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Stochastic partial differential equations (PDEs for short) are used to describe a lot
of random phenomena appeared in physics, chemistry, biology, control theory and so
on. In many situations, stochastic PDEs are more realistic mathematical models than
the deterministic ones. Nevertheless, compared to the deterministic setting, there exist
a very limited works addressing inverse problems for stochastic PDEs. Some interesting
results are presented in (G. Bao, S.-N. Chow, P. Li and H. Zhou, 2010), (L. Cavalier
and A. Tsybakov, 2002) and (I.A. Ibragimov and R.Z. Khas’minskii, 1999). However,
as far as I know, there is no paper considering the inverse problem for stochastic wave
equations and stochastic heat equations.

In this talk, I will give some results for some inverse problems for stochastic wave
equations and stochastic heat equations.
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Let T > 0, G ∈ Rn (n ∈ N) be a given bounded domain with an C2 boundary Γ.
Let Γ0 be a suitable chosen nonempty subset of Γ, whose definition will be given later.

Fix a complete filtered probability space (Ω,F , {Ft}t≥0, P ), on which a one
dimensional standard Brownian motion {B(t)}t≥0 is defined.

Consider the following stochastic wave equation:
dzt −∆zdt =

[
b1zt + (b2,∇z)+b3z

]
dt+(b4z+g)dB(t) in (0, T )×G,

z = 0 on (0, T )× Γ,

z(0) = z0, zt(0) = z1 in G,

(1)

Let p ∈ [n,∞]. Let

b1 ∈ L∞F (0, T ;L∞(G)), b2 ∈ L∞F (0, T ;L∞(G;Rn)),

b3 ∈ L∞F (0, T ;Lp(G)), b4 ∈ L∞F (0, T ;L∞(G)). (2)

(z0, z1) ∈ L2(Ω,F0, P ;H1
0(G)× L2(G)) and g ∈ L2

F(0, T ;L2(G)) are unknowns.
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Put
HT

4
= L2

F(Ω;C([0, T ];H1
0(G)))

⋂
L2
F(Ω;C1([0, T ];L2(G))). (3)

It is clear that HT is a Banach space with the canonical norm. Under suitable
assumptions (the assumptions in this paper are enough), for any given (z0, z1)
and g, one can show that the equation (1) admits one and only one solution
z = z(z0, z1, g)(t, x, ω) ∈ HT . We will also denote by z(z0, z1, g) or z(z0, z1, g)(t) the
solution of (1).
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The random force

∫ t

0

gdB is assumed to cause the random vibration starting from

some initial state (z0, z1). Roughly speaking, our aim is to determine the unknown
random force intensity g and the unknown initial displacement z0 and initial velocity
z1 from the (partial) boundary observation ∂z

∂ν

∣∣
(0,T )×Γ0

and the measurement on the

terminal displacement z(T ), where ν = ν(x) denotes the unit outer normal vector
of G at x ∈ Γ, and Γ0 is a suitable open subset (to be specified later) of Γ. More
precisely, we are concerned with the following global uniqueness problem:

Do ∂z
∂ν(z0, z1, g)

∣∣
(0,T )×Γ0

= 0 and z(z0, z1, g)(T ) = 0 in G, P -a.s. imply that

g = 0 in (0, T )×G and z0 = z1 = 0 in G, P -a.s.?
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In the deterministic setting, there exist numerous literatures addressing the
inverse problem of PDEs. A typical (deterministic) inverse problem close to the
above one is as follows: Fix suitable (known) functions a(·, ·) and f1(·, ·) satisfying

min
(t,x)∈(0,T )×G

|f1(t, x)| > 0, and consider the following hyperbolic equation:


ztt −∆z = a(t, x)z + f1(t, x)f2(x) in (0, T )×G,
z = 0 on (0, T )× Γ,

z(0) = 0, zt(0) = z1 in G.

(4)

In (4), both z1 and f2 are unknown and one expects to determine them through the
boundary observation ∂z

∂ν

∣∣
(0,T )×Γ0

.
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As shown by Yamamoto and Zhang, by assuming suitable regularity on functions
a(·, ·), fi(·, ·) (i = 1, 2) and z1(·), and using the transformation

y = y(t, x) =
d

dt

(
z(t, x)

f1(t, x)

)
, (5)

this inverse problem can be reduced to deriving the so-called observability for the
following wave equation with memory

ytt −∆y = a1yt + a2 · ∇y + a3y

+

∫ t

0

[c1(t, s, x)y(s, x) + c2(t, s, x) · ∇y(s, x)] ds in Q,

y = 0 on Σ,

y(0, x) =
z1(x)

f1(0, x)
, yt(0, x) = f2(x)− 2∂tf1(0, x)

|f1(0, x)|2
z1(x) in G,

where ai(·, ·) (i = 1, 2, 3) and ci(·, ·, ·) (i = 1, 2) are suitable functions.
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Obviously, we have
∂y

∂ν

∣∣∣
Γ0

= 0.

In (M. Yamamoto and X. Zhang, 2001), the authors proved

|y(0), yt(0)|H1(G)×L2(G) ≤ C
∣∣∣∂y
∂ν

∣∣∣
L2(0,T ;L2(Γ0))

.

Then they get z1 = f2 = 0 in G.
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One will meet substantially new difficulties in the study of inverse problems
for stochastic PDEs. For instance, unlike the deterministic PDEs, the solution of a
stochastic PDE is usually non-differentiable with respect to the variable with noise (say,
the time variable considered in this paper). Also, the usual compactness embedding
result does not remain true for the solution spaces related to stochastic PDEs. These
new phenomenons lead that some useful methods for solving inverse problems for
deterministic PDEs cannot be used to solve the corresponding inverse problems in the
stochastic setting. Especially, one can see that none of the methods for solving the
above inverse problem for the equation (4) can be easily adopted to solve our inverse
problem for the stochastic hyperbolic equation (1), even if g is assumed to be of the
form

g(t, x, ω) = g1(t, ω)g2(x), ∀ (t, x, ω) ∈ (0, T )×G× Ω, (6)

with a known stochastic process g1(·, ·) ∈ L2
F(0, T ) and an unknown function g2(·) ∈

L2(G). For these reasons, it is necessary to develop new methodology and technique
for treating inverse problems for stochastic PDEs.
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We solve the above formulated inverse problem for the equation (1) by employing
a suitable Carleman estimate. To the best of our knowledge, the only published
reference addressing the Carleman estimate for stochastic hyperbolic equations is (X.
Zhang, 2009). In that paper, under suitable assumptions, the following estimate was
proved for the solution z of (1):

|(z(T ), zt(T ))|L2(Ω,FT ,P ;H1
0(G)×L2(G)) ≤ C

[∣∣∣∣∂z∂ν
∣∣∣∣
L2
F(0,T ;L2(Γ0))

+ |g|L2
F(0,T ;L2(G))

]
.

(7)
Noting that g appears in the right hand side of (7), and the left hand side of (7) is
(z(T ), zt(T )), which cannot be used to estimate (z0, z1) owing to the time irreversible,
therefore, inequality (7) does not apply to the inverse problem in this paper.
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In order to solve our stochastic inverse problem, we need to establish a new
Carleman estimate for (1) so that the source term g can be bounded above by the
observed data. Hence, we need to avoid employing the usual energy estimate because,
when applying this estimate to (1), the source term g would appear as a bad term.
Meanwhile, noting that we are also expected to identity the initial data, hence we need
to bound above the initial data by the observed data, too. Because of this, we need
to obtain the estimate on the initial data and source term in the Carleman inequality
simultaneously. Therefore we cannot use the usual “Carleman estimate” + “energy
estimate” method (which works well for the deterministic wave equation) to derive
the desired estimates. This is the main difficulty that we need to overcome for solving
this problem.
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Choose x0 /∈ G and let Γ0
4
= {x : (x− x0) · ν ≥ 0}.

Let T > 0, 0 < c1 < 1 and a > 1 satisfy 1.
4a

8c31 + c21
min
x∈G
|x− x0|2 > c21T

2 > 4amax
x∈G
|x− x0|2;

2.4a− 4c1 − 1 > 0.

Let l = λ
[
a|x− x0|2− c1(t− T )2

]
and θ = el. The desired Carleman estimate for

(1) is as follows.

Theorem 1. There exists a constant λ̃ > 0 such that for any λ ≥ λ̃ and any solution
z ∈ HT of the equation (1) satisfying z(T ) = 0 in G, P -a.s., it holds that

E
∫
G

θ2(λ|z1|2 + λ|∇z0|2 + λ3|z0|2)dx+ λE
∫ T

0

∫
G

(T − t)θ2g2dxdt

≤ CλE
∫ T

0

∫
Γ0

θ2
∣∣∣∂z
∂ν

∣∣∣2dΓdt.

(8)
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From the above Carleman estimate, we obtain the following result.

Theorem 2. Assume that the solution z of (1) satisfies that ∂z
∂ν = 0 on (0, T )× Γ0

and z(T ) = 0 in G, P -a.s. Then g = 0 in Q and z0 = z1 = 0 in G, P -a.s.
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Remark 1. Similar to the inverse problem for (4), and stimulated by Theorem 2, it
seems natural to expect a similar uniqueness result for the following equation

dzt−∆zdt = (b1zt + b2 · ∇z + b3z + f) dt+ b4zdB(t) in (0, T )×G,
z = 0 on (0, T )× Γ,

z(0) = z0, zt(0) = z1 in G,

(9)

in which z0, z1 and f are unknown and one expects to determine them through the
boundary observation ∂z

∂ν

∣∣
(0,T )×Γ0

and the terminal measurement z(T ).
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However the same conclusion as that in Theorem 2 does not hold true even for
the deterministic wave equation. Indeed, we choose any y ∈ C∞0 ((0, T )×G) so that
it does not vanish in some subdomain of (0, T ) × G. Putting f = ytt − ∆y, it is
obvious that y solves the following wave equation

ytt −∆y = f in (0, T )×G,
y = 0, on (0, T )× Γ,

y(0) = 0, yt(0) = 0 in G.

One can show that y(T ) = 0 in G and ∂y
∂ν = 0 on (0, T )×Γ. However, it is clear that

f does not vanish in (0, T ) × G. This counterexample shows that the formulation
of the stochastic inverse problem may differ considerably from its deterministic
counterpart.
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Remark 2. From the computational point of view, it is quite interesting to study
the following stability problem (for the inverse stochastic wave equation (1)): Is the
map

∂z

∂ν
(z0, z1, g)

∣∣∣∣
(0,T )×Γ0

× z(z0, z1, g)(T ) −→ (z0, z1, g)

continuous in some suitable Hilbert spaces?

Instead, it is easy to show the following partial stability result, i.e., for any
solution z ∈ HT of the equation (1) satisfying z(T ) = 0 in G, P -a.s., it holds that

|(z0, z1)|L2(Ω,F0,P ;H1
0(G)×L2(G)) + |

√
T − tg|L2

F(0,T ;L2(G)) ≤ C
∣∣∣∣∂z∂ν

∣∣∣∣
L2
F(0,T ;L2(Γ0))

.

Especially, if g(t, x, ω) = g1(t, ω)g2(x) (with g1(·, ·) ∈ L2
F(0, T ) and g2(·) ∈ L2(G)),

then the following estimate holds

|(z0, z1)|L2(Ω,F0,P ;H1
0(G)×L2(G)) + |g2|L2(G) ≤ C

∣∣∣∣∂z∂ν
∣∣∣∣
L2
F(0,T ;L2(Γ0))

.
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Let x = (x1, x
′) ∈ lRn and x′ = (x2, · · · , xn) ∈ lRn−1. Consider a special G as

G = (0, l)×G′, where G′ ⊂ lRn−1 be a bounded domain with a C2 boundary. Denote
also by Γ the boundary of G. We consider the following stochastic heat equation:

dy −∆y = [(b1,∇y) + b2y + h(t, x′)R(t, x)]dt+ b3ydB(t) in (0, T )×G,
y = 0 on (0, T )× Γ,

y(0) = 0 in G.
(10)

Here

b1 ∈ L∞F (0, T ;W 1,∞(G; lRn)), b2 ∈ L∞F (0, T ;W 1,∞(G)), b3 ∈ L∞F (0, T ;W 2,∞(G)),

and
R ∈ C2([0, T ]×G), h ∈ L2

F(0, T ;H1(G)).

The inverse source problem studied here is as follows:

Let R be given and t0 > 0. Determine the source function h(t, x′), (t, x′) ∈
(0, t0)×G′, by means of the observation of

∂y

∂ν

∣∣∣
[0,t0]×Γ

.
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We have the following uniqueness result about the above problem.

Theorem 3. Assume that y ∈ L2
F(Ω;C([0, T ];H1

0(G))), yx1 ∈ L2
F(Ω;C([0, T ];H1

0(G)))
and

|R(t, x)| 6= 0 for all (t, x) ∈ [0, t0]×G. (11)

If
∂y

∂ν
= 0 on [0, t0]× Γ, P -a.s.,

then
h(t, x′) = 0 for all (t, x′) ∈ [0, t0]×G′, P -a.s.
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Remark 3. In the literature, determining a spacewise dependent source function for
parabolic equations has been considered comprehensively. A classical result for the
deterministic setting is as follows.

Consider the following parabolic equation:

{
yt −∆y = c1∇y + c2y +Rf in (0, T )×G,
y = 0 on (0, T )× Γ.

(12)

Here c1 and c2 are suitable functions on (0, T ) × G. R ∈ L∞((0, T ) × G),
Rt ∈ L∞((0, T ) × G) and R(t0, x) 6= 0 in G for some t0 ∈ (0, T ]. f ∈ L2(G)
is independent of t. O. Yu. Imanuvilov and M. Yamamoto proved the following
result:

Assume that y ∈ H1,2((0, T ) × G) and yt ∈ H1,2((0, T ) × G), then there exists
a constant C > 0 such that

|f |L2(G) ≤ C
(
|y(t0)|H2(G) +

∣∣∣∂yt
∂ν

∣∣∣
L2(0,T ;L2(Γ0))

)
, (13)

where Γ0 is any open subset of ∂G.
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Compared with Theorem 3, inequality (13) gives an explicit estimate for the

source term by |y(t0)|H2(G) and
∣∣∣∂yt
∂ν

∣∣∣
L2(0,T ;L2(Γ0))

. A key step in the proof of

equality (13) is to differentiate the solution of (12) with respect to t. Unfortunately,
the solution of (10) does not enjoy differentiability with respect to t. This leads to
the difficulty to follow the proof for inequality (13) to solve our problem.

The problem is solved by a global Carleman estimate for the following equation.

{
dy −∆ydt = [(a1,∇y) + a2y + f ]dt+ (a3y + g)dB(t) in (0, T )×G,
y = 0 on (0, T )× Γ,

(14)

where f ∈ L2
F(0, T ;L2(G)) and g ∈ L2

F(0, T ;H1(G)).
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Let ψ ∈ C∞(lR) with |ψt| ≥ 1, which is independent of the x-variable. Put

ϕ = eλψ and θ = esϕ. (15)

We have the following result.

Theorem 4. Let δ ∈ [0, T ). For all y ∈ L2
F(Ω;C([0, T ];H1

0(G))) solve equation
(12), there exists a λ1 > 0 such that for all λ ≥ λ1, there exists an s0(λ1) > 0 so
that for all s ≥ s0(λ1), it holds that

λE
∫ T

δ

∫
G

θ2|∇y|2dxdt+ sλ2E
∫ T

δ

∫
G

ϕθ2y2dxdt

≤ C E
[
θ2(T )|∇y(T )|2L2(G) + θ2(δ)|∇y(δ)|2L2(G) + sλϕ(T )θ2(T )|y(T )|2L2(G)

+sλϕ(δ)θ2(δ)|y(δ)|2L2(G) +

∫ T

δ

∫
G

(
f2 + g2 + |∇g|2

)
dxdt

]
.

(16)

21



From the above Carleman estimate, For arbitrary small ε > 0, we choose t1 and t2
such that

0 < t0 − ε < t1 < t2 < t0.

Let χ ∈ C∞(lR) be a cut-off function such that 0 ≤ χ ≤ 1 and that

χ =

{
1, t ≤ t1,
0, t ≥ t2.

(17)
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Put z = y
R and w = χzx1 (recall (11) for R) in [0, t2] × G, by virtue of y is a

solution of equation (10), we know that w solves

dw−∆wdt =
[
((b1)x1, χ∇z) + (b1,∇w) +

((2∇R
R

)
x1

, χ∇z
)

+
(2∇R

R
,∇w

)
+
(
b2 +

∆R

R
− 2(∇R,∇R)

R2
− Rt
R

+
(∇R
R
, b1

))
x1

χz

+
(
b2 +

∆R

R
− 2(∇R,∇R)

R2
− Rt
R

+
(∇R
R
, b1

))
w
]
dt

+(b3)x1χzdB(t) + b3wdB(t)− χ′zx1dt in [0, t0]×G,
w = 0 on [0, t0]×Γ.

(18)
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Applying Theorem 4 to equation (18) with ψ(t) = −t, we have

|w|2
L2
F(0,T ;H1(G))

≤ Ce2s(e−λt1−e−λ(t0−ε))|yx1|
2
L2
F(0,T ;L2(G))

. (19)

Recalling that t0 − ε < t1, we know e−λt1 − e−λ(t0−ε) < 0. Letting s → +∞, we
obtain that

w = 0 in (0, t0 − ε)×G, P -a.s.

This implies that
z = 0 in (0, t0 − ε)×G, P -a.s.,

which means
h = 0 in (0, t0 − ε)×G′, P -a.s.

Since ε > 0 is arbitrary, Theorem 3 is proved.
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Thank you!

Gracias!

Merci!

Danke!
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