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Control of the motion of a boat

» We consider a rigid body S ¢ R? with one axis of
symmetry, surrounded by a fluid, and which is controlled
by two fluid flows, a longitudinal one and a transversal one.




Aims

» We aim to control the position and velocity of the rigid body
by the control inputs. System of dimension 3+3 with a PDE
in the dynamics. Control living in R2. No control objective
for the fluid flow (exterior domain!!).

» Model for the motion of a boat with a longitudinal propeller,
and a transversal one (thruster) in the framework of the
theory of fluid-structure interaction problems. Rockets and
planes also concerned.



Bowthruster




Longitudinal thruster




What is a fluid-structure interaction problem?

» Consider a rigid (or flexible) structure in touch with a fluid.

» The velocity of the fluid obeys Navier-Stokes (or Euler)
equations in a variable domain

» The dynamics of the rigid structure is governed by Newton
laws. Great role played by the pressure.

» Questions of interest: existence of (weak, strong, global)

solutions of the system fluid+solid, uniqueness, long-time
behavior, control, inverse problems, optimal design, ...



Some references

» Models for potential flows
Kirchhoff, Kelvin, Lamb, Marsden (et al.) ,...

» Control problems for some models with potential flows
N. Leonard [1997] N. Leonard, J. Marsden [1997],...

» Cauchy problem
J. Ortega, LR, T. Takahashi [2005,2007], C. Rosier, LR
[2009], O. Glass, F. Sueur, T. Takahashi [20127],...

» Inverse Problems
C. Conca, P. Cumsille, J. Ortega, LR [2008]
C. Conca, M. Malik, A. Munnier [2010]



Main difficulties

1. The systems describing the motions of the fluid and the
solid are nonlinear and strongly coupled; e.g., the
pressure of the fluid gives rise to a force and a torque
applied to the solid, and the fluid domain changes when
the solid is moving.

2. The fluid domain RN\ S(t) is an unknown function of time



Why to consider perfect fluids?

1. Euler equations provide a good model for the motion of
boats or submarines in a reasonable time-scale.

2. Explicit computations may be performed with the aid of
Complex Analysis when the flow is potential and 2D.

3. There is a natural choice for the boundary conditions
Ure - N = 0 for Euler equations. For Navier-Stokes flows,
one often takes U, = 0

4. The control theory of Euler flows is well understood
(Coron, Glass).



System under investigation

Q(f) = R2\ S(t)

Euler ur+ (u-Viu+Vp=0, x € Q(t)
divu =0, x € Q(f)
u-n=(H+r(x—h?t) o+ wxt), xeoQ(t)
lim |y oo U(X, 1) =0

Newton mH'(t) —/ prdo
29(t)

Jr' = (x — h)* - prido
a(t)
System supplemented with Initial Conditions, and with the
value of the vorticity at the incoming flow (in Q(t)) for the
uniqueness



System in a frame linked to the solid

After a change of variables and unknown functions, we obtain
in Q:=R2\ S(0)
Vit (v—I—ryh)-Vv+rvlt +Vg=0 yecQ
divv=0, yeQ
vei=(+ryt) i+ > wit)x(y), y €09
1<j<2
lim v(y,t)=0

|y|—o0

ml'(t) = mqﬁda— mrl+

Jr'=[ qn-y‘do
o0

where I(t) := Q(0(1))~h'(1), r(t) = 0'(1).



Potential flows
Assuming that the initial vorticity and circulation are null
wp = curl ug =0, Mo ::/ Up-ntdo =0
o0

and that the vorticity at the inflow part of 92 is null
w(y,t)=0 if w;(t)xi(y) <0 forsomei=1,2
then the flow remains potential, i.e. v = V¢ where ¢ solves

Ap =0 ian[O,T]
gi: I+ ryt) n+ZW, xi(y) ondQ x [0, T]
i=1,2

Iim|y|ﬂoo V(b(y) =0 on [07 T]



Potential flows (continued)

v = V¢ decomposed as

Vo= > L(t)Vei(y) + r(t)Ve(y) + > wi(t)Voi(y)

i=1,2 i=1,2

where the functions ¢, v¢; and 6; are harmonic on Q and fulfill
the following boundary conditions on 9Q

dp | o 90
%—y - n, %—n/(}’): 8n_X'(y)

This gives the following expression for the pressure

|v[?
g=—{>_lvi+re+ ) W,-’9;+7—l~v—ryi~v}

i=1,2 i=1,2

Plugging this expression in Newton’s law yields a



Control system in finite dimension

H = 09l
JI' = ¢cw' + B(l,w)

where Q = dlag(Q, 1), h= [h1 , hg, Q]T, | = [/1 s /27 r]T,
w = [wy, wp] " is the control input, and

m+fw1n1 0 0
J=10 m+ [onp  [dhoy*-n ]
0 [toyt-n J+ [pyt-n
—f91n1 0 ct O
C|:0 —f92n2 ]|:0 02]
0 —f&gyL-n 0 6‘2

where [ = [, and B(/,w) is bilinear in (/, w)



Toy problem wo =0, ho =L =0

(] m="h
= aw+pBwih +yw?

where

(a,6,7) = (m+/891#1”1)_1(/“291”17/8QX1317JJ1,/89X1<9191)

Claims
» If we add the equation wy’ = v4 to (x), the system with
state (hy, 1, wy) and input v4 is NOT controllable!
» In general we cannot impose the condition
w1(0) = wy(T) = 0 when /1(0) = /1(T) = 0 (i.e. fluid at rest
at t =0, T). Actually we can do that if and only if
v+ ab=0.



Proof of the claims

Introduce z; := I — awy From
lf = aw] + Bwyly +yw?

we derive
Zy = pwizy + (v + af)wi

hence

t t
21(t) = [21(0) + (1 + aB) [ wh(r)e™ IS P (Skdirigl oo
0



Generic assumption
We shall assume that ¢; # 0 and that

where

C1

C

C> bs
det[62 b5}7é0



Control result for potential flows

Thm (O Glass, LR)

» If the “generic” assumption holds with m >> 1, J >> 1,
then the system
W = 9l
JI = cw +B(l,w)
with state (h, /) € R® and control w € R? is locally
controllable around 0.

» If, in addition, v + a8 = 0, then we have a global
controllability for steady states



Example 1: Elliptic boat with 3 controls

Actually, the linearized system around the null trajectory is
controllable!



Example 2: Elliptic boat with 2 longitudinal controls

Generic condition fulfilled iff

1

by =—5 / IVW[2n, #0

where —AV =0, 9V /dn = x1,,~0



Step 1. Loop-shaped trajectory

We consider a special trajectory of the toy problem (w, = 0)
constructed as in the flatness approach due to M. Fliess, J.
Levine, P. Martin, P. Rouchon

» We first define the trajectory

hi(t) = A1 —cos(2rt/T))
h(t) = X@2r/T))sin(2rt/T)

» We next solve the Cauchy problem

W'  =a 'l —yw® - Bwih)
wi(0) =0
to design the control input.

» Then Wy exists on [0, T] for 0 < A << 1. (hy, /) = 0 at
t =0, T. Nothing can be said about wy(T).



Step 2. Return Method

We linearize along the above (non trivial) reference trajectory to
use the nonlinear terms. We obtain a system of the form

x'=A(t)x + B(t)u+ CU’

hl




Linearization along the reference trajectory

Fact. The reachable set from the origin for the system

X' =Alt)x +B(t)u+ CU, xeR", ueR"

R =R7(A B+ AC) + CR" + &(T,0)CR™

where ®(t, ty) is the resolvent matrix associated with the
system x’ = A(t)x, and R (A, B) denotes the reachable set in
time T from 0 for x' = A(t)x + B(t)u, i.e.

R7(A,B) = {x(T); X = A(t)x + B(t)u, x(0) =0, u e L3(0, T,R™)}



Silverman-Meadows test of controllability

Consider a C¥ time-varying control system
x = A(t)x + B(t)u, xeR" tel0,T], ueR™.
Define a sequence (M;(-))i=o by

dM;_4

Mo() = B, M) = T

— A(t)Mi_+(t) i>1,tel0,T]
Then for any ty € [0, T]

Z O(T, to)Mi(to)R" = R1(A, B)

i>0



Proof of the main result (continued)

To complete the proof of the theorem we use

» the generic assumption to prove that the linearized system
is controllable. Compute My, My, M> in Silverman-Meadows
test (and also M3 for the global controllability)

» the Inverse Mapping Theorem to conclude.



Control result for general flow

Thm (O. Glass, LR)

Under the same rank condition as above, for any Tg > 0, any
initial vorticity wy € W1°(Q) N Lg1+|y|)9dy(Q) with 0 > 2, there is
some ¢ > 0 such that for (hy, k), (hy, /) € R® with

\(ho, lo)| < 0, [(M,h)] <6
there is some control w € H?(0, T, R?) driving the solid from

(ho,lb) att=0to (hy,ly) att = T < T for the complete
fluid-structure system.



Proof of the main result (continued)

In the general case (vorticity + circulation), we prove/use

» a Global Well-Posedness result using an extension
argument (which enables us to define the vorticity at the
incoming part of the flow), and Schauder fixed-point
Theorem in Kikuchi’s spaces;

» Lipschitz estimates for the difference of the velocities
corresponding to potential (resp. general) flows in terms of
the vorticity and circulation at time 0;

» a topological argument to conclude when the vorticity and
the circulation are small;

» a scaling argument due to J.-M. Coron



A Topological Lemma

Let B= {x € R"; |x| < 1}, and let f : B — R" be a continuous
map such that for some constant ¢ € (0, 1)

f(x)— x| <e Vxe0B.

Then
(1 —¢)B c (B).



Conclusion

» Local exact controllability result for a boat with a general
shape

» Two linearization arguments: in R® (for potential flows) and
next to deal with general flows
» Prospects:
» Motion planning
» 3D (submarine) (work in progress with Rodrigo Lecaros,
CMM, Santiago of Chili)
» Numerics??



