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Control of the motion of a boat

I We consider a rigid body S ⊂ R2 with one axis of
symmetry, surrounded by a fluid, and which is controlled
by two fluid flows, a longitudinal one and a transversal one.



Aims

I We aim to control the position and velocity of the rigid body
by the control inputs. System of dimension 3+3 with a PDE
in the dynamics. Control living in R2. No control objective
for the fluid flow (exterior domain!!).

I Model for the motion of a boat with a longitudinal propeller,
and a transversal one (thruster) in the framework of the
theory of fluid-structure interaction problems. Rockets and
planes also concerned.



Bowthruster



Longitudinal thruster



What is a fluid-structure interaction problem?

I Consider a rigid (or flexible) structure in touch with a fluid.
I The velocity of the fluid obeys Navier-Stokes (or Euler)

equations in a variable domain
I The dynamics of the rigid structure is governed by Newton

laws. Great role played by the pressure.
I Questions of interest: existence of (weak, strong, global)

solutions of the system fluid+solid, uniqueness, long-time
behavior, control, inverse problems, optimal design, ...



Some references

I Models for potential flows
Kirchhoff, Kelvin, Lamb, Marsden (et al.) ,...

I Control problems for some models with potential flows
N. Leonard [1997] N. Leonard, J. Marsden [1997],...

I Cauchy problem
J. Ortega, LR, T. Takahashi [2005,2007], C. Rosier, LR
[2009], O. Glass, F. Sueur, T. Takahashi [2012?],...

I Inverse Problems
C. Conca, P. Cumsille, J. Ortega, LR [2008]
C. Conca, M. Malik, A. Munnier [2010]



Main difficulties

1. The systems describing the motions of the fluid and the
solid are nonlinear and strongly coupled; e.g., the
pressure of the fluid gives rise to a force and a torque
applied to the solid, and the fluid domain changes when
the solid is moving.

2. The fluid domain RN \ S(t) is an unknown function of time



Why to consider perfect fluids?

1. Euler equations provide a good model for the motion of
boats or submarines in a reasonable time-scale.

2. Explicit computations may be performed with the aid of
Complex Analysis when the flow is potential and 2D.

3. There is a natural choice for the boundary conditions
urel · n = 0 for Euler equations. For Navier-Stokes flows,
one often takes urel = 0

4. The control theory of Euler flows is well understood
(Coron, Glass).



System under investigation

Ω(t) = R2 \ S(t)

Euler ut + (u · ∇)u +∇p = 0, x ∈ Ω(t)
div u = 0, x ∈ Ω(t)
u · ~n = (h′ + r(x − h)⊥) · ~n + w(x , t), x ∈ ∂Ω(t)
lim|x |→∞ u(x , t) = 0

Newton m h′′(t) =

∫
∂Ω(t)

p ~n dσ

J r ′ =

∫
∂Ω(t)

(x − h)⊥ · p~n dσ

System supplemented with Initial Conditions, and with the
value of the vorticity at the incoming flow (in Ω(t)) for the
uniqueness



System in a frame linked to the solid

After a change of variables and unknown functions, we obtain
in Ω := R2 \ S(0)

vt + (v − l − ry⊥) · ∇v + rv⊥ +∇q = 0, y ∈ Ω

div v = 0, y ∈ Ω

v · ~n = (l ′ + ry⊥) · ~n +
∑

1≤j≤2

wj(t)χj(y), y ∈ ∂Ω

lim
|y |→∞

v(y , t) = 0

m l ′(t) =

∫
∂Ω

q ~n dσ −mrl⊥

J r ′ =

∫
∂Ω

qn · y⊥ dσ

where l(t) := Q(θ(t))−1h ′(t), r(t) = θ′(t).



Potential flows

Assuming that the initial vorticity and circulation are null

ω0 := curl u0 ≡ 0, Γ0 :=

∫
∂Ω

u0 · n⊥dσ = 0

and that the vorticity at the inflow part of ∂Ω is null

ω(y , t) = 0 if wi(t)χi(y) < 0 for some i = 1,2

then the flow remains potential, i.e. v = ∇φ where φ solves
∆φ = 0 in Ω× [0,T ]
∂φ

∂n
= (l + ry⊥) · n +

∑
i=1,2

wi(t)χi(y) on ∂Ω× [0,T ]

lim|y |→∞∇φ(y) = 0 on [0,T ]



Potential flows (continued)

v = ∇φ decomposed as

∇φ =
∑

i=1,2

li(t)∇ψi(y) + r(t)∇ϕ(y) +
∑

i=1,2

wi(t)∇θi(y)

where the functions ϕ, ψi and θi are harmonic on Ω and fulfill
the following boundary conditions on ∂Ω

∂ϕ

∂n
= y⊥ · n, ∂ψi

∂n
= ni(y),

∂θi

∂n
= χi(y)

This gives the following expression for the pressure

q = −{
∑

i=1,2

l ′iψi + r ′ϕ+
∑

i=1,2

w ′i θi +
|v |2

2
− l · v − ry⊥ · v}

Plugging this expression in Newton’s law yields a



Control system in finite dimension

h′ = Ql
J l ′ = Cw ′ + B(l ,w)

where Q = diag(Q,1), h = [h1,h2, θ]T , l = [l1, l2, r ]T ,
w = [w1,w2]T is the control input, and

J =

 m +
∫
ψ1n1 0 0

0 m +
∫
ψ2n2

∫
ψ2y⊥ · n

0
∫
ψ2y⊥ · n J +

∫
ϕy⊥ · n



C =

 − ∫ θ1n1 0
0 −

∫
θ2n2

0 −
∫
θ2y⊥ · n

 =

 c1 0
0 c2
0 c̃2


where

∫
=
∫
∂Ω and B(l ,w) is bilinear in (l ,w)



Toy problem w2 = 0, h2 = l2 = 0

(∗)
{

h′1 = l1
l ′1 = αw ′1 + βw1l1 + γw2

1

where

(α, β, γ) := (m +

∫
∂Ω
ψ1n1)−1(

∫
∂Ω
θ1n1,

∫
∂Ω
χ1∂1ψ1,

∫
∂Ω
χ1∂1θ1)

Claims
I If we add the equation w1

′ = v1 to (∗), the system with
state (h1, l1,w1) and input v1 is NOT controllable!

I In general we cannot impose the condition
w1(0) = w1(T ) = 0 when l1(0) = l1(T ) = 0 (i.e. fluid at rest
at t = 0,T ). Actually we can do that if and only if
γ + αβ = 0.



Proof of the claims

Introduce z1 := l1 − αw1 From

l ′1 = αw ′1 + βw1l1 + γw2
1

we derive
z ′1 = βw1z1 + (γ + αβ)w2

1

hence

z1(t) = [z1(0) + (γ + αβ)

∫ t

0
w2

1 (τ)e−
R τ

0 βw1(s)dsdτ ]e
R t

0 βw1(s)ds



Generic assumption
We shall assume that c1 6= 0 and that

det
[

c2 b3
c̃2 b5

]
6= 0

where

c1 = −
∫
θ1n1

c2 = −
∫
θ2n2

c̃2 = −
∫
θ2y⊥ · n

b3 = −
∫
χ1∂2θ2 −

∫
χ2∂2θ1

b5 = −
∫
χ1∇θ2 · y⊥ −

∫
χ2∇θ1 · y⊥



Control result for potential flows

Thm (O Glass, LR)

I If the “generic” assumption holds with m >> 1, J >> 1,
then the system

h′ = Ql
J l ′ = Cw ′ + B(l ,w)

with state (h, l) ∈ R6 and control w ∈ R2 is locally
controllable around 0.

I If, in addition, γ + αβ = 0, then we have a global
controllability for steady states



Example 1: Elliptic boat with 3 controls

Actually, the linearized system around the null trajectory is
controllable!



Example 2: Elliptic boat with 2 longitudinal controls

Generic condition fulfilled iff

b3 = −1
2

∫
|∇Ψ|2n2 6= 0

where −∆Ψ = 0, ∂Ψ/∂n = χ1y2>0



Step 1. Loop-shaped trajectory

We consider a special trajectory of the toy problem (w2 ≡ 0)
constructed as in the flatness approach due to M. Fliess, J.
Levine, P. Martin, P. Rouchon

I We first define the trajectory

h1(t) = λ(1− cos(2πt/T ))

l1(t) = λ(2π/T )) sin(2πt/T )

I We next solve the Cauchy problem{
w1
′ = α−1{l1

′ − γw1
2 − βw1l1}

w1(0) = 0

to design the control input.
I Then w1 exists on [0,T ] for 0 < λ << 1. (h1, l1) = 0 at

t = 0,T . Nothing can be said about w1(T ).



Step 2. Return Method
We linearize along the above (non trivial) reference trajectory to
use the nonlinear terms. We obtain a system of the form

x ′ = A(t)x + B(t)u + Cu′

t

t

T

T

h,l

w



Linearization along the reference trajectory

Fact. The reachable set from the origin for the system

x ′ = A(t)x + B(t)u + Cu′, x ∈ Rn, u ∈ Rm

is
R = RT (A,B + AC) + CRm + Φ(T ,0)CRm

where Φ(t , t0) is the resolvent matrix associated with the
system x ′ = A(t)x , and RT (A,B) denotes the reachable set in
time T from 0 for x ′ = A(t)x + B(t)u, i.e.

RT (A,B) = {x(T ); x ′ = A(t)x + B(t)u, x(0) = 0, u ∈ L2(0,T ,Rm)}



Silverman-Meadows test of controllability

Consider a Cω time-varying control system

ẋ = A(t)x + B(t)u, x ∈ Rn, t ∈ [0,T ], u ∈ Rm.

Define a sequence (Mi(·))i≥0 by

M0(t) = B(t), Mi(t) =
dMi−1

dt
− A(t)Mi−1(t) i ≥ 1, t ∈ [0,T ]

Then for any t0 ∈ [0,T ]∑
i≥0

Φ(T , t0)Mi(t0)Rm = RT (A,B)



Proof of the main result (continued)

To complete the proof of the theorem we use
I the generic assumption to prove that the linearized system

is controllable. Compute M0,M1,M2 in Silverman-Meadows
test (and also M3 for the global controllability)

I the Inverse Mapping Theorem to conclude.



Control result for general flow

Thm (O. Glass, LR)
Under the same rank condition as above, for any T0 > 0, any
initial vorticity ω0 ∈W 1,∞(Ω) ∩ L1

(1+|y |)θdy (Ω) with θ > 2, there is
some δ > 0 such that for (h0, l0), (h1, l1) ∈ R6 with

|(h0, l0)| < δ, |(h1, l1)| < δ

there is some control w ∈ H2(0,T ,R2) driving the solid from
(h0, l0) at t = 0 to (h1, l1) at t = T ≤ T0 for the complete
fluid-structure system.



Proof of the main result (continued)

In the general case (vorticity + circulation), we prove/use
I a Global Well-Posedness result using an extension

argument (which enables us to define the vorticity at the
incoming part of the flow), and Schauder fixed-point
Theorem in Kikuchi’s spaces;

I Lipschitz estimates for the difference of the velocities
corresponding to potential (resp. general) flows in terms of
the vorticity and circulation at time 0;

I a topological argument to conclude when the vorticity and
the circulation are small;

I a scaling argument due to J.-M. Coron



A Topological Lemma

Let B = {x ∈ Rn; |x | < 1}, and let f : B → Rn be a continuous
map such that for some constant ε ∈ (0,1)

|f (x)− x | ≤ ε ∀x ∈ ∂B.

Then
(1− ε)B ⊂ f (B).



Conclusion

I Local exact controllability result for a boat with a general
shape

I Two linearization arguments: in R6 (for potential flows) and
next to deal with general flows

I Prospects:
I Motion planning
I 3D (submarine) (work in progress with Rodrigo Lecaros,

CMM, Santiago of Chili)
I Numerics??


