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Differential Equations”
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What is this talk about?

A new systematic theory of non-differentiable solutions which
applies to fully nonlinear PDE systems.
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The model PDE system: oo-Laplacian A,

The oco-Laplacian: if u: R” — RV,
(tensorial form:)

Asu = Du® Du:D?*u = 0

(index form:)

Diuy Djug D,-Jz-u5 =0
1<i,j<n 1<a,pB<N.
(condensed form:)
1 2
Awu = D EIDU\ Du
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The model PDE system: oo-Laplacian A,

Aso: Quasilinear, 2nd order, Degenerate Elliptic operator in
Non-Divergence form.
Ao arises

@ As an “Euler-Lagrange” PDE in Calculus of Variations in L*°:

Eo(u,Q) = ess supq |Dul

for Absolute Minimizers, a version of local minimizers
o As the “limit” of p-Laplacian A,u = Div(|DulP~2Du) as
p — o0:

| Dul®

Au =0
p—2 "

A +
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The model PDE system: oo-Laplacian A,

e Implicitly in Geometric Evolution Problems (level-set
approach):

A u

uy = Au — Duf?
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The model PDE system: oo-Laplacian A,

e Implicitly in Geometric Evolution Problems (level-set
approach):

A u
| Dul?

u = Au —

(term of the 1-Laplacian Div(Du/|Dul))

@ In Game Theory,

(]

In Dynamic Programming,

@ In Image Processing,

In Control Theory,
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The general Aronsson PDE system

If u:R" — RN,
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The general Aronsson PDE system

If u:R" — RN,

Alu] == Hp(:, u, Du)D(H(-,u, Du)) = 0.
Solutions arise as Absolute Minimizers of the supremal functional

Evo(u,Q) = ess sup H(x, u(x), Du(x))

xeN
placed in L>°(R")V.
If H= H(Duy), then

Alu] = Hp(Du) ® Hp(Du) : D*u = 0
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The scalar Ay, for u: R" — R well studied in the last 20 years.
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u =g ondS, g Lipschitz.
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Example. Let u: R — R? be the curve:

u(x) = /OX <cos (K(t)),sin (K(t)))Tdt
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A startling problem: singular “solutions” of A

The scalar Ay, for u: R" — R well studied in the last 20 years.
We want to solve the problem of existence of u: R” — RN:
Ajou = 0, inQCCR",
{ u =g ondS, g Lipschitz.

The vector Ay, for u: R” — RN can not be studied rigorously!

Example. Let u: R — R? be the curve:

X . T
u(x) = /0 <cos (K(t)),sin (K(t))) dt
where K € CO(R). Then, u is Eikonal:

|Du?> = 1.

Should be “oo-Harmonic™:

1
Axu = D <2|Du|2> Du.

23 /139



4 Contact Solutions for Fully Nonlinear Systems of PDE

However, for appropriate K:
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o A D?u anywhere on R !
e A D?u as a Radon measure !
e 3 D?uonly in D' |

Generally, the vectorial Ay:

A has no classical solutions,
A has no strong a.e. solutions,

o
o
@ A, has no weak solutions,
o

A has no measure-theoretic solutions,
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However, for appropriate K:
o A D?u anywhere on R !
e A D?u as a Radon measure !
e 3 D?uonly in D' |

Generally, the vectorial Ay:

A has no classical solutions,

A has no strong a.e. solutions,

o

o

@ A, has no weak solutions,
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4 Contact Solutions for Fully Nonlinear Systems of PDE

However, for appropriate K:
o A D?u anywhere on R !
e A D?u as a Radon measure !
e 3 D?uonly in D' |

Generally, the vectorial Ay:

A has no classical solutions,

A has no strong a.e. solutions,

A has no weak solutions,

A has no measure-theoretic solutions,

A has no distributional solutions, and

A has no viscosity solutions.
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A startling problem: singular “solutions” of A

.
Simulation of the oo-Harmonic curve u(x) = [ (cos (K(t)),sin (K(t))> dt, u: R — R2,
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A scalar digression: A, for N =1 & Viscosity Solutions

Scalar PDE (N =1): if u: R” — R, Aou = Dju DjuDju = 0.
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A scalar digression: A, for N =1 & Viscosity Solutions

Scalar PDE (N =1): if u: R” — R, Aou = Dju DjuDju = 0.

Well studied in the context of Viscosity Solutions ('90 - , existence
and uniqueness for the Dirichlet problem, Cl-regularity, ...).

Example (Aronsson '1984). Let u: R? — R be:

u(xy) = X3 =yt

: 1 . L
Then, uis C*3 and solves Aoou = 0 only in the viscosity sense
(A D?u on the axes).

Example (K. '2010). Let H € C1(R") be constant along

[a, b]. Then:
T T
u(x) = b+ta x + f(b 2 x).

2
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A scalar digression: A, for N =1 & Viscosity Solutions

Scalar PDE (N =1): if u: R” — R, Aou = Dju DjuDju = 0.

Well studied in the context of Viscosity Solutions ('90 - , existence
and uniqueness for the Dirichlet problem, Cl-regularity, ...).

Example (Aronsson '1984). Let u: R? — R be:
u(xy) = X3 =yt

: 1 . L
Then, uis C*3 and solves Aoou = 0 only in the viscosity sense
(A D?u on the axes).

Example (K. '2010). Let H € C1(R") be constant along

[a, b]. Then:
T T
u(x) = b—;ax—&—f(bzax).

is for all f € W-22(R), ||| eo(r) < 1 a non-C* solution of
(

loc
A[u] = 0 in the viscosity sense (A D?u anywhere). 41/139



A scalar digression: A, for N =1 & Viscosity Solutions

Idea behind Viscosity Solutions v : R” — R of

F(x, u(x), Du(x), D*u(x)) = 0:
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A scalar digression: A, for N =1 & Viscosity Solutions

Idea behind Viscosity Solutions v : R” — R of

F(x, u(x), Du(x), D*u(x)) = 0:

Use
Extremals min/max
and
Ellipticity of F(-, u, Du, D?u) =0
to
“pass the derivatives” from v to a smooth test function v
via the

“Maximum Principle” Calculus

(a sort of “Nonlinear Distribution” theory).
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A scalar digression: A, for N =1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u: R” — R solves

F (x, u(x), Du(x), D’u(x)) = 0, (PDE)
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A scalar digression: A, for N =1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u: R” — R solves

F (x, u(x), Du(x), D’u(x)) = 0, (PDE)

then if x € R", ¢ € C?(R") and u — v has vanishing max at x:

u—9¢ < (u=9)(x) =0,
then
Du(x) = Di(x),
D?u(x) < D*p(x).
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A scalar digression: A, for N =1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u: R” — R solves

F (x, u(x), Du(x), D’u(x)) = 0, (PDE)

then if x € R", ¢ € C?(R") and u — v has vanishing max at x:

u—1p < (u—9)(x) =0,

then
Du(x) = Dy(x),
D?u(x) < D*p(x).
Hence, if
X — F(-,-,-, X) is monotone
then

(PDE) == 0 < F(x,9¢(x), DY(x), D*¥(x)).
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A scalar digression: A, for N =1 & Viscosity Solutions

Definition of Viscosity Solutions: The function u € C°(R") solves

F(x, u(x), Du(x), D’u(x)) = 0,
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Definition of Viscosity Solutions: The function u € C°(R") solves
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u—1
u—1

IV IA

implies

56 /139



A scalar digression: A, for N =1 & Viscosity Solutions

Definition of Viscosity Solutions: The function u € C°(R") solves

F(x, u(x), Du(x), D’u(x)) = 0,

if for x € R", ¥ € C?(R")

S
\

<=

IV IA
=

\
IS
S

|

o

implies

IN IV
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A scalar digression: A, for N =1 & Viscosity Solutions

Definition of Viscosity Solutions: The function u € C°(R") solves

F(x, u(x), Du(x), D’u(x)) = 0,

if for x € R", ¥ € C?(R")

u—v¢ < (u—9)(x) =0,
u—v¢ > (u=9)(x) = 0,
implies
F(x, 9(x), Dy(x), D*P(x)) > 0,
F(x,1(x), Dy(x), D*¥(x)) < 0
Advantage:

Merely CO(R") functions as PDE solutions!
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Exists a theory of non-differentiable solutions which applies to fully
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Main Subject: Contact Solutions for systems of PDEs

Exists a theory of non-differentiable solutions which applies to fully
nonlinear systems of PDEs

F(-,u,Du,Dzu) =0, u:R"—RV,

and
extends scalar Viscosity Solutions

to

N>1

(without monotonicity, componentwise arguments, weak coupling, ... ).
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Main Subject: Contact Solutions for systems of PDEs

Key ingredient in the vector case N>1:

exists an
Extremality Principle
applying to
Vector Functions v : R" — RN
which

Extends min/max to N>1
and carries a

“Maximum Principle” calculus.
This allows to

develop a “Viscosity type” theory for PDE systems

preserving working philosophy and most of flexibility of scalar theory.
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Peculiarities of the Extremality Principle of Contact:
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:
Functional notion, not pointwise!

Fact: If u € C}(Q) and u # 0, then u has interior extremum and
Du = 0 there.

| N

Example. If v € C}((—1,1))N unit speed curve v: (—1,1) — RV,
then
l=1%0

| L
N~

Hence, Vector Functions can NOT have classical “extrema’’!
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:
Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

[

NS

Vector case N > 1: Extremum at x is the function ¢ : R” — RN
passing through the point u(x):

o=
In the scalar case ¢ = constant.
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:
Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to £ = +1 and minimum
to & =—1

| 4
Vector case N > 1: Extremum in the direction ¢ € SV~ is the
function ¢ : R"” — RN:

s A
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:
Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to £ = +1 and minimum

toé=-1
T

| N

Vector case N > 1: Extremum in the direction ¢ € SV~ is the
function ¢ : R"” — RN:

s A

All the directions in the range need to be considered!

85 /139



Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

86 /139



Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

Has Order!

87 /139
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Peculiarities of the Extremality Principle of Contact:
Has Order!
Scalar case N = 1: Let u,1p € C3(R"). Then

D(u —¢)(x)

=0
D?(u—)(x) <0

u—1 has max at x — {
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Has Order!

Scalar case N = 1: Let u,1p € C3(R"). Then

D(u —1)(x) =

D?(u = 4)(x) <

Vector case N > 1: Let u,9p € C2(R™)N. Then

u—1 has max at x — { %

¢ is a 1st Order Extremal at x along & = D(u—¢)(x) =0
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D(u —1)(x) =

D?(u = 4)(x) <

Vector case N > 1: Let u,9p € C2(R™)N. Then

u—1 has max at x — { %

¢ is a 1st Order Extremal at x along & = D(u—¢)(x) =0

1 is a 2nd Order Extremal at x along ¢ — { D(u=9)(x) =0
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:
Has Order!

Scalar case N = 1: Let u,1p € C3(R"). Then

D(u —1)(x) =

D?(u = 4)(x) <

Vector case N > 1: Let u,9p € C2(R™)N. Then

u—1 has max at x — { %

¢ is a 1st Order Extremal at x along & = D(u—¢)(x) =0

_ 4 _
1 is a 2nd Order Extremal at x along § — { D(u—1¢)(x)=0

2nd order Contact is required to deduce appropriate Hessian inequality!
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional
projections of the function u:

Y has 1st order Contact with u at x =
u has a C'/2 regular codimension-1 projection near x
1 has 2nd order Contact with v at x =

u has a C%! regular codimension-1 projection near x
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional
projections of the function u:

1 has 1st order Contact with u at x =
u has a C'/2 regular codimension-1 projection near x
1 has 2nd order Contact with v at x =

u has a C%! regular codimension-1 projection near x

All are result of vectorial obstructions which disappear if N = 1.
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Main Subject: Contact Solutions for systems of PDEs

The Extremality Principle of Contact: easily understood via Jets
Sets of Pointwise Generalized Derivatives.
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Main Subject: Contact Solutions for systems of PDEs

The Extremality Principle of Contact: easily understood via Jets
Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let uv: R"” — RN, x ¢ R”
and £ € SN=1. Then,
(P, X) € J25u(x)

iff

1% u(z)—u(x)—P(z—x)—%X:(z—x)®(z—x) < o(|z—x[?)

as Z — X.
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Main Subject: Contact Solutions for systems of PDEs

The Extremality Principle of Contact: easily understood via Jets
Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let uv: R"” — RN, x ¢ R”
and £ € SN=1. Then,
(P, X) € J25u(x)

iff
1% u(z)—u(x)—P(z—x)—%X:(z—x)®(z—x) < o(|z—x[?)

as z — x.
Here “<" is taken in Symmetric tensors of RN @ RN and

avb = %(a@b—i—b@a).
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Main Subject: Contact Solutions for systems of PDEs

The Extremality Principle of Contact: easily understood via Jets
Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let uv: R"” — RN, x ¢ R”
and £ € SN=1. Then,

(P, X) € J25u(x)
iff

1% [u(z) —u(x) —P(z — x) — %X ; (z—x)®(z—x)] < o(|z—x[?)

as z — x.
Here “<" is taken in Symmetric tensors of RN @ RN and

avb = %(a@b—i—b@a).

Equivalence:

J2u(x) = {(D/(/)(x), D?y(x)) : ¢ is a Contact f—function}.
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Main Subject: Contact Solutions for systems of PDEs

The PDE notions for systems:
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The PDE notions for systems:
Definition(Contact Solutions). Let u: R" —s RN. Then u solves

F(-,u,Du,D?*u) = 0
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The PDE notions for systems:
Definition(Contact Solutions). Let u: R" —s RN. Then u solves

F(-,u,Du,D?*u) = 0

when v € CO(R")V and

(P,X) € /2 u(x) = ¢"F(x,u(x),P,X)>0.

forall x e R", £ € sh-1,
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Main Subject: Contact Solutions for systems of PDEs

The PDE notions for systems:

Definition(Contact Solutions). Let u: R" —s RN. Then u solves
F(-,u,Du,D?*u) = 0

when v € CO(R")V and

(P,X) € /2 u(x) = ¢"F(x,u(x),P,X)>0.

for all x € R", ¢ € N1,
Reduction to the scalar case N = 1: S = {—1,+1} and

(P,X) € 2*u(x) = F(x.u(x),P,X)

IN IV

J%%u(x) coincide with the scalar semijets.
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Main Subject: Contact Solutions for systems of PDEs

Contact Solutions completely compatible with Classical Solutions
for Degenerate Elliptic systems:
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Definition. The system F(D?u) = 0 is Degenerate Elliptic when
[F(X) = F(Y)]a[X — Y]aijWin >0, weR" e
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Main Subject: Contact Solutions for systems of PDEs

Contact Solutions completely compatible with Classical Solutions
for Degenerate Elliptic systems:

Definition. The system F(D?u) = 0 is Degenerate Elliptic when
[F(X) = F(Y)]a[X — Y]aijWin >0, weR" e

[F(X) = FONIT[X = Y] = 0

110/139



Main Subject: Contact Solutions for systems of PDEs

Contact Solutions completely compatible with Classical Solutions
for Degenerate Elliptic systems:

Definition. The system F(D?u) = 0 is Degenerate Elliptic when
[F(X) = F(Y)]a[X — Y]aijWin >0, weR" e

[F(X) = FONITX = Y] > 0
Example. (Quasi)linear case: A: D?u =0, i.e.

Aoaiﬁj : D,?UB = 0.
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DE = A:(naw)oheow) >0 { rank-1 positivity.
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Main Subject: Contact Solutions for systems of PDEs

Contact Solutions completely compatible with Classical Solutions
for Degenerate Elliptic systems:

Definition. The system F(D?u) = 0 is Degenerate Elliptic when
[F(X) = F(Y)]a[X — Y]aijWin >0, weR" e

[F(X) = FONITX = Y] > 0
Example. (Quasi)linear case: A: D?u =0, i.e.
Aoé,'gj : D3U5 = 0.

A>g0

.E. : > e
DE = A:(naw)oheow) >0 { rank-1 positivity.

Example. A Fully nonlinear elliptic system:

Fu(-, u, Du,o(D?uy)) = 0.
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Main Subject: Contact Solutions for systems of PDEs

Contact Jets implicitly Equivalent to Contact Functions.

IR?

g //
Y

1
£ (u-y)
X /
N g

§T (u-y)
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Main Subject: Contact Solutions for systems of PDEs

Contact Jets implicitly Equivalent to Contact Functions.

IR?

g //
Y

1
£ (u-y)
X /
N g

§T (u-y)

¢T(u — 1) has vanishing max at x
Ehi=1—-¢@¢ (¢ =0when N =1, scalar case).
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Main Subject: Contact Solutions for systems of PDEs

Contact Jets implicitly Equivalent to Contact Functions.

IR?

g //
Y

L
§ (u-y)
x P
Pal g

§T (u-y)

¢T(u — 1) has vanishing max at x
Ehi=1—-¢@¢ (¢ =0when N =1, scalar case).
&+ (u — v)| controlled by ¢ (u — 1)) (through Cone functions)
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Main Subject: Contact Solutions for systems of PDEs

e Equivalence between J? and Extremality notions is deeper
(Extremality contains partial regularity info, J? does not).
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Main Subject: Contact Solutions for systems of PDEs

e Equivalence between J? and Extremality notions is deeper
(Extremality contains partial regularity info, J? does not).

@ Extremality is characterized by the “Contact” Principle
calculus: if u: R" — RN, 3Du(x), D?u(x) & 1 € C>(R™)N

1 is 2nd order Contact D(u—1v)(x)= 0
&-Function of u at x €V D?*(u—1)(x) <g 0
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Main Subject: Contact Solutions for systems of PDEs

e Equivalence between J? and Extremality notions is deeper
(Extremality contains partial regularity info, J? does not).

@ Extremality is characterized by the “Contact” Principle
calculus: if u: R" — RN, 3Du(x), D?u(x) & 1 € C>(R™)N

1 is 2nd order Contact D(u—1v)(x)= 0
&-Function of u at x €V D?*(u—1)(x) <g 0
@ Similarities with scalar case formal. Finer structure exists:

F(-,u, Du) = 0 requires C'/2 codimension-1 partial regularity,
F(-,u, Du, D?>u) = 0 requires C%! codimension-1 partial regularity.
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Main Subject: Contact Solutions for systems of PDEs

e Equivalence between J? and Extremality notions is deeper
(Extremality contains partial regularity info, J? does not).

@ Extremality is characterized by the “Contact” Principle
calculus: if u: R" — RN, 3Du(x), D?u(x) & 1 € C>(R™)N

1 is 2nd order Contact D(u—1v)(x)= 0
&-Function of u at x €V D?*(u—1)(x) <g 0

o Similarities with scalar case formal. Finer structure exists:

F(-,u, Du) = 0 requires C'/2 codimension-1 partial regularity,
F(-,u, Du, D?>u) = 0 requires C%! codimension-1 partial regularity.

°
Only “1/2" of the derivatives can be interpreted weakly,
the rest “1/2" must exists classically.

If N = 1 obstructions disappear, only C° required (Viscosity).
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Application 1: Fundamental Solutions of A, are Eikonal

@ Fundamental Solutions of scalar A, for N = 1: Cones.
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Application 1: Fundamental Solutions of A, are Eikonal

@ Fundamental Solutions of scalar A, for N = 1: Cones.

@ Fundamental Solutions of vector A, for N > 1: Generalized
“Twisted Cones':

Let u: R" — RN be radial. Then, Asou = 0 iff

|z—x|
u(z) == uw+ L/O v(t) dt,

up € RN, L>0v:(0,00) — SN=1 curve in the sphere.
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Application 1: Fundamental Solutions of A, are Eikonal

@ Fundamental Solutions of scalar A, for N = 1: Cones.

@ Fundamental Solutions of vector A, for N > 1: Generalized
“Twisted Cones':

Let u: R" — RN be radial. Then, Asou = 0 iff

|z—x|
u(z) == uw+ L/ v(t) dt,
0
up € RN, L>0v:(0,00) — SN=1 curve in the sphere.

Fundamental Solutions of A, are non-differentiable (at the
“vertex" x) Contact Solutions of the Eikonal PDE:

|Dul>— 1> =0
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Application 1: Fundamental Solutions of A, are Eikonal

@ Fundamental Solutions of scalar A, for N = 1: Cones.

@ Fundamental Solutions of vector A, for N > 1: Generalized
“Twisted Cones':

Let u: R" — RN be radial. Then, Asou = 0 iff

|z—x|
u(z) == uw+ L/ v(t) dt,
0
up € RN, L>0v:(0,00) — SN=1 curve in the sphere.

Fundamental Solutions of A, are non-differentiable (at the
“vertex" x) Contact Solutions of the Eikonal PDE:

|Dul>— 1> =0

If N=1 then v =+1 and u(z) = up £ L|z — x|.
Cones are Viscosity Solutions of |Du|? — L2 = 0.
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Application 1: Fundamental Solutions of A, are Eikonal

The simplest Fundamental Solution v : R — R? of A.
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Application 1: Fundamental Solutions of A, are Eikonal

The simplest Fundamental Solution v : R — R? of A.

128 /139



Application 2: A class of CL2" co-Harmonic Functions

If we R", v:(0,00) — SN=1 Lipschitz curve in the sphere,
K e C%JF(R), then

AT
P —
~

For appropriate K, CL3+ is the optimal possible regularity!
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Application 2: A class of CL2" co-Harmonic Functions

If we R", v:(0,00) — SN=1 Lipschitz curve in the sphere,
K e C%JF(R), then

AT
P —
~

For appropriate K, CL3+ is the optimal possible regularity!

Avrise as classical solutions of Eikonal PDE |Dul?> — 1 = 0. 130130



Application 3: Pseudo-Gradient Flows for A

Smooth Case. Let u € C>(R")N. Then, A u = 0 iff ¥x € R”,
¢ € SN~1 3 maximal curve

{ Y(t) = £ Du(~(1)),
7(0) = x,
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Application 3: Pseudo-Gradient Flows for A

Smooth Case. Let u € C>(R")N. Then, A u = 0 iff ¥x € R”,
¢ € SN~1 3 maximal curve

{ A(t) = €7 Du(x(t)),
7(0) = x,

such that

, teR,

{ | Du((t))| = | Du(x)

t — £ u(y(t)) increasing.
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Application 3: Pseudo-Gradient Flows for A

Smooth Case. Let u € C>(R")N. Then, A u = 0 iff ¥x € R”,
¢ € SN~1 3 maximal curve

{ A(t) = €7 Du(x(t)),
7(0) = x,

such that

, teR,

{ | Du((t))| = | Du(x)

t — £ u(y(t)) increasing.

Follows form

22 (10ueDF) = €7 Becu(r(1)),

(T ur(1) = [T Dulx(e) .
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Application 3: Pseudo-Gradient Flows for A

Also, if n € SN-1:
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Application 3: Pseudo-Gradient Flows for A

Also, if n € SN-1:

525 (€Tu0(®)) = € Bocu(3(2).

jt(nTU('y(t))> = <£®77 : Du(Du)T>(~y(t))7

& (17u6()) = oD (¢ o 0u(00)]) (1)

General Case. Let u € CO(R")N. Then,
A, u =0 in Contact sense iff similar pseudo-gradient flows exist.

They characterize co-Harmonicity.
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Application 4: In Progress!

Existence of co-Harmonic Vector Functions with prescribed
boundary values:
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Application 4: In Progress!

Existence of co-Harmonic Vector Functions with prescribed
boundary values:

@ Problem: Exists a Lipschitz Contact Solution u: R"” — RN
to the Dirichlet Problem for the oco-Laplacian

Au = 0,inQ
u = g on 0

for Q cC R" and g Lipschitz.
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Application 4: In Progress!

Existence of co-Harmonic Vector Functions with prescribed
boundary values:

@ Problem: Exists a Lipschitz Contact Solution u: R"” — RN
to the Dirichlet Problem for the oco-Laplacian

Au = 0,inQ
u = g on 0

for Q cC R" and g Lipschitz.
@ Method: Employ stability under limits, interpret p-Harmonic

functions as Contact solutions and employ A, — Ay as
p — oo.
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The End

THANK YOU I
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