



Persistent excitation in the infinite-dimensional case
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Lemma

Let A be skew-symmetric and (A, B) stabilizable. Then
K = —BT is a (T, u)-stabilizer for every 0 < u < T.

Such result do not generalize to infinite-dimensional systems.



Persistent excitation in the infinite-dimensional case

Let us go back to:

Lemma

Let A be skew-symmetric and (A, B) stabilizable. Then
K = —BT is a (T, u)-stabilizer for every 0 < u < T.

Such result do not generalize to infinite-dimensional systems.

Consider the wave equation on a string of finite length L, fixed
at both ends and damped on a subset (a,b) C (0, L),

Vit (t, ) = Vea(t, ¥) — a(t) L g ()0e(t, 7)
v(t,0) =v(t,L) =0

Given T > p > 0, it suffices to take a traveling wave with
sufficiently small support in order to design « that satisfies the
persistent excitation condition and switches off the actuator
when the wave passes through (a, b).



A positive stability result

[Martinez-Vancostenoble, 2002] and
Haraux-Martinez-Vancostenoble, 2005] studied (a class of
second-order systems generalizing) the damped wave equation

v (t, ) = vg(t, ) — a(t)ve(t, x)
v(t,0) =ov(t,L) = 0.

They proved that if

{t | Oé(t) = 1} = UnEN(an;bn)
with b, < an41 and
Z (b — ap)® = 00
neN

then the solution converges exponentially to zero in
H(0,L) x L?(0, L).



Infinite-dimensional framework

H Hilbert space
2(t) = Az(t) + a(t)Bu(t)
u(t) = —B*z(t)

with
m A: HD D(A) — H a (possibly unbounded) linear operator
generating a strongly continuous contraction semigroup
{e"}e=0
m B : U — H bounded linear operator
® «:[0,00) — [0, 1] measurable
= mild solutions: z(t) = etz — fot et=5)4a(s)BB*2(s) ds



Infinite-dimensional framework

H Hilbert space
2(t) = Az(t) + a(t)Bu(t)
u(t) = —B*z(t)

with
m A: HD D(A) — H a (possibly unbounded) linear operator
generating a strongly continuous contraction semigroup
{e"}e=0
m B : U — H bounded linear operator
® «:[0,00) — [0, 1] measurable
= mild solutions: z(t) = etz — fot et=5)4a(s)BB*2(s) ds

Let V(2) = 3[|z[|%. Then

t+71
V(z(t+71))—V(z(t) < —/t a(s)||B*z(s)||% ds for all >0



Exponential stability

Theorem (F. Hante, M. S., M. Tucsnak)

Let ¢, ¢ > 0 be such that
9
/ a(t)||B*e 2|3 dt > c||zo0l|%,  for each (T, p)-signal of-).
0

Then —B* is a (T, p)-stabilizer, i.e., there exist C,~vy > 0 such
that all solutions z(-) of 2 = Az — aBB*z satisfy

Izl < Ce™[12(0)]|a

uniformly with respect to the (T, u)-signal a-).

Stability is guaranteed by a generalized observability inequality.
Inequalities of this type were obtained for the heat equation
studying bang-bang properties for optimal control
[Mizel-Seidman,1997],[Fattorini,2005],[Wang,2008],[Phung,2011]



Idea of the proof

m for a trajectory z(:) of 2 = Az — aBB*z and (T, p)-signal
a(')?
v 9
| a@B == [ @l et)f
0 0

m we conclude by standard considerations on the real-valued
map ¢ — V(z(t)) = ||2(t)|1?/2



Example: wave equation

Q bounded domain of RY

v (t, ) = Av(t, ) — at)d(z) vy (t, x), (t,x) € (0,00) x £,
v(0,z) = yo(x), x € Q,
v(0, ) = y1(), z€Q,
v(t,z) =0, (t,z) € (0,00) x 09,

with d € L=(Q), |d(z)| > do > 0.

The generalized observability inequality is satisfied with ¥ =T,
H = Hj(Q) x L*(Q) and [|(21, 22)[| = [| V21l z2(@) + |22l 2y

[ awnmnra= [ [ ol P



Weak stability

Theorem (F. Hante, M. S., M. Tucsnak)

Let 9 > 0 be such that
o
/ a(s)|B*e || ds=0 = 2 =0
0

for every (T, p)-signal o).

Then each solution t — z(t) of 2 = Az — aBB*z converges
weakly to 0 in H ast — oo for any initial data zo € H and any
(T, p)-signal o).

The sufficient condition for weak stability can be seen as a
generalized unique continuation principle.



Idea of the proof

Let z(tp) = 2000 and consider the translations
Zn(t) = Z(t +in; ZO) an(t) = a(t + tn)

We have the energy estimates
t
V(zn(t) =V (2(tn; 20)) < —/ an(8)||B* 2 (s)||% ds  for allt > 0.
0
One proves by compactness that

zn(t) = 2oo(t) for all ¢ € [0,9]

where zo () is the solution of the undamped equation

{ A(t) = Az(t)

2(0) = 2000

and fg Qoo (8) || B* 200(8) |3 ds = 0. Then 200 = 0.



Example: Schrodinger equation

Q bounded domain of R¥Y.

y(t, ) = iAy(t,x) — a(t)l,(x)y(t,z), (t,z) € (0,00) x Q,
y(t,z) =0, t € (0,00) x 09,
y(0,2) = yo(), teq,

with a(-) a (T, u)-signal and w C 2 open nonempty.
Take ¥ > T — p and then
(s,2) — (*A20)(z) =0 on E x w
with E C (0, 6) and meas(Z) > 0. By Privalov’s theorem
(s,2) — (e*A20)(z) =0 on (0,6) x w

and we can conclude by Holmgren’s uniqueness theorem.



Strong stability

Theorem (F. Hante, M. S., M. Tucsnak)

Let p, Ty > 0 and ¢ : (0,00) — (0,00) be a continuous function
satisfying for all T € (0,Tp] and & € L*°([0,T7, [0, 1])

T
/0 a(t)dt > pT = / OB zoll3 dt > ()0l Veo.

Let (an,byn), n € N, a sequence of disjoint intervals in [0, 00)
and o € L*([0,0), [0,1]) be such that fb" t)dt > p(by, — ap)
and Y > ¢(b, — ap) = co. Then each solutzon of

2 = Az — aBB*z satisfies ||z(t)||lg — 0 as t — 0.

Stability results are then obtained by estimating the asymptotic
behavior of ¢(T') for T' small.

Special case: p =1 — a =1 on each (an,by)



Examples

m p =1, 1D Schrédinger with internal control

o(T)~T" zemar [Tenenbaum-Tucsnak, 2007]
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m p =1, 1D Schrédinger with internal control
e(T) ~ T~ 2¢ o7 [Tenenbaum-Tucsnak, 2007]
= Wave damped everywhere: ¢(T') ~ T2 (same behavior as in
case p = 1 studied in [Haraux-Martinez-Vancostenoble]).
Then conditions in [H-M-V]| not necessary (question raised
in [Fragnelli-Mugnai, 2008, 2010]).
m Finite-dimensional control systems

Proposition

H =R", A skew-symmetric, (A, B) controllable, r minimal
such that

rank[B, AB, ..., A"B] = n.
Then for every p > 0 there exists k > 0 such that for every
T € (0, 1] and every a € L*°([0,T7,10,1]), szo s)ds > pT
then fo (5)|| BT e*A2p]|2ds > T2 1| 29]|2.

c(T) ~ T27”r1 as proved in [Seidman, 1988] for p = 1.



Open problems

m Semilinear extensions
® Unbounded damping operators

m Strong stability (generalized observability inequality) for
Schrédinger?

m Relax neutral stability (nontrivial Jordan blocs)

m Generalized inequalities/uniqueness principles for other
systems (e.g. wave equation damped almost everywhere
not uniformly)



Intermittent damping for a star-shaped networks of

strings

N strings of length Ly,..., Ly > 0 joined at a common point.
A damping actuator at the other end of each string.

o (1, @) = vt o)
v (t,0) = 09 (t,0)
0=v{"(t,0) + 0P (t,0) + - + oM (¢,0)

fori,je{l,...,N}, ki >0,t>0.
PB: which stability if >N | a; > N > 07



Finite dimensional case

Lemma

Let A be neutrally stable and assume that, for every
1§i1<"'<iN§N,

N
T = Az + Zuijbij
j=1

is stabilizable. Then, taking K = —BT,

N
= Az — Z ai(t)b,-bzrw, a; € {0,1}
i=1

is globally uniformly exponentially stable with respect to « such
that "N | a,(t) > N.



The finite-dimensional result do not extend to infinite

dimension

In particular, taking the string (i.e., the string network with
N =2):

The question is open for N > 3 and N=N-1.



First stabilization result: forward condition

Theorem (M. Gugat, M. S., NHM, 2010)
If N > 3 and

N
Z a;(t+L;) > N—1 for almost every ¢ (FwdC)
i=1

then E(t) = %Zi\il fOLi (vfi)(t, z)? + e (¢, a:)z) dx satisfies
E(t) < Cyexp (—Cat) E(0),

for some C1,Co > 0 independent of (yo ,ygz))z 1 and of &
verifying (FwdC).



Second stabilization result: backward condition

Theorem (M. Gugat, M. S., NHM, 2010)

Let N >3 and A\ = max{Ly,...,Ly} (mdf:max{%, %}
If

=
F::\/N max i — |+f<1
=1,.,.N k; +1

and
Z a;(t—L;) >N —1 for almost every ¢ (BwdC)

then for almost every t > 0

vz, Moo + lve(t, oo < CF”

with C' independent of a verifying (BwdC).



Open problems

m Conditions of the type Zf\il oi(t) > N — 1 (without time
shifts)

m More general networks (possibly with internal, localized
damping)

m Strings of rationally independent length

m Persistent excitation conditions



