Contact Solutions for Nonlinear Systems of PDE and Applications to the ∞ -Laplacian

Nikolaos Katzourakis

BCAM - Basque Center for Applied Mathematics

nkatzourakis@bcamath.org

Partial Differential Equations, Optimal Design and Numerics, Benasque, 08/09/2011 Part of doctoral dissertation

"Nonlinear Systems of Elliptic Partial Differential Equations"

submitted at the Department of Mathematics, University of Athens, Greece.

A new systematic theory of non-differentiable solutions which applies to fully nonlinear PDE systems.

A new systematic theory of non-differentiable solutions which applies to fully nonlinear PDE systems.

The ∞ -Laplacian: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$,

(tensorial form:)

$\Delta_{\infty} u := Du \otimes Du : D^2 u = 0$

(index form:)

$D_i u_{\alpha} D_j u_{\beta} D_{ij}^2 u_{\beta} = 0$

 $1 \le i, j \le n, \quad 1 \le \alpha, \beta \le N.$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du$$

The ∞ -Laplacian: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, (tensorial form:)

$\Delta_{\infty} u \ := \ Du \otimes Du : D^2 u \ = \ 0$

(index form:)

$$D_i u_{\alpha} D_j u_{\beta} D_{ij}^2 u_{\beta} = 0$$

 $1 \le i, j \le n, \quad 1 \le \alpha, \beta \le N.$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du$$

The ∞ -Laplacian: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, (tensorial form:)

$\Delta_{\infty} u := Du \otimes Du : D^2 u = 0$

(index form:)

$D_i u_{\alpha} D_j u_{\beta} D_{ij}^2 u_{\beta} = 0$

 $1\leq i,j\leq n, \ 1\leq \alpha,\beta\leq \textit{N}.$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du$$

The ∞ -Laplacian: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, (tensorial form:)

$\Delta_{\infty} u := Du \otimes Du : D^2 u = 0$

(index form:)

$$D_i u_{\alpha} D_j u_{\beta} D_{ij}^2 u_{\beta} = 0$$

 $1 \le i, j \le n, \ 1 \le \alpha, \beta \le N.$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du$$

Δ_∞ : Quasilinear, 2nd order, Degenerate Elliptic operator in Non-Divergence form.

 Δ_∞ arises

• As an "Euler-Lagrange" PDE in Calculus of Variations in L^{∞} :

$E_{\infty}(u,\Omega) = \operatorname{ess} \sup_{\Omega} |Du|$

for Absolute Minimizers, a version of local minimizers • As the "limit" of *p*-Laplacian $\Delta_p u = \text{Div}(|Du|^{p-2}Du)$ as $p \to \infty$:

$$\Delta_{\infty} + \frac{|Du|^2}{p-2}\Delta u = 0$$

 Δ_∞ : Quasilinear, 2nd order, Degenerate Elliptic operator in Non-Divergence form. Δ_∞ arises

• As an "Euler-Lagrange" PDE in Calculus of Variations in L^{∞} :

 $E_{\infty}(u,\Omega) = \operatorname{ess} \sup_{\Omega} |Du|$

for Absolute Minimizers, a version of local minimizers • As the "limit" of *p*-Laplacian $\Delta_p u = \text{Div}(|Du|^{p-2}Du)$ as $p \to \infty$:

$$\Delta_{\infty} + \frac{|Du|^2}{p-2}\Delta u = 0$$

 Δ_∞ : Quasilinear, 2nd order, Degenerate Elliptic operator in Non-Divergence form. Δ_∞ arises

• As an "Euler-Lagrange" PDE in Calculus of Variations in L^{∞} :

 $E_{\infty}(u,\Omega) = \operatorname{ess} \sup_{\Omega} |Du|$

for Absolute Minimizers, a version of local minimizers • As the "limit" of *p*-Laplacian $\Delta_p u = \text{Div}(|Du|^{p-2}Du)$ as $p \to \infty$:

$$\Delta_{\infty} + \frac{|Du|^2}{p-2}\Delta u = 0$$

• Implicitly in Geometric Evolution Problems (level-set approach):

$$u_t = \Delta u - \frac{\Delta_{\infty} u}{|Du|^2}$$

(term of the 1-Laplacian Div(Du/|Du|))

- In Game Theory,
- In Dynamic Programming,
- In Image Processing,
- In Control Theory,

• Implicitly in Geometric Evolution Problems (level-set approach):

$$u_t = \Delta u - \frac{\Delta_{\infty} u}{|Du|^2}$$

(term of the 1-Laplacian Div(Du/|Du|))

- In Game Theory,
- In Dynamic Programming,
- In Image Processing,
- In Control Theory,

If $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$,

$$\mathcal{A}[u] := H_P(\cdot, u, Du) D(H(\cdot, u, Du)) = 0.$$

Solutions arise as Absolute Minimizers of the supremal functional

$$E_{\infty}(u, \Omega) = \operatorname{ess sup}_{x \in \Omega} H(x, u(x), Du(x))$$

placed in $L^{\infty}(\mathbb{R}^n)^N$.

If H = H(Du), then

 $\mathcal{A}[u] = H_P(Du) \otimes H_P(Du) : D^2u = 0$

If $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$,

$\mathcal{A}[u] := H_{\mathcal{P}}(\cdot, u, Du) D(H(\cdot, u, Du)) = 0.$

Solutions arise as Absolute Minimizers of the supremal functional

$$E_{\infty}(u, \Omega) = \operatorname{ess sup}_{x \in \Omega} H(x, u(x), Du(x))$$

placed in $L^{\infty}(\mathbb{R}^n)^N$.

If H = H(Du), then

 $\mathcal{A}[u] = H_P(Du) \otimes H_P(Du) : D^2u = 0$

If $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$,

$$\mathcal{A}[u] := H_P(\cdot, u, Du) D(H(\cdot, u, Du)) = 0.$$

Solutions arise as Absolute Minimizers of the supremal functional

$$E_{\infty}(u,\Omega) = \operatorname{ess sup}_{x\in\Omega} H(x,u(x),Du(x))$$

placed in $L^{\infty}(\mathbb{R}^n)^N$.

If H = H(Du), then

 $\mathcal{A}[u] = H_P(Du) \otimes H_P(Du) : D^2u = 0$

If $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$,

$$\mathcal{A}[u] := H_{\mathcal{P}}(\cdot, u, Du) D(H(\cdot, u, Du)) = 0.$$

Solutions arise as Absolute Minimizers of the supremal functional

$$E_{\infty}(u,\Omega) = \operatorname{ess sup}_{x\in\Omega} H(x,u(x),Du(x))$$

placed in $L^{\infty}(\mathbb{R}^n)^N$.

If H = H(Du), then

 $\mathcal{A}[u] = H_{\mathcal{P}}(Du) \otimes H_{\mathcal{P}}(Du) : D^{2}u = 0$

The scalar Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ well studied in the last 20 years.

We want to solve the problem of existence of $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

$$\Delta_{\infty} u = 0, \quad ext{in } \Omega \subset \subset \mathbb{R}^n, \ u = g \quad ext{on } \partial \Omega, \quad g ext{ Lipschitz}$$

The vector Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ can not be studied rigorously! Example. Let $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ be the curve:

$$u(x) := \int_0^x \left(\cos \left(K(t) \right), \sin \left(K(t) \right) \right)^\top dt$$

where $K \in C^0(\mathbb{R})$. Then, u is Eikonal:

$$|Du|^2 = 1.$$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du.$$
18/139

The scalar Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ well studied in the last 20 years.

We want to solve the problem of existence of $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

$$\left\{ egin{array}{ll} \Delta_\infty u &= 0, & ext{in } \Omega \subset \subset \mathbb{R}^n, \ u &= g & ext{on } \partial\Omega, & g ext{ Lipschitz} \end{array}
ight.$$

The vector Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ can not be studied rigorously! Example. Let $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ be the curve:

$$u(x) := \int_0^x \left(\cos \left(K(t) \right), \sin \left(K(t) \right) \right)^\top dt$$

where $K \in C^0(\mathbb{R})$. Then, u is Eikonal:

$$|Du|^2 = 1.$$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du.$$
19/139

The scalar Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ well studied in the last 20 years.

We want to solve the problem of existence of $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

$$\left\{ egin{array}{ll} \Delta_\infty u \ = \ 0, & ext{in } \Omega \subset \subset \mathbb{R}^n, \ u \ = \ g & ext{on } \partial\Omega, & g ext{ Lipschitz.} \end{array}
ight.$$

The vector Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ can not be studied rigorously! Example. Let $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ be the curve:

$$u(x) := \int_0^x \left(\cos \left(K(t) \right), \sin \left(K(t) \right) \right)^\top dt$$

where $K \in C^0(\mathbb{R})$. Then, u is Eikonal:

$$|Du|^2 = 1.$$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du.$$

The scalar Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ well studied in the last 20 years.

We want to solve the problem of existence of $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

$$\left\{ \begin{array}{rl} \Delta_{\infty} u \ = \ 0, & \text{ in } \Omega \subset \subset \mathbb{R}^n, \\ u \ = \ g & \text{ on } \partial\Omega, \ g \text{ Lipschitz} \end{array} \right.$$

The vector Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ can not be studied rigorously! Example. Let $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ be the curve:

$$u(x) := \int_0^x \left(\cos \left(K(t) \right), \sin \left(K(t) \right) \right)^\top dt$$

where $K \in C^0(\mathbb{R})$. Then, *u* is Eikonal:

$$|Du|^2 = 1.$$

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du.$$
 21/139

The scalar Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ well studied in the last 20 years.

We want to solve the problem of existence of $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

$$\left\{ \begin{array}{rl} \Delta_{\infty} u \ = \ 0, & \text{ in } \Omega \subset \subset \mathbb{R}^n, \\ u \ = \ g & \text{ on } \partial\Omega, \ g \text{ Lipschitz} \end{array} \right.$$

The vector Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ can not be studied rigorously! Example. Let $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ be the curve:

$$u(x) := \int_0^x \left(\cos \left(K(t) \right), \sin \left(K(t) \right) \right)^\top dt$$

where $K \in C^0(\mathbb{R})$. Then, *u* is Eikonal:

$$|Du|^2 = 1.$$

Should be "∞-Harmonic":

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du.$$

The scalar Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ well studied in the last 20 years.

We want to solve the problem of existence of $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

$$\left\{ \begin{array}{rl} \Delta_{\infty} u \ = \ 0, & \text{ in } \Omega \subset \subset \mathbb{R}^n, \\ u \ = \ g & \text{ on } \partial\Omega, \ g \text{ Lipschitz} \end{array} \right.$$

The vector Δ_{∞} for $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ can not be studied rigorously! Example. Let $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ be the curve:

$$u(x) := \int_0^x \left(\cos \left(K(t) \right), \sin \left(K(t) \right) \right)^\top dt$$

where $K \in C^0(\mathbb{R})$. Then, *u* is Eikonal:

$$|Du|^2 = 1.$$

/

$$\Delta_{\infty} u = D\left(\frac{1}{2}|Du|^2\right) Du.$$

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\supseteq D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\supseteq D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_∞ has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_{∞} has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

However, for appropriate K:

- $\not\exists D^2 u$ anywhere on \mathbb{R} !
- $\not\exists D^2 u$ as a Radon measure !
- $\exists D^2 u$ only in \mathcal{D}' !

- Δ_{∞} has no classical solutions,
- Δ_{∞} has no strong a.e. solutions,
- Δ_{∞} has no weak solutions,
- Δ_{∞} has no measure-theoretic solutions,
- Δ_∞ has no distributional solutions, and
- Δ_{∞} has no viscosity solutions.

Simulation of the
$$\infty$$
-Harmonic curve $u(x) = \int_0^x \Big(\cos \big(\mathcal{K}(t) \big), \sin \big(\mathcal{K}(t) \big) \Big)^\top dt, \ u : \mathbb{R} \longrightarrow \mathbb{R}^2.$

A scalar digression: Δ_{∞} for N = 1 & Viscosity Solutions

Scalar PDE (N = 1): if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$, $\Delta_{\infty} u = D_i u D_j u D_{ij}^2 u = 0$.

Well studied in the context of Viscosity Solutions ('90 - , existence and uniqueness for the Dirichlet problem, C^1 -regularity, ...).

Example (Aronsson '1984). Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be:

$$u(x,y) := |x|^{4/3} - |y|^{4/3}.$$

Then, u is $C^{1,\frac{1}{3}}$ and solves $\Delta_{\infty} u = 0$ only in the viscosity sense ($\not\supseteq D^2 u$ on the axes).

Example (K. '2010). Let $H \in C^1(\mathbb{R}^n)$ be constant along [a, b]. Then:

$$u(x) := \frac{b+a}{2}^{\top}x + f\left(\frac{b-a}{2}^{\top}x\right).$$

is for all $f \in W^{1,\infty}_{loc}(\mathbb{R})$, $||f||_{L^{\infty}(\mathbb{R})} < 1$ a non- C^1 solution of $\mathcal{A}[u] = 0$ in the viscosity sense ($\mathcal{A} D^2 u$ anywhere).

36 / 139
Scalar PDE (N = 1): if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$, $\Delta_{\infty} u = D_i u D_j u D_{ij}^2 u = 0$.

Well studied in the context of Viscosity Solutions ('90 - , existence and uniqueness for the Dirichlet problem, C^1 -regularity, ...).

Example (Aronsson '1984). Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be:

$$u(x,y) := |x|^{4/3} - |y|^{4/3}.$$

Then, u is $C^{1,\frac{1}{3}}$ and solves $\Delta_{\infty} u = 0$ only in the viscosity sense ($\not\supseteq D^2 u$ on the axes).

Example (K. '2010). Let $H \in C^1(\mathbb{R}^n)$ be constant along [a, b]. Then:

$$u(x) := \frac{b+a}{2}^{\top}x + f\left(\frac{b-a}{2}^{\top}x\right).$$

is for all $f \in W^{1,\infty}_{loc}(\mathbb{R})$, $||f||_{L^{\infty}(\mathbb{R})} < 1$ a non- C^1 solution of $\mathcal{A}[u] = 0$ in the viscosity sense ($\mathcal{A} D^2 u$ anywhere).

Scalar PDE (N = 1): if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$, $\Delta_{\infty} u = D_i u D_j u D_{ij}^2 u = 0$. Well studied in the context of Viscosity Solutions ('90 - , existence and uniqueness for the Dirichlet problem, C^1 -regularity, ...). Example (Aronsson '1984). Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be:

$$u(x,y) := |x|^{4/3} - |y|^{4/3}$$
.

Then, u is $C^{1,\frac{1}{3}}$ and solves $\Delta_{\infty}u = 0$ only in the viscosity sense ($\nexists D^2u$ on the axes).

Example (K. '2010). Let $H \in C^1(\mathbb{R}^n)$ be constant along [a, b]. Then:

$$u(x) := \frac{b+a}{2}^{\top}x + f\left(\frac{b-a}{2}^{\top}x\right).$$

is for all $f \in W^{1,\infty}_{loc}(\mathbb{R})$, $||f||_{L^{\infty}(\mathbb{R})} < 1$ a non- C^1 solution of $\mathcal{A}[u] = 0$ in the viscosity sense ($\mathcal{A} D^2 u$ anywhere).

Scalar PDE (N = 1): if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$, $\Delta_{\infty} u = D_i u D_j u D_{ij}^2 u = 0$. Well studied in the context of Viscosity Solutions ('90 - , existence and uniqueness for the Dirichlet problem, C^1 -regularity, ...). Example (Aronsson '1984). Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be:

$$u(x,y) := |x|^{4/3} - |y|^{4/3}$$
.

Then, u is $C^{1,\frac{1}{3}}$ and solves $\Delta_{\infty} u = 0$ only in the viscosity sense ($\not\supseteq D^2 u$ on the axes).

Example (K. '2010). Let $H \in C^1(\mathbb{R}^n)$ be constant along [a, b].Then:

$$u(x) := \frac{b+a}{2}^{\top}x + f\left(\frac{b-a}{2}^{\top}x\right).$$

is for all $f \in W^{1,\infty}_{loc}(\mathbb{R})$, $||f||_{L^{\infty}(\mathbb{R})} < 1$ a non- C^1 solution of $\mathcal{A}[u] = 0$ in the viscosity sense ($\mathcal{A} D^2 u$ anywhere).

Scalar PDE (N = 1): if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$, $\Delta_{\infty} u = D_i u D_j u D_{ij}^2 u = 0$. Well studied in the context of Viscosity Solutions ('90 - , existence and uniqueness for the Dirichlet problem, C^1 -regularity, ...). Example (Aronsson '1984). Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be:

$$u(x,y) := |x|^{4/3} - |y|^{4/3}.$$

Then, u is $C^{1,\frac{1}{3}}$ and solves $\Delta_{\infty} u = 0$ only in the viscosity sense ($\not \supseteq D^2 u$ on the axes).

Example (K. '2010). Let $H \in C^1(\mathbb{R}^n)$ be constant along [a, b]. Then:

$$u(x) := \frac{b+a}{2}^{\top}x + f\left(\frac{b-a}{2}^{\top}x\right).$$

is for all $f \in W^{1,\infty}_{loc}(\mathbb{R})$, $||f||_{L^{\infty}(\mathbb{R})} < 1$ a non- C^1 solution of $\mathcal{A}[u] = 0$ in the viscosity sense ($\mathcal{A} D^2 u$ anywhere).

Scalar PDE (N = 1): if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$, $\Delta_{\infty} u = D_i u D_j u D_{ij}^2 u = 0$. Well studied in the context of Viscosity Solutions ('90 - , existence and uniqueness for the Dirichlet problem, C^1 -regularity, ...). Example (Aronsson '1984). Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be:

$$u(x,y) := |x|^{4/3} - |y|^{4/3}.$$

Then, u is $C^{1,\frac{1}{3}}$ and solves $\Delta_{\infty} u = 0$ only in the viscosity sense ($\not \supseteq D^2 u$ on the axes).

Example (K. '2010). Let $H \in C^1(\mathbb{R}^n)$ be constant along [a, b]. Then:

$$u(x) := \frac{b+a}{2}^{\top}x + f\left(\frac{b-a}{2}^{\top}x\right).$$

is for all $f \in W^{1,\infty}_{loc}(\mathbb{R})$, $||f||_{L^{\infty}(\mathbb{R})} < 1$ a non- C^1 solution of $\mathcal{A}[u] = 0$ in the viscosity sense ($\mathbb{A} D^2 u$ anywhere).

Idea behind Viscosity Solutions $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ of

$$F(x, u(x), Du(x), D^2u(x)) = 0:$$

Use

Extremals min/max

Ellipticity of $F(\cdot, u, Du, D^2u)$

"pass the derivatives" from u to a smooth test function ψ via the

"Maximum Principle" Calculus

Idea behind Viscosity Solutions $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ of

$$F(x, u(x), Du(x), D^2u(x)) = 0:$$

Use

Extremals min/max

and

Ellipticity of $F(\cdot, u, Du, D^2u) = 0$

to

"pass the derivatives" from u to a smooth test function ψ

via the

"Maximum Principle" Calculus

Idea behind Viscosity Solutions $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ of

$$F(x, u(x), Du(x), D^2u(x)) = 0:$$

Use

Extremals min/max

and

Ellipticity of
$$F(\cdot, u, Du, D^2u) = 0$$

to

"pass the derivatives" from u to a smooth test function ψ

via the

"Maximum Principle" Calculus

Idea behind Viscosity Solutions $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ of

$$F(x, u(x), Du(x), D^2u(x)) = 0:$$

Use

Extremals min/max

and

Ellipticity of
$$F(\cdot, u, Du, D^2u) = 0$$

to

"pass the derivatives" from u to a smooth test function ψ

via the

"Maximum Principle" Calculus

Idea behind Viscosity Solutions $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ of

$$F(x, u(x), Du(x), D^2u(x)) = 0:$$

Use

Extremals min/max

and

Ellipticity of
$$F(\cdot, u, Du, D^2u) = 0$$

to

"pass the derivatives" from u to a smooth test function ψ

via the

"Maximum Principle" Calculus

Idea behind Viscosity Solutions $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ of

$$F(x, u(x), Du(x), D^2u(x)) = 0:$$

Use

Extremals min/max

and

Ellipticity of
$$F(\cdot, u, Du, D^2u) = 0$$

to

"pass the derivatives" from u to a smooth test function ψ via the

"Maximum Principle" Calculus

Motivation of Viscosity Solutions: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0, \qquad (PDE)$$

then if $x\in \mathbb{R}^n$, $\psi\in \mathcal{C}^2(\mathbb{R}^n)$ and $u-\psi$ has vanishing max at x:

$$u-\psi \leq (u-\psi)(x) = 0,$$

then

$$Du(x) = D\psi(x),$$

$$D^{2}u(x) \leq D^{2}\psi(x).$$

Hence, if

 $X\mapsto {\sf F}(\cdot,\cdot,\cdot,X)$ is monotone

then

Motivation of Viscosity Solutions: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0, \qquad (PDE)$$

then if $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$ and $u - \psi$ has vanishing max at x:

 $u-\psi \leq (u-\psi)(x) = 0,$

then

$$Du(x) = D\psi(x),$$

$$D^{2}u(x) \leq D^{2}\psi(x).$$

Hence, if

 $X\mapsto {\sf F}(\cdot,\cdot,\cdot,X)$ is monotone

then

Motivation of Viscosity Solutions: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0, \qquad (PDE)$$

then if $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$ and $u - \psi$ has vanishing max at x:

$$u-\psi \leq (u-\psi)(x) = 0,$$

then

$$Du(x) = D\psi(x),$$

$$D^2u(x) \le D^2\psi(x).$$

Hence, if

 $X\mapsto {\sf F}(\cdot,\cdot,\cdot,X)$ is monotone

then

Motivation of Viscosity Solutions: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0, \qquad (PDE)$$

then if $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$ and $u - \psi$ has vanishing max at x:

$$u-\psi \leq (u-\psi)(x) = 0,$$

then

$$Du(x) = D\psi(x),$$

$$D^2u(x) \le D^2\psi(x).$$

Hence, if

 $X\mapsto F(\cdot,\cdot,\cdot,X)$ is monotone

then

Motivation of Viscosity Solutions: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0, \qquad (PDE)$$

then if $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$ and $u - \psi$ has vanishing max at x:

$$u-\psi \leq (u-\psi)(x) = 0,$$

then

$$Du(x) = D\psi(x),$$

$$D^2u(x) \leq D^2\psi(x).$$

Hence, if

 $X\mapsto F(\cdot,\cdot,\cdot,X)$ is monotone

then

Motivation of Viscosity Solutions: if $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0, \qquad (PDE)$$

then if $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$ and $u - \psi$ has vanishing max at x:

$$u-\psi \leq (u-\psi)(x) = 0,$$

then

$$Du(x) = D\psi(x),$$

$$D^2u(x) \leq D^2\psi(x).$$

Hence, if

 $X\mapsto F(\cdot,\cdot,\cdot,X)$ is monotone

then

$$(\mathsf{PDE}) \implies 0 \leq F(x, \psi(x), D\psi(x), D^2\psi(x)).$$

Definition of Viscosity Solutions: The function $u \in C^0(\mathbb{R}^n)$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0,$$

if for $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$

$$\begin{array}{rcl} u-\psi &\leq & (u-\psi)(x) = & 0, \\ u-\psi &\geq & (u-\psi)(x) = & 0, \end{array}$$

implies

$$\begin{split} &F\left(x,\psi(x),D\psi(x),D^2\psi(x)\right) \geq 0, \\ &F\left(x,\psi(x),D\psi(x),D^2\psi(x)\right) \leq 0. \end{split}$$

Advantage:

Definition of Viscosity Solutions: The function $u \in C^0(\mathbb{R}^n)$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0,$$

if for $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$

$$u - \psi \leq (u - \psi)(x) = 0,$$

$$u - \psi \geq (u - \psi)(x) = 0,$$

implies

$$\begin{split} &F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) \geq 0, \\ &F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) \leq 0. \end{split}$$

Advantage:

Definition of Viscosity Solutions: The function $u \in C^0(\mathbb{R}^n)$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0,$$

if for $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$

$$\begin{array}{rcl} u-\psi &\leq & (u-\psi)(x) = & 0, \\ u-\psi &\geq & (u-\psi)(x) = & 0, \end{array}$$

implies

$$\begin{split} &F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) \ \geq \ 0, \\ &F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) \ \leq \ 0. \end{split}$$

Advantage:

Definition of Viscosity Solutions: The function $u \in C^0(\mathbb{R}^n)$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0,$$

if for $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$

$$\begin{array}{rcl} u-\psi &\leq & (u-\psi)(x) = & 0, \\ u-\psi &\geq & (u-\psi)(x) = & 0, \end{array}$$

implies

$$\begin{array}{lll} F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) &\geq & 0, \\ F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) &\leq & 0. \end{array}$$

Advantage:

Definition of Viscosity Solutions: The function $u \in C^0(\mathbb{R}^n)$ solves

$$F(x, u(x), Du(x), D^2u(x)) = 0,$$

if for $x \in \mathbb{R}^n$, $\psi \in C^2(\mathbb{R}^n)$

$$\begin{array}{rcl} u-\psi &\leq & (u-\psi)(x) = & 0, \\ u-\psi &\geq & (u-\psi)(x) = & 0, \end{array}$$

implies

$$\begin{array}{ll} F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) &\geq \ 0,\\ F\left(x,\psi(x),D\psi(x),D^{2}\psi(x)\right) &\leq \ 0. \end{array}$$

Advantage:

Exists a theory of non-differentiable solutions which applies to fully nonlinear systems of PDEs

$$F(\cdot, u, Du, D^2u) = 0, \quad u : \mathbb{R}^n \longrightarrow \mathbb{R}^N,$$

and

extends scalar Viscosity Solutions

to

N>1

Exists a theory of non-differentiable solutions which applies to fully nonlinear systems of PDEs

$$F(\cdot, u, Du, D^2u) = 0, \quad u : \mathbb{R}^n \longrightarrow \mathbb{R}^N,$$

and

extends scalar Viscosity Solutions

to

N>1

Exists a theory of non-differentiable solutions which applies to fully nonlinear systems of PDEs

$$F(\cdot, u, Du, D^2u) = 0, \quad u : \mathbb{R}^n \longrightarrow \mathbb{R}^N,$$

and

extends scalar Viscosity Solutions

to

N > 1

Exists a theory of non-differentiable solutions which applies to fully nonlinear systems of PDEs

$$F(\cdot, u, Du, D^2u) = 0, \quad u : \mathbb{R}^n \longrightarrow \mathbb{R}^N,$$

and

extends scalar Viscosity Solutions

to

N > 1

Key ingredient in the vector case N>1:

develop a "Viscosity type" theory for PDE systems preserving working philosophy and most of flexibility of scalar theory.

Key ingredient in the vector case $N>1$:
exists an
Extremality Principle
applying to
Vector Functions $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$
which
Extends min/max to N>1
and carries a
"Maximum Principle" calculus.
This allows to
develop a "Viscosity type" theory for PDE systems

Key ingredient in the vector case $N>1$:
exists an
Extremality Principle
Vector Eulerions $\mu : \mathbb{R}^n \longrightarrow \mathbb{R}^N$
which
Extends min/max to N>1
and carries a
"Maximum Principle" calculus. This allows to
develop a "Viscosity type" theory for PDE systems

Key ingredient in the vector case $N>1$:
exists an Extremality Principle
applying to
Vector Functions $u : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ which
Extends min/max to N>1
and carries a
"Maximum Principle" calculus. This allows to
develop a "Viscosity type" theory for PDE systems

Key ingredient in the vector case N>1:
exists an
Extremality Principle
applying to
Vector Functions $\mu : \mathbb{R}^n \longrightarrow \mathbb{R}^N$
which
Extends min/max to N>1
and carries a
"Maximum Principle" calculus
This allows to
develop a "Viscosity type" theory for PDE systems

Key ingredient in the vector case $N>1$:
exists an
Extremality Principle
applying to
Vector Functions $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$
which
Extends min/max to N>1
and carries a
"Maximum Principle" calculus.
This allows to
develop a "Viscosity type" theory for PDE systems

Key ingredient in the vector case $N>1$:
exists an
Extremality Principle
applying to
Vector Functions $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$
which
Extends min/max to N>1
and carries a
"Maximum Principle" calculus.
This allows to
develop a "Viscosity type" theory for PDE systems

Peculiarities of the Extremality Principle of Contact: Functional notion, not pointwise!

Fact: If $u \in C_0^1(\Omega)$ and $u \not\equiv 0$, then u has interior extremum and Du = 0 there.

Example. If $\gamma \in C_0^1((-1,1))^N$ unit speed curve $\gamma : (-1,1) \to \mathbb{R}^N$, then

$$|\dot{\gamma}|\equiv 1
eq 0.$$

Hence, Vector Functions can NOT have classical "extrema"!

Peculiarities of the Extremality Principle of Contact: Functional notion, not pointwise!

Fact: If $u \in C_0^1(\Omega)$ and $u \not\equiv 0$, then u has interior extremum and Du = 0 there.

Example. If $\gamma \in C_0^1((-1,1))^N$ unit speed curve $\gamma: (-1,1) \to \mathbb{R}^N$, then

$$|\dot{\gamma}|\equiv 1
eq 0.$$

Hence, Vector Functions can NOT have classical "extrema"!

Peculiarities of the Extremality Principle of Contact: Functional notion, not pointwise!

Fact: If $u \in C_0^1(\Omega)$ and $u \neq 0$, then u has interior extremum and Du = 0 there.

Example. If $\gamma \in C_0^1((-1,1))^N$ unit speed curve $\gamma : (-1,1) \to \mathbb{R}^N$, then

 $|\dot{\gamma}|\equiv 1
eq 0.$

Hence, Vector Functions can NOT have classical "extrema"!
Peculiarities of the Extremality Principle of Contact: Functional notion, not pointwise!

Fact: If $u \in C_0^1(\Omega)$ and $u \neq 0$, then u has interior extremum and Du = 0 there.

Example. If $\gamma \in C_0^1((-1,1))^N$ unit speed curve $\gamma : (-1,1) \to \mathbb{R}^N$, then

$$|\dot{\gamma}| \equiv 1 \neq 0.$$

Hence, Vector Functions can NOT have classical "extrema"!

Peculiarities of the Extremality Principle of Contact: Functional notion, not pointwise!

Fact: If $u \in C_0^1(\Omega)$ and $u \neq 0$, then u has interior extremum and Du = 0 there.

Example. If $\gamma \in C_0^1((-1,1))^N$ unit speed curve $\gamma : (-1,1) \to \mathbb{R}^N$, then

$$|\dot{\gamma}| \equiv 1 \neq 0.$$

Hence, Vector Functions can NOT have classical "extrema"!

Peculiarities of the Extremality Principle of Contact: Functional notion, not pointwise!

Fact: If $u \in C_0^1(\Omega)$ and $u \neq 0$, then u has interior extremum and Du = 0 there.

Example. If $\gamma \in C_0^1((-1,1))^N$ unit speed curve $\gamma : (-1,1) \to \mathbb{R}^N$, then

$$|\dot{\gamma}| \equiv 1 \neq 0.$$

Hence, Vector Functions can NOT have classical "extrema"!

Peculiarities of the Extremality Principle of Contact:

Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

Vector case N > 1: Extremum at x is the function $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ passing through the point u(x):

In the scalar case $\psi \equiv ext{constant}$.

Peculiarities of the Extremality Principle of Contact:

Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

Vector case N > 1: Extremum at x is the function $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ passing through the point u(x):

In the scalar case $\psi \equiv \text{constant}$.

Peculiarities of the Extremality Principle of Contact:

Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

Vector case N > 1: Extremum at x is the function $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ passing through the point u(x):

In the scalar case $\psi\equiv {\sf constant}.$

Peculiarities of the Extremality Principle of Contact:

Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

Vector case N > 1: Extremum at x is the function $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ passing through the point u(x):

In the scalar case $\psi \equiv \text{constant}$.

Peculiarities of the Extremality Principle of Contact:

Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

Vector case N > 1: Extremum at x is the function $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ passing through the point u(x):

In the scalar case $\psi \equiv \text{constant}$.

Peculiarities of the Extremality Principle of Contact:

Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to $\xi = +1$ and minimum to $\xi = -1$

All the directions in the range need to be considered!

Peculiarities of the Extremality Principle of Contact:

Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to $\xi = +1$ and minimum to $\xi = -1$

Vector case N > 1: Extremum in the direction $\xi \in \mathbb{S}^{N-1}$ is the function $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^N$:

All the directions in the range need to be considered!

Peculiarities of the Extremality Principle of Contact:

Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to $\xi = +1$ and minimum to $\xi = -1$

All the directions in the range need to be considered!

Peculiarities of the Extremality Principle of Contact:

Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to $\xi = +1$ and minimum to $\xi = -1$

All the directions in the range need to be considered!

Peculiarities of the Extremality Principle of Contact:

Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to $\xi = +1$ and minimum to $\xi = -1$

All the directions in the range need to be considered!

Peculiarities of the Extremality Principle of Contact:

Has Order!

Scalar case N = 1: Let $u, \psi \in C^2(\mathbb{R}^n)$. Then

$$u - \psi$$
 has max at $x \implies \begin{cases} D(u - \psi)(x) = 0\\ D^2(u - \psi)(x) \le 0 \end{cases}$

Vector case N > 1: Let $u, \psi \in C^2(\mathbb{R}^n)^N$. Then

 ψ is a 1st Order Extremal at x along $\xi \implies D(u-\psi)(x)=0$

 ψ is a 2nd Order Extremal at x along $\xi \implies \begin{cases} D(u-\psi)(x) = 0 \\ D^2(u-\psi)(x) \leq 0 \end{cases}$

Peculiarities of the Extremality Principle of Contact: Has Order!

Scalar case N = 1: Let $u, \psi \in C^2(\mathbb{R}^n)$. Then

$$u - \psi$$
 has max at $x \implies \begin{cases} D(u - \psi)(x) = 0\\ D^2(u - \psi)(x) \le 0 \end{cases}$

Vector case N > 1: Let $u, \psi \in C^2(\mathbb{R}^n)^N$. Then

 ψ is a 1st Order Extremal at x along $\xi \implies D(u-\psi)(x)=0$

 ψ is a 2nd Order Extremal at x along $\xi \implies \begin{cases} D(u-\psi)(x) = 0\\ D^2(u-\psi)(x) \leq 0 \end{cases}$

Peculiarities of the Extremality Principle of Contact:

Has Order!

Scalar case N = 1: Let $u, \psi \in C^2(\mathbb{R}^n)$. Then

$$u-\psi$$
 has max at $x \implies \begin{cases} D(u-\psi)(x) = 0\\ D^2(u-\psi)(x) \leq 0 \end{cases}$

Vector case N > 1: Let $u, \psi \in C^2(\mathbb{R}^n)^N$. Then

 ψ is a 1st Order Extremal at x along $\xi \implies D(u-\psi)(x) = 0$

 ψ is a 2nd Order Extremal at x along $\xi \implies \begin{cases} D(u-\psi)(x) = 0 \\ D^2(u-\psi)(x) \leq 0 \end{cases}$

Peculiarities of the Extremality Principle of Contact:

Has Order!

Scalar case N = 1: Let $u, \psi \in C^2(\mathbb{R}^n)$. Then

$$u - \psi$$
 has max at $x \implies \begin{cases} D(u - \psi)(x) = 0 \\ D^2(u - \psi)(x) \le 0 \end{cases}$

Vector case N > 1: Let $u, \psi \in C^2(\mathbb{R}^n)^N$. Then

 ψ is a 1st Order Extremal at x along $\xi \implies D(u - \psi)(x) = 0$

 ψ is a 2nd Order Extremal at x along $\xi \implies \begin{cases} D(u-\psi)(x) = 0\\ D^2(u-\psi)(x) \le 0 \end{cases}$

Peculiarities of the Extremality Principle of Contact:

Has Order!

Scalar case N = 1: Let $u, \psi \in C^2(\mathbb{R}^n)$. Then

$$u - \psi$$
 has max at $x \implies \begin{cases} D(u - \psi)(x) = 0 \\ D^2(u - \psi)(x) \le 0 \end{cases}$

Vector case N > 1: Let $u, \psi \in C^2(\mathbb{R}^n)^N$. Then

 ψ is a 1st Order Extremal at x along $\xi \implies D(u - \psi)(x) = 0$

$$\psi$$
 is a 2nd Order Extremal at x along $\xi \implies \begin{cases} D(u-\psi)(x) = 0 \\ D^2(u-\psi)(x) \leq 0 \end{cases}$

Peculiarities of the Extremality Principle of Contact:

Has Order!

Scalar case N = 1: Let $u, \psi \in C^2(\mathbb{R}^n)$. Then

$$u - \psi$$
 has max at $x \implies \begin{cases} D(u - \psi)(x) = 0 \\ D^2(u - \psi)(x) \le 0 \end{cases}$

Vector case N > 1: Let $u, \psi \in C^2(\mathbb{R}^n)^N$. Then

 ψ is a 1st Order Extremal at x along $\xi \implies D(u - \psi)(x) = 0$

$$\psi$$
 is a 2nd Order Extremal at x along $\xi \implies \begin{cases} D(u-\psi)(x) = 0\\ D^2(u-\psi)(x) \leq 0 \end{cases}$

Peculiarities of the Extremality Principle of Contact: The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional projections of the function *u*:

 ψ has 1st order Contact with u at $x \Longrightarrow$

u has a $C^{1/2}$ regular codimension-1 projection near x

 ψ has 2nd order Contact with u at $x \Longrightarrow$

u has a $C^{0,1}$ regular codimension-1 projection near *x*

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional projections of the function *u*:

 ψ has 1st order Contact with u at $x \Longrightarrow$

u has a $C^{1/2}$ regular codimension-1 projection near x

 ψ has 2nd order Contact with u at $x \Longrightarrow$

u has a $C^{0,1}$ regular codimension-1 projection near x

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional projections of the function *u*:

 ψ has 1st order Contact with u at $x \Longrightarrow$

u has a $C^{1/2}$ regular codimension-1 projection near x

 ψ has 2nd order Contact with u at $x \Longrightarrow$

u has a $C^{0,1}$ regular codimension-1 projection near x

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional projections of the function *u*:

 ψ has 1st order Contact with u at $x \Longrightarrow$

u has a $C^{1/2}$ regular codimension-1 projection near *x*

 ψ has 2nd order Contact with u at $x \Longrightarrow$

u has a $C^{0,1}$ regular codimension-1 projection near x

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional projections of the function *u*:

 ψ has 1st order Contact with u at $x \Longrightarrow$

u has a $C^{1/2}$ regular codimension-1 projection near *x*

 ψ has 2nd order Contact with u at $x \Longrightarrow$

u has a $C^{0,1}$ regular codimension-1 projection near *x*

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional projections of the function *u*:

 ψ has 1st order Contact with u at $x \Longrightarrow$

u has a $C^{1/2}$ regular codimension-1 projection near *x*

 ψ has 2nd order Contact with u at $x \Longrightarrow$

u has a $C^{0,1}$ regular codimension-1 projection near *x*

The Extremality Principle of Contact: easily understood via Jets Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, $x \in \mathbb{R}^n$ and $\xi \in \mathbb{S}^{N-1}$. Then,

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x)$

$\xi \vee \left[u(z) - u(x) - \mathrm{P}(z-x) - \frac{1}{2}\mathbf{X} : (z-x) \otimes (z-x)\right] \leq o(|z-x|^2)$

as $z \to x$.

Here " \leq " is taken in Symmetric tensors of $\mathbb{R}^N \otimes \mathbb{R}^N$ and

$$a \lor b := \frac{1}{2} (a \otimes b + b \otimes a).$$

Equivalence:

$$J^{2,\xi}u(x) = \left\{ \left(D\psi(x), D^2\psi(x) \right) : \psi \text{ is a Contact } \xi \text{-function} \right\}$$

The Extremality Principle of Contact: easily understood via Jets Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, $x \in \mathbb{R}^n$ and $\xi \in \mathbb{S}^{N-1}$. Then,

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x)$

 $\xi \vee \left[u(z) - u(x) - \mathrm{P}(z-x) - \frac{1}{2}\mathbf{X} : (z-x) \otimes (z-x)\right] \leq o(|z-x|^2)$

as $z \to x$.

Here " \leq " is taken in Symmetric tensors of $\mathbb{R}^N \otimes \mathbb{R}^N$ and

$$a \lor b := \frac{1}{2} (a \otimes b + b \otimes a).$$

Equivalence:

 $J^{2,\xi}u(x) = \left\{ \left(D\psi(x), D^2\psi(x) \right) : \psi \text{ is a Contact } \xi \text{-function} \right\}$

The Extremality Principle of Contact: easily understood via Jets Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, $x \in \mathbb{R}^n$ and $\xi \in \mathbb{S}^{N-1}$. Then,

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x)$

iff $\xi \lor \left[u(z) - u(x) - P(z - x) - \frac{1}{2} \mathbf{X} : (z - x) \otimes (z - x) \right] \le o(|z - x|^2)$ as $z \to x$. Here " \le " is taken in Symmetric tensors of $\mathbb{R}^N \otimes \mathbb{R}^N$ and $a \lor b := \frac{1}{2} (a \otimes b + b \otimes a).$

Equivalence:

 $J^{2,\xi}u(x) = \left\{ \left(D\psi(x), D^2\psi(x) \right) : \psi \text{ is a Contact } \xi \text{-function} \right\}$

The Extremality Principle of Contact: easily understood via Jets Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, $x \in \mathbb{R}^n$ and $\xi \in \mathbb{S}^{N-1}$. Then,

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x)$

iff

$$\xi \vee \left[u(z) - u(x) - \mathrm{P}(z-x) - \frac{1}{2}\mathbf{X} : (z-x) \otimes (z-x) \right] \leq o(|z-x|^2)$$

as $z \to x$. Here " \leq " is taken in Symmetric tensors of $\mathbb{R}^N \otimes \mathbb{R}^N$ and

$$a \lor b := \frac{1}{2}(a \otimes b + b \otimes a).$$

Equivalence:

 $J^{2,\xi}u(x) = \left\{ \left(D\psi(x), D^2\psi(x) \right) : \psi \text{ is a Contact } \xi \text{-function} \right\}$

The Extremality Principle of Contact: easily understood via Jets Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$, $x \in \mathbb{R}^n$ and $\xi \in \mathbb{S}^{N-1}$. Then,

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x)$

iff

$$\xi \vee \left[u(z) - u(x) - \mathrm{P}(z-x) - \frac{1}{2}\mathbf{X} : (z-x) \otimes (z-x)\right] \leq o(|z-x|^2)$$

as $z \to x$. Here " \leq " is taken in Symmetric tensors of $\mathbb{R}^N \otimes \mathbb{R}^N$ and

$$a \lor b := \frac{1}{2} (a \otimes b + b \otimes a).$$

Equivalence:

$$J^{2,\xi}u(x) = \Big\{ \big(D\psi(x), D^2\psi(x) \big) : \psi \text{ is a Contact } \xi \text{-function} \Big\}.$$

The PDE notions for systems:

Definition(Contact Solutions). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$. Then u solves $F(\cdot, u, Du, D^2u) = 0$

when $u \in C^0(\mathbb{R}^n)^N$ and

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x) \implies \xi^{\top}F(x,u(x),\mathbf{P},\mathbf{X})\geq 0.$

for all $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1}$.

Reduction to the scalar case N = 1: $\mathbb{S}^0 = \{-1, +1\}$ and

$$(\mathbf{P},\mathbf{X})\in J^{2,\pm}u(x) \implies F(x.u(x),\mathbf{P},\mathbf{X}) \stackrel{\geq}{<} 0.$$

The PDE notions for systems:

Definition(Contact Solutions). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$. Then u solves $F(\cdot, u, Du, D^2u) = 0$

when $u \in C^0(\mathbb{R}^n)^N$ and

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x) \implies \xi^{\top}F(x,u(x),\mathbf{P},\mathbf{X})\geq 0.$

for all $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1}$.

Reduction to the scalar case N = 1: $\mathbb{S}^0 = \{-1, +1\}$ and

$$(\mathbf{P},\mathbf{X})\in J^{2,\pm}u(x) \implies F(x.u(x),\mathbf{P},\mathbf{X}) \stackrel{\geq}{<} 0.$$

The PDE notions for systems:

Definition(Contact Solutions). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$. Then u solves $F(\cdot, u, Du, D^2u) = 0$

when $u \in C^0(\mathbb{R}^n)^N$ and

 $(\mathbf{P},\mathbf{X}) \in J^{2,\xi}u(x) \implies \xi^{\top}F(x,u(x),\mathbf{P},\mathbf{X}) \geq 0.$

for all $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1}$.

Reduction to the scalar case N = 1: $\mathbb{S}^0 = \{-1, +1\}$ and

$$(\mathbf{P}, \mathbf{X}) \in J^{2,\pm}u(x) \implies F(x.u(x), \mathbf{P}, \mathbf{X}) \stackrel{\geq}{<} 0.$$

The PDE notions for systems:

Definition(Contact Solutions). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$. Then u solves $F(\cdot, u, Du, D^2u) = 0$

when $u \in C^0(\mathbb{R}^n)^N$ and

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x) \implies \xi^{\top}F(x,u(x),\mathbf{P},\mathbf{X})\geq 0.$

for all $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1}$.

Reduction to the scalar case N = 1: $\mathbb{S}^0 = \{-1, +1\}$ and

 $(\mathbf{P}, \mathbf{X}) \in J^{2,\pm}u(x) \implies F(x.u(x), \mathbf{P}, \mathbf{X}) \stackrel{\geq}{\leq} 0.$

The PDE notions for systems:

Definition(Contact Solutions). Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$. Then u solves $F(\cdot, u, Du, D^2u) = 0$

when $u \in C^0(\mathbb{R}^n)^N$ and

 $(\mathbf{P},\mathbf{X})\in J^{2,\xi}u(x) \implies \xi^{\top}F(x,u(x),\mathbf{P},\mathbf{X})\geq 0.$

for all $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1}$.

Reduction to the scalar case N = 1: $\mathbb{S}^0 = \{-1, +1\}$ and

$$(\mathbf{P},\mathbf{X})\in J^{2,\pm}u(x) \implies F(x.u(x),\mathbf{P},\mathbf{X}) \stackrel{\geq}{\leq} 0.$$

Contact Solutions completely compatible with Classical Solutions for Degenerate Elliptic systems:

Definition. The system $F(D^2u) = 0$ is Degenerate Elliptic when $[F(\mathbf{X}) - F(\mathbf{Y})]_{\alpha}[\mathbf{X} - \mathbf{Y}]_{\alpha ij} w_i w_j \ge 0, \quad w \in \mathbb{R}^n$, i.e.

 $[F(\mathbf{X}) - F(\mathbf{Y})]^{\top}[\mathbf{X} - \mathbf{Y}] \geq 0$

Example. (Quasi)linear case: $\mathbf{A} : D^2 u = 0$, i.e.

 $\mathbf{A}_{\alpha i\beta j}:D_{ij}^2u_\beta = \mathbf{0}.$

D.E. $\iff \mathbf{A} : (\eta \otimes w) \otimes (\eta \otimes w) \ge 0 \iff \begin{cases} \mathbf{A} \ge_{\otimes} 0 \\ \text{rank-1 positivity.} \end{cases}$

Example. A Fully nonlinear elliptic system:

 $F_{\alpha}(\cdot, u, Du, \sigma(D^2u_{\alpha})) = 0$
Contact Solutions completely compatible with Classical Solutions for Degenerate Elliptic systems:

Definition. The system $F(D^2 u) = 0$ is Degenerate Elliptic when $[F(\mathbf{X}) - F(\mathbf{Y})]_{\alpha} [\mathbf{X} - \mathbf{Y}]_{\alpha ij} w_i w_j \ge 0, \quad w \in \mathbb{R}^n$, i.e.

 $[F(\mathbf{X}) - F(\mathbf{Y})]^{\top}[\mathbf{X} - \mathbf{Y}] \geq 0$

Example. (Quasi)linear case: $\mathbf{A} : D^2 u = 0$, i.e.

 $\mathbf{A}_{\alpha i\beta j}:D_{ij}^2u_\beta = \mathbf{0}.$

D.E. $\iff \mathbf{A} : (\eta \otimes w) \otimes (\eta \otimes w) \ge 0 \iff \begin{cases} \mathbf{A} \ge_{\otimes} 0 \\ \text{rank-1 positivity.} \end{cases}$

Example. A Fully nonlinear elliptic system:

 $F_{\alpha}(\cdot, u, Du, \sigma(D^2u_{\alpha})) = 0$

Contact Solutions completely compatible with Classical Solutions for Degenerate Elliptic systems:

Definition. The system $F(D^2 u) = 0$ is Degenerate Elliptic when $[F(\mathbf{X}) - F(\mathbf{Y})]_{\alpha} [\mathbf{X} - \mathbf{Y}]_{\alpha ij} w_i w_j \ge 0, \quad w \in \mathbb{R}^n$, i.e.

 $[F(\mathbf{X}) - F(\mathbf{Y})]^{\top}[\mathbf{X} - \mathbf{Y}] \geq 0$

Example. (Quasi)linear case: $\mathbf{A} : D^2 u = 0$, i.e.

 $\mathbf{A}_{\alpha i\beta j}:D_{ij}^2u_\beta = \mathbf{0}.$

D.E. $\iff \mathbf{A} : (\eta \otimes w) \otimes (\eta \otimes w) \ge 0 \iff \begin{cases} \mathbf{A} \ge_{\otimes} 0 \\ \text{rank-1 positivity.} \end{cases}$

Example. A Fully nonlinear elliptic system:

 $F_{\alpha}(\cdot, u, Du, \sigma(D^2u_{\alpha})) = 0.$

Contact Solutions completely compatible with Classical Solutions for Degenerate Elliptic systems:

Definition. The system $F(D^2 u) = 0$ is Degenerate Elliptic when $[F(\mathbf{X}) - F(\mathbf{Y})]_{\alpha} [\mathbf{X} - \mathbf{Y}]_{\alpha ij} w_i w_j \ge 0, \quad w \in \mathbb{R}^n$, i.e.

 $[F(\mathbf{X}) - F(\mathbf{Y})]^{\top}[\mathbf{X} - \mathbf{Y}] \geq 0$

Example. (Quasi)linear case: $\mathbf{A} : D^2 u = 0$, i.e.

 $\mathbf{A}_{\alpha i\beta j}:D_{ij}^2u_\beta = 0.$

D.E. $\iff \mathbf{A} : (\eta \otimes w) \otimes (\eta \otimes w) \ge 0 \iff \begin{cases} \mathbf{A} \ge_{\otimes} 0 \\ rank-1 \text{ positivity.} \end{cases}$

Example. A Fully nonlinear elliptic system:

 $F_{\alpha}(\cdot, u, Du, \sigma(D^2u_{\alpha})) = 0$

Contact Solutions completely compatible with Classical Solutions for Degenerate Elliptic systems:

Definition. The system $F(D^2 u) = 0$ is Degenerate Elliptic when $[F(\mathbf{X}) - F(\mathbf{Y})]_{\alpha} [\mathbf{X} - \mathbf{Y}]_{\alpha ij} w_i w_j \ge 0, \quad w \in \mathbb{R}^n$, i.e.

 $[F(\mathbf{X}) - F(\mathbf{Y})]^{\top}[\mathbf{X} - \mathbf{Y}] \geq 0$

Example. (Quasi)linear case: $\mathbf{A} : D^2 u = 0$, i.e.

$$\mathbf{A}_{\alpha i\beta j}:D_{ij}^2u_\beta = 0.$$

D.E. $\iff \mathbf{A} : (\eta \otimes w) \otimes (\eta \otimes w) \ge 0 \iff \begin{cases} \mathbf{A} \ge_{\otimes} 0 \\ \text{rank-1 positivity.} \end{cases}$

Example. A Fully nonlinear elliptic system:

 $F_{\alpha}(\cdot, u, Du, \sigma(D^2u_{\alpha})) = 0$

Contact Solutions completely compatible with Classical Solutions for Degenerate Elliptic systems:

Definition. The system $F(D^2 u) = 0$ is Degenerate Elliptic when $[F(\mathbf{X}) - F(\mathbf{Y})]_{\alpha} [\mathbf{X} - \mathbf{Y}]_{\alpha ij} w_i w_j \ge 0, \quad w \in \mathbb{R}^n$, i.e.

 $[F(\mathbf{X}) - F(\mathbf{Y})]^{\top}[\mathbf{X} - \mathbf{Y}] \geq 0$

Example. (Quasi)linear case: $\mathbf{A} : D^2 u = 0$, i.e.

$$\mathbf{A}_{\alpha i\beta j}:D_{ij}^2u_\beta = 0.$$

D.E. $\iff \mathbf{A} : (\eta \otimes w) \otimes (\eta \otimes w) \ge 0 \iff \begin{cases} \mathbf{A} \ge_{\otimes} 0 \\ rank-1 \text{ positivity.} \end{cases}$

Example. A Fully nonlinear elliptic system:

 $F_{\alpha}(\cdot, u, Du, \sigma(D^2u_{\alpha})) = 0.$

Contact Jets implicitly Equivalent to Contact Functions.

- Equivalence between J^2 and Extremality notions is deeper (Extremality contains partial regularity info, J^2 does not).
- Extremality is characterized by the "Contact" Principle calculus: if u : ℝⁿ → ℝ^N, ∃Du(x), D²u(x) & ψ ∈ C²(ℝⁿ)^N

 $\begin{array}{l} \psi \text{ is 2nd order Contact} \\ \xi \text{-Function of } u \text{ at } x \end{array} \Leftrightarrow \begin{cases} D(u - \psi)(x) = 0 \\ \xi \lor D^2(u - \psi)(x) \leq_{\otimes} 0 \end{cases}$

• Similarities with scalar case formal. Finer structure exists:

 $F(\cdot, u, Du) = 0$ requires $C^{1/2}$ codimension-1 partial regularity, $F(\cdot, u, Du, D^2u) = 0$ requires $C^{0,1}$ codimension-1 partial regularity.

> Only "1/2" of the derivatives can be interpreted weakly, the rest "1/2" must exists classically.

- Equivalence between J^2 and Extremality notions is deeper (Extremality contains partial regularity info, J^2 does not).
- Extremality is characterized by the "Contact" Principle calculus: if u : ℝⁿ → ℝ^N, ∃Du(x), D²u(x) & ψ ∈ C²(ℝⁿ)^N

 $\begin{array}{l} \psi \text{ is 2nd order Contact} \\ \xi \text{-Function of } u \text{ at } x \end{array} \Leftrightarrow \left\{ \begin{array}{l} D(u-\psi)(x) = 0 \\ \xi \vee D^2(u-\psi)(x) \leq_{\otimes} 0 \end{array} \right.$

• Similarities with scalar case formal. Finer structure exists:

 $F(\cdot, u, Du) = 0$ requires $C^{1/2}$ codimension-1 partial regularity, $F(\cdot, u, Du, D^2u) = 0$ requires $C^{0,1}$ codimension-1 partial regularity.

> Only "1/2" of the derivatives can be interpreted weakly, the rest "1/2" must exists classically.

- Equivalence between J^2 and Extremality notions is deeper (Extremality contains partial regularity info, J^2 does not).
- Extremality is characterized by the "Contact" Principle calculus: if u : ℝⁿ → ℝ^N, ∃Du(x), D²u(x) & ψ ∈ C²(ℝⁿ)^N
 - $\begin{array}{l} \psi \text{ is 2nd order Contact} \\ \xi \text{-Function of } u \text{ at } x \end{array} \Leftrightarrow \left\{ \begin{array}{l} D(u-\psi)(x) = 0 \\ \xi \vee D^2(u-\psi)(x) \leq_{\otimes} 0 \end{array} \right.$
- Similarities with scalar case formal. Finer structure exists: $F(\cdot, u, Du) = 0$ requires $C^{1/2}$ codimension-1 partial regularity, $F(\cdot, u, Du, D^2u) = 0$ requires $C^{0,1}$ codimension-1 partial regularity.

•

Only "1/2" of the derivatives can be interpreted weakly, the rest "1/2" must exists classically.

- Equivalence between J^2 and Extremality notions is deeper (Extremality contains partial regularity info, J^2 does not).
- Extremality is characterized by the "Contact" Principle calculus: if u : ℝⁿ → ℝ^N, ∃Du(x), D²u(x) & ψ ∈ C²(ℝⁿ)^N

 $\begin{array}{l} \psi \text{ is 2nd order Contact} \\ \xi \text{-Function of } u \text{ at } x \end{array} \Leftrightarrow \left\{ \begin{array}{l} D(u-\psi)(x) = 0 \\ \xi \vee D^2(u-\psi)(x) \leq_{\otimes} 0 \end{array} \right.$

• Similarities with scalar case formal. Finer structure exists: $F(\cdot, u, Du) = 0$ requires $C^{1/2}$ codimension-1 partial regularity, $F(\cdot, u, Du, D^2u) = 0$ requires $C^{0,1}$ codimension-1 partial regularity.

٠

Only "1/2" of the derivatives can be interpreted weakly, the rest "1/2" must exists classically.

- Fundamental Solutions of scalar Δ_{∞} for N = 1: Cones.
- Fundamental Solutions of vector Δ_{∞} for N > 1: Generalized "Twisted Cones":

Let $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$ be radial. Then, $\Delta_{\infty} u = 0$ iff

$$u(z) := u_0 + L \int_0^{|z-x|} \nu(t) dt,$$

 $u_0 \in \mathbb{R}^N$, $L \ge 0$ $u : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ curve in the sphere.

Fundamental Solutions of Δ_{∞} are non-differentiable (at the "vertex" x) Contact Solutions of the Eikonal PDE:

$$|Du|^2 - L^2 = 0$$

- Fundamental Solutions of scalar Δ_{∞} for N = 1: Cones.
- Fundamental Solutions of vector Δ_{∞} for N > 1: Generalized "Twisted Cones":

Let $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$ be radial. Then, $\Delta_{\infty} u = 0$ iff

$$u(z) := u_0 + L \int_0^{|z-x|} \nu(t) dt,$$

 $u_0 \in \mathbb{R}^N$, $L \ge 0$ $\nu : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ curve in the sphere.

Fundamental Solutions of Δ_{∞} are non-differentiable (at the "vertex" x) Contact Solutions of the Eikonal PDE:

$$|Du|^2 - L^2 = 0$$

- Fundamental Solutions of scalar Δ_{∞} for N = 1: Cones.
- Fundamental Solutions of vector Δ_{∞} for N > 1: Generalized "Twisted Cones":

Let $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$ be radial. Then, $\Delta_{\infty} u = 0$ iff

$$u(z) := u_0 + L \int_0^{|z-x|} \nu(t) dt,$$

 $u_0 \in \mathbb{R}^N$, $L \ge 0 \ \nu : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ curve in the sphere.

Fundamental Solutions of Δ_{∞} are non-differentiable (at the "vertex" x) Contact Solutions of the Eikonal PDE:

$$|Du|^2 - L^2 = 0$$

- Fundamental Solutions of scalar Δ_{∞} for N = 1: Cones.
- Fundamental Solutions of vector Δ_{∞} for N > 1: Generalized "Twisted Cones":

Let $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$ be radial. Then, $\Delta_{\infty} u = 0$ iff

$$u(z) := u_0 + L \int_0^{|z-x|} \nu(t) dt,$$

 $u_0 \in \mathbb{R}^N$, $L \ge 0 \ \nu : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ curve in the sphere.

Fundamental Solutions of Δ_{∞} are non-differentiable (at the "vertex" x) Contact Solutions of the Eikonal PDE:

$$|Du|^2 - L^2 = 0$$

- Fundamental Solutions of scalar Δ_{∞} for N = 1: Cones.
- Fundamental Solutions of vector Δ_{∞} for N > 1: Generalized "Twisted Cones":

Let $u: \mathbb{R}^n \longrightarrow \mathbb{R}^N$ be radial. Then, $\Delta_{\infty} u = 0$ iff

$$u(z) := u_0 + L \int_0^{|z-x|} \nu(t) dt,$$

 $u_0 \in \mathbb{R}^N$, $L \ge 0 \ \nu : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ curve in the sphere.

Fundamental Solutions of Δ_{∞} are non-differentiable (at the "vertex" x) Contact Solutions of the Eikonal PDE:

$$|Du|^2 - L^2 = 0$$

The simplest Fundamental Solution $u: \mathbb{R} \longrightarrow \mathbb{R}^2$ of Δ_{∞} .

The simplest Fundamental Solution $u : \mathbb{R} \longrightarrow \mathbb{R}^2$ of Δ_{∞} .

Application 2: A class of $C^{1,\frac{1}{2}+}$ ∞ -Harmonic Functions

If $w \in \mathbb{R}^n$, $\nu : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ Lipschitz curve in the sphere, $K \in C^{\frac{1}{2}+}(\mathbb{R})$, then

$$u(z) := \int_0^{w^{\top} z} \nu(K(t)) dt$$

defines a Contact solution of $\Delta_{\infty} u = 0$ of regularity $C^{1,\frac{1}{2}+}(\mathbb{R})^N$.

For appropriate K, $C^{1,\frac{1}{2}+}$ is the optimal possible regularity! Arise as classical solutions of Eikonal PDE $|Du|^2 - 1 = 0$.

Application 2: A class of $C^{1,\frac{1}{2}+}$ ∞ -Harmonic Functions

If $w \in \mathbb{R}^n$, $\nu : (0, \infty) \longrightarrow \mathbb{S}^{N-1}$ Lipschitz curve in the sphere, $K \in C^{\frac{1}{2}+}(\mathbb{R})$, then

$$u(z) := \int_0^{w^{\top} z} \nu(K(t)) dt$$

defines a Contact solution of $\Delta_{\infty} u = 0$ of regularity $C^{1,\frac{1}{2}+}(\mathbb{R})^N$.

For appropriate K, $C^{1,\frac{1}{2}+}$ is the optimal possible regularity! Arise as classical solutions of Eikonal PDE $|Du|^2 - 1 = 0$.

Smooth Case. Let $u \in C^2(\mathbb{R}^n)^N$. Then, $\Delta_{\infty} u = 0$ iff $\forall x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1} \exists$ maximal curve

$$\begin{cases} \dot{\gamma}(t) = \xi^{\top} Du(\gamma(t)), \\ \gamma(0) = x, \end{cases}$$

such that

$$\left\{egin{array}{l} ig| Du(\gamma(t))ig| = ig| Du(x)ig|, \ t\in\mathbb{R},\ t\mapsto \xi^ op u(\gamma(t)) ext{ increasing}. \end{array}
ight.$$

Follows form

$$\frac{1}{2} \frac{d}{dt} \left(\left| Du(\gamma(t)) \right|^2 \right) = \xi^\top \Delta_\infty u(\gamma(t)),$$

$$\frac{d}{dt} \left(\xi^\top u(\gamma(t)) \right) = \left| \xi^\top Du(\gamma(t)) \right|^2.$$

Smooth Case. Let $u \in C^2(\mathbb{R}^n)^N$. Then, $\Delta_{\infty} u = 0$ iff $\forall x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1} \exists$ maximal curve

$$\begin{cases} \dot{\gamma}(t) = \xi^{\top} Du(\gamma(t)), \\ \gamma(0) = x, \end{cases}$$

such that

$$\begin{cases} |Du(\gamma(t))| = |Du(x)|, & t \in \mathbb{R}, \\ t \mapsto \xi^{\top} u(\gamma(t)) \text{ increasing.} \end{cases}$$

Follows form

$$\frac{1}{2} \frac{d}{dt} \left(\left| Du(\gamma(t)) \right|^2 \right) = \xi^\top \Delta_\infty u(\gamma(t)),$$

$$\frac{d}{dt} \left(\xi^\top u(\gamma(t)) \right) = \left| \xi^\top Du(\gamma(t)) \right|^2.$$

Smooth Case. Let $u \in C^2(\mathbb{R}^n)^N$. Then, $\Delta_{\infty} u = 0$ iff $\forall x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{N-1} \exists$ maximal curve

$$\begin{cases} \dot{\gamma}(t) = \xi^{\top} Du(\gamma(t)), \\ \gamma(0) = x, \end{cases}$$

such that

$$\begin{cases} |Du(\gamma(t))| = |Du(x)|, & t \in \mathbb{R}, \\ t \mapsto \xi^{\top} u(\gamma(t)) \text{ increasing.} \end{cases}$$

Follows form

$$\frac{1}{2}\frac{d}{dt}\left(\left|Du(\gamma(t))\right|^{2}\right) = \xi^{\top}\Delta_{\infty}u(\gamma(t)),$$

$$\frac{d}{dt}\left(\xi^{\top}u(\gamma(t))\right) = \left|\xi^{\top}Du(\gamma(t))\right|^{2}.$$

Also, if
$$\eta \in \mathbb{S}^{N-1}$$
:

$$\frac{1}{2} \frac{d^2}{dt^2} \Big(\xi^\top u(\gamma(t)) \Big) = \xi^\top \Delta_\infty u(\gamma(t)),$$

$$\frac{d}{dt} \Big(\eta^\top u(\gamma(t)) \Big) = \Big(\xi \otimes \eta : Du(Du)^\top \Big)(\gamma(t)),$$

$$\frac{d^2}{dt^2} \Big(\eta^\top u(\gamma(t)) \Big) = D(\xi^\top u)^\top D\Big(\xi \otimes \eta : Du(Du)^\top \Big)(\gamma(t)).$$
Constant Case Let $u \in C^0(\mathbb{P}^n)^N$. Then

 $\Delta_{\infty} u = 0$ in Contact sense iff similar pseudo-gradient flows exist.

They characterize ∞ -Harmonicity.

Also, if
$$\eta \in \mathbb{S}^{N-1}$$
:

$$\frac{1}{2} \frac{d^2}{dt^2} \Big(\xi^\top u(\gamma(t)) \Big) = \xi^\top \Delta_\infty u(\gamma(t)),$$

$$\frac{d}{dt} \Big(\eta^\top u(\gamma(t)) \Big) = \Big(\xi \otimes \eta : Du(Du)^\top \Big)(\gamma(t)),$$

$$\frac{d^2}{dt^2} \Big(\eta^\top u(\gamma(t)) \Big) = D(\xi^\top u)^\top D\Big(\xi \otimes \eta : Du(Du)^\top \Big)(\gamma(t)).$$
General Case. Let $u \in C^0(\mathbb{R}^n)^N$. Then,

 $\Delta_{\infty} u = 0$ in Contact sense iff similar pseudo-gradient flows exist.

They characterize ∞ -Harmonicity.

Existence of ∞ -Harmonic Vector Functions with prescribed boundary values:

• Problem: Exists a Lipschitz Contact Solution $u : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ to the Dirichlet Problem for the ∞ -Laplacian

$$\begin{cases}
\Delta_{\infty} u = 0, \text{ in } \Omega \\
u = g \text{ on } \partial\Omega
\end{cases}$$

for $\Omega \subset \mathbb{R}^n$ and g Lipschitz.

Method: Employ stability under limits, interpret *p*-Harmonic functions as Contact solutions and employ Δ_p → Δ_∞ as p → ∞.

Existence of ∞ -Harmonic Vector Functions with prescribed boundary values:

Problem: Exists a Lipschitz Contact Solution u : ℝⁿ → ℝ^N to the Dirichlet Problem for the ∞-Laplacian

$$\begin{cases} \Delta_{\infty} u = 0, \text{ in } \Omega \\ u = g \text{ on } \partial \Omega \end{cases}$$

for $\Omega \subset \subset \mathbb{R}^n$ and g Lipschitz.

• Method: Employ stability under limits, interpret *p*-Harmonic functions as Contact solutions and employ $\Delta_p \longrightarrow \Delta_\infty$ as $p \rightarrow \infty$.

Existence of ∞ -Harmonic Vector Functions with prescribed boundary values:

Problem: Exists a Lipschitz Contact Solution u : ℝⁿ → ℝ^N to the Dirichlet Problem for the ∞-Laplacian

$$\begin{cases} \Delta_{\infty} u = 0, \text{ in } \Omega \\ u = g \text{ on } \partial \Omega \end{cases}$$

for $\Omega \subset \subset \mathbb{R}^n$ and g Lipschitz.

• Method: Employ stability under limits, interpret *p*-Harmonic functions as Contact solutions and employ $\Delta_p \longrightarrow \Delta_\infty$ as $p \rightarrow \infty$.

THANK YOU !!!