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What is this talk about?

A new systematic theory of non-differentiable solutions which
applies to fully nonlinear PDE systems.
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The model PDE system: ∞-Laplacian ∆∞

The ∞-Laplacian: if u : Rn −→ RN ,
(tensorial form:)

∆∞u := Du ⊗ Du : D2u = 0

(index form:)

Diuα Djuβ D2
ijuβ = 0

1 ≤ i , j ≤ n, 1 ≤ α, β ≤ N.

(condensed form:)

∆∞u = D
(
1
2
|Du|2

)
Du
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The model PDE system: ∞-Laplacian ∆∞

∆∞: Quasilinear, 2nd order, Degenerate Elliptic operator in
Non-Divergence form.
∆∞ arises

As an “Euler-Lagrange” PDE in Calculus of Variations in L∞:

E∞(u,Ω) = ess supΩ |Du|

for Absolute Minimizers, a version of local minimizers
As the “limit” of p-Laplacian ∆pu = Div(|Du|p−2Du) as
p →∞:

∆∞ +
|Du|2

p − 2
∆u = 0
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The model PDE system: ∞-Laplacian ∆∞

Implicitly in Geometric Evolution Problems (level-set
approach):

ut = ∆u − ∆∞u
|Du|2

(term of the 1-Laplacian Div(Du/|Du|))

In Game Theory,

In Dynamic Programming,

In Image Processing,

In Control Theory,

...
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The general Aronsson PDE system

If u : Rn −→ RN ,

A[u] := HP(·, u,Du)D
(
H(·, u,Du)

)
= 0.

Solutions arise as Absolute Minimizers of the supremal functional

E∞(u,Ω) = ess sup
x∈Ω

H
(
x , u(x),Du(x)

)
placed in L∞(Rn)N .

If H = H(Du), then

A[u] = HP(Du)⊗ HP(Du) : D2u = 0
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A startling problem: singular “solutions” of ∆∞

The scalar ∆∞ for u : Rn −→ R well studied in the last 20 years.

We want to solve the problem of existence of u : Rn −→ RN :{
∆∞u = 0, in Ω ⊂⊂ Rn,

u = g on ∂Ω, g Lipschitz.

The vector ∆∞ for u : Rn −→ RN can not be studied rigorously!

Example. Let u : R −→ R2 be the curve:

u(x) :=

∫ x

0

(
cos
(
K (t)

)
, sin

(
K (t)

))>
dt

where K ∈ C 0(R). Then, u is Eikonal:

|Du|2 = 1.

Should be “∞-Harmonic”:

∆∞u = D
(
1
2
|Du|2

)
Du.
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4.Contact Solutions for Fully Nonlinear Systems of PDE

However, for appropriate K :
6 ∃ D2u anywhere on R !
6 ∃ D2u as a Radon measure !
∃ D2u only in D′ !

Generally, the vectorial ∆∞:

∆∞ has no classical solutions,
∆∞ has no strong a.e. solutions,
∆∞ has no weak solutions,
∆∞ has no measure-theoretic solutions,
∆∞ has no distributional solutions, and
∆∞ has no viscosity solutions.
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A startling problem: singular “solutions” of ∆∞

Simulation of the ∞-Harmonic curve u(x) =
∫ x
0

(
cos
(
K(t)

)
, sin

(
K(t)

))>
dt, u : R −→ R2.
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A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Scalar PDE (N = 1): if u : Rn −→ R, ∆∞u = Diu Dju D2
iju = 0.

Well studied in the context of Viscosity Solutions (’90 - , existence
and uniqueness for the Dirichlet problem, C 1-regularity, ...).

Example (Aronsson ’1984). Let u : R2 −→ R be:

u(x , y) := |x |4/3 − |y |4/3.

Then, u is C 1, 13 and solves ∆∞u = 0 only in the viscosity sense
( 6 ∃ D2u on the axes).

Example (K. ’2010). Let H ∈ C 1(Rn) be constant along
[a, b].Then:

u(x) :=
b + a
2

>
x + f

(
b − a
2

>
x

)
.

is for all f ∈W 1,∞
loc (R), ‖f ‖L∞(R) < 1 a non-C 1 solution of

A[u] = 0 in the viscosity sense ( 6 ∃ D2u anywhere). 36 / 139
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A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Idea behind Viscosity Solutions u : Rn −→ R of

F
(
x , u(x),Du(x),D2u(x)

)
= 0 :

Use
Extremals min/max

and
Ellipticity of F (·, u,Du,D2u) = 0

to

“pass the derivatives” from u to a smooth test function ψ

via the

“Maximum Principle” Calculus

(a sort of “Nonlinear Distribution” theory).
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A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u : Rn −→ R solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0, (PDE)

then if x ∈ Rn, ψ ∈ C 2(Rn) and u − ψ has vanishing max at x :

u − ψ ≤ (u − ψ)(x) = 0,

then

Du(x) = Dψ(x),

D2u(x) ≤ D2ψ(x).

Hence, if
X 7→ F (·, ·, ·,X ) is monotone

then

(PDE) =⇒ 0 ≤ F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
.

48 / 139



A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u : Rn −→ R solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0, (PDE)

then if x ∈ Rn, ψ ∈ C 2(Rn) and u − ψ has vanishing max at x :

u − ψ ≤ (u − ψ)(x) = 0,

then

Du(x) = Dψ(x),

D2u(x) ≤ D2ψ(x).

Hence, if
X 7→ F (·, ·, ·,X ) is monotone

then

(PDE) =⇒ 0 ≤ F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
.

49 / 139



A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u : Rn −→ R solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0, (PDE)

then if x ∈ Rn, ψ ∈ C 2(Rn) and u − ψ has vanishing max at x :

u − ψ ≤ (u − ψ)(x) = 0,

then

Du(x) = Dψ(x),

D2u(x) ≤ D2ψ(x).

Hence, if
X 7→ F (·, ·, ·,X ) is monotone

then

(PDE) =⇒ 0 ≤ F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
.

50 / 139



A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u : Rn −→ R solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0, (PDE)

then if x ∈ Rn, ψ ∈ C 2(Rn) and u − ψ has vanishing max at x :

u − ψ ≤ (u − ψ)(x) = 0,

then

Du(x) = Dψ(x),

D2u(x) ≤ D2ψ(x).

Hence, if
X 7→ F (·, ·, ·,X ) is monotone

then

(PDE) =⇒ 0 ≤ F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
.

51 / 139



A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u : Rn −→ R solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0, (PDE)

then if x ∈ Rn, ψ ∈ C 2(Rn) and u − ψ has vanishing max at x :

u − ψ ≤ (u − ψ)(x) = 0,

then

Du(x) = Dψ(x),

D2u(x) ≤ D2ψ(x).

Hence, if
X 7→ F (·, ·, ·,X ) is monotone

then

(PDE) =⇒ 0 ≤ F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
.

52 / 139



A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Motivation of Viscosity Solutions: if u : Rn −→ R solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0, (PDE)

then if x ∈ Rn, ψ ∈ C 2(Rn) and u − ψ has vanishing max at x :

u − ψ ≤ (u − ψ)(x) = 0,

then

Du(x) = Dψ(x),

D2u(x) ≤ D2ψ(x).

Hence, if
X 7→ F (·, ·, ·,X ) is monotone

then

(PDE) =⇒ 0 ≤ F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
.

53 / 139



A scalar digression: ∆∞ for N = 1 & Viscosity Solutions

Definition of Viscosity Solutions: The function u ∈ C 0(Rn) solves

F
(
x , u(x),Du(x),D2u(x)

)
= 0,

if for x ∈ Rn, ψ ∈ C 2(Rn)

u − ψ ≤ (u − ψ)(x) = 0,
u − ψ ≥ (u − ψ)(x) = 0,

implies

F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
≥ 0,

F
(
x , ψ(x),Dψ(x),D2ψ(x)

)
≤ 0.

Advantage:

Merely C 0(Rn) functions as PDE solutions!
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Main Subject: Contact Solutions for systems of PDEs

Exists a theory of non-differentiable solutions which applies to fully
nonlinear systems of PDEs

F
(
·, u,Du,D2u

)
= 0, u : Rn −→ RN ,

and
extends scalar Viscosity Solutions

to

N>1

(without monotonicity, componentwise arguments, weak coupling, ... ).
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Main Subject: Contact Solutions for systems of PDEs

Key ingredient in the vector case N>1:

exists an
Extremality Principle

applying to

Vector Functions u : Rn −→ RN

which

Extends min/max to N>1
and carries a

“Maximum Principle” calculus.
This allows to

develop a “Viscosity type” theory for PDE systems

preserving working philosophy and most of flexibility of scalar theory.
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:
Functional notion, not pointwise!

Fact: If u ∈ C 1
0 (Ω) and u 6≡ 0, then u has interior extremum and

Du = 0 there.

Example. If γ ∈ C 1
0 ((−1, 1))N unit speed curve γ : (−1, 1)→ RN ,

then
|γ̇| ≡ 1 6= 0.

Hence, Vector Functions can NOT have classical “extrema”!
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

Extremals are functions, not points!

Scalar case N = 1: Extremum at x is the point u(x):

Vector case N > 1: Extremum at x is the function ψ : Rn −→ RN

passing through the point u(x):

In the scalar case ψ ≡ constant.
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

Can not be characterized by ordering!

Scalar case N = 1: Maximum corresponds to ξ = +1 and minimum
to ξ = −1

Vector case N > 1: Extremum in the direction ξ ∈ SN−1 is the
function ψ : Rn −→ RN :

All the directions in the range need to be considered!
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

Has Order!

Scalar case N = 1: Let u, ψ ∈ C 2(Rn). Then

u − ψ has max at x =⇒
{

D(u − ψ)(x) = 0
D2(u − ψ)(x) ≤ 0

Vector case N > 1: Let u, ψ ∈ C 2(Rn)N . Then

ψ is a 1st Order Extremal at x along ξ =⇒ D(u − ψ)(x) = 0

ψ is a 2nd Order Extremal at x along ξ =⇒
{

D(u − ψ)(x) = 0
D2(u − ψ)(x) ≤ 0

2nd order Contact is required to deduce appropriate Hessian inequality!
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Main Subject: Contact Solutions for systems of PDEs

Peculiarities of the Extremality Principle of Contact:

The Order has a consequence:

The Extremality imposes partial regularity of lower-dimensional
projections of the function u:

ψ has 1st order Contact with u at x =⇒

u has a C 1/2 regular codimension-1 projection near x

ψ has 2nd order Contact with u at x =⇒

u has a C 0,1 regular codimension-1 projection near x

All are result of vectorial obstructions which disappear if N = 1.
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Main Subject: Contact Solutions for systems of PDEs

The Extremality Principle of Contact: easily understood via Jets
Sets of Pointwise Generalized Derivatives.

Definition(2nd Order Contact Jets). Let u : Rn −→ RN , x ∈ Rn

and ξ ∈ SN−1. Then,

(P,X) ∈ J2,ξu(x)

iff

ξ ∨
[
u(z)− u(x)− P(z − x)− 1

2
X : (z − x)⊗ (z − x)

]
≤ o(|z − x |2)

as z → x .
Here “≤” is taken in Symmetric tensors of RN ⊗ RN and

a ∨ b :=
1
2
(
a ⊗ b + b ⊗ a

)
.

Equivalence:

J2,ξu(x) =
{(

Dψ(x),D2ψ(x)
)

: ψ is a Contact ξ-function
}
.
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Main Subject: Contact Solutions for systems of PDEs

The PDE notions for systems:

Definition(Contact Solutions). Let u : Rn −→ RN . Then u solves

F (·, u,Du,D2u) = 0

when u ∈ C 0(Rn)N and

(P,X) ∈ J2,ξu(x) =⇒ ξ>F (x , u(x),P,X) ≥ 0.

for all x ∈ Rn, ξ ∈ SN−1.

Reduction to the scalar case N = 1: S0 = {−1,+1} and

(P,X) ∈ J2,±u(x) =⇒ F (x .u(x),P,X)
≥
≤ 0.

J2,±u(x) coincide with the scalar semijets.
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Main Subject: Contact Solutions for systems of PDEs

Contact Solutions completely compatible with Classical Solutions
for Degenerate Elliptic systems:

Definition. The system F (D2u) = 0 is Degenerate Elliptic when
[F (X)− F (Y)]α[X− Y]αijwiwj ≥ 0, w ∈ Rn, i.e.

[F (X)− F (Y)]>[X− Y] ≥ 0

Example. (Quasi)linear case: A : D2u = 0, i.e.

Aαiβj : D2
ijuβ = 0.

D.E. ⇐⇒ A : (η ⊗ w)⊗ (η ⊗ w) ≥ 0 ⇐⇒
{

A ≥⊗ 0
rank-1 positivity.

Example. A Fully nonlinear elliptic system:

Fα(·, u,Du, σ(D2uα)) = 0.
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Main Subject: Contact Solutions for systems of PDEs

Contact Jets implicitly Equivalent to Contact Functions.

ξ>(u − ψ) has vanishing max at x

ξ⊥ := I − ξ ⊗ ξ (ξ⊥ ≡ 0 when N = 1, scalar case).

|ξ⊥(u − ψ)| controlled by ξ>(u − ψ) (through Cone functions)
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Main Subject: Contact Solutions for systems of PDEs

Equivalence between J2 and Extremality notions is deeper
(Extremality contains partial regularity info, J2 does not).

Extremality is characterized by the “Contact” Principle
calculus: if u : Rn −→ RN , ∃Du(x),D2u(x) & ψ ∈ C 2(Rn)N

ψ is 2nd order Contact
ξ-Function of u at x

⇔
{

D(u − ψ)(x) = 0
ξ ∨ D2(u − ψ)(x) ≤⊗ 0

Similarities with scalar case formal. Finer structure exists:

F (·, u,Du) = 0 requires C 1/2 codimension-1 partial regularity,
F (·, u,Du,D2u) = 0 requires C 0,1 codimension-1 partial regularity.

Only “1/2” of the derivatives can be interpreted weakly,
the rest “1/2” must exists classically.

If N = 1 obstructions disappear, only C 0 required (Viscosity).
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Application 1: Fundamental Solutions of ∆∞ are Eikonal

Fundamental Solutions of scalar ∆∞ for N = 1: Cones.
Fundamental Solutions of vector ∆∞ for N > 1: Generalized
“Twisted Cones”:

Let u : Rn −→ RN be radial. Then, ∆∞u = 0 iff

u(z) := u0 + L
∫ |z−x |

0
ν(t) dt,

u0 ∈ RN , L ≥ 0 ν : (0,∞) −→ SN−1 curve in the sphere.

Fundamental Solutions of ∆∞ are non-differentiable (at the
“vertex” x) Contact Solutions of the Eikonal PDE:

|Du|2 − L2 = 0

If N = 1 then ν ≡ ±1 and u(z) = u0 ± L|z − x |.
Cones are Viscosity Solutions of |Du|2 − L2 = 0.
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Application 1: Fundamental Solutions of ∆∞ are Eikonal

The simplest Fundamental Solution u : R −→ R2 of ∆∞.
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Application 2: A class of C 1, 12+ ∞-Harmonic Functions

If w ∈ Rn, ν : (0,∞) −→ SN−1 Lipschitz curve in the sphere,
K ∈ C

1
2+(R), then

u(z) :=

∫ w>z

0
ν
(
K (t)

)
dt

defines a Contact solution of ∆∞u = 0 of regularity C 1, 12+(R)N .

For appropriate K , C 1, 12+ is the optimal possible regularity!

Arise as classical solutions of Eikonal PDE |Du|2 − 1 = 0.
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Application 3: Pseudo-Gradient Flows for ∆∞

Smooth Case. Let u ∈ C 2(Rn)N . Then, ∆∞u = 0 iff ∀x ∈ Rn,
ξ ∈ SN−1 ∃ maximal curve{

γ̇(t) = ξ>Du(γ(t)),
γ(0) = x ,

such that { ∣∣Du(γ(t))
∣∣ =

∣∣Du(x)
∣∣, t ∈ R,

t 7→ ξ>u(γ(t)) increasing.

Follows form

1
2

d
dt

(∣∣Du(γ(t))
∣∣2) = ξ>∆∞u(γ(t)),

d
dt

(
ξ>u(γ(t))

)
=
∣∣ξ>Du(γ(t))

∣∣2.
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Application 3: Pseudo-Gradient Flows for ∆∞

Also, if η ∈ SN−1:

1
2

d2

dt2

(
ξ>u(γ(t))

)
= ξ>∆∞u(γ(t)),

d
dt

(
η>u(γ(t))

)
=
(
ξ ⊗ η : Du(Du)>

)
(γ(t)),

d2

dt2

(
η>u(γ(t))

)
= D(ξ>u)>D

(
ξ ⊗ η : Du(Du)>

)
(γ(t)).

General Case. Let u ∈ C 0(Rn)N . Then,

∆∞u = 0 in Contact sense iff similar pseudo-gradient flows exist.

They characterize ∞-Harmonicity.
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Application 4: In Progress!

Existence of ∞-Harmonic Vector Functions with prescribed
boundary values:

Problem: Exists a Lipschitz Contact Solution u : Rn −→ RN

to the Dirichlet Problem for the ∞-Laplacian{
∆∞u = 0, in Ω

u = g on ∂Ω

for Ω ⊂⊂ Rn and g Lipschitz.

Method: Employ stability under limits, interpret p-Harmonic
functions as Contact solutions and employ ∆p −→ ∆∞ as
p →∞.
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The End

THANK YOU !!!
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