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MOTIVATION:THE EARLY UNIVERSE
RECONSTRUCTION PB
Following Peebles 1989, Frisch and coauthors (Nature 417) 2002,
one wants to reconstruct the history of the Universe from the
knowledge of the present mass density field. Onn conside an
expanding universe with self-gravitating matter.
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THE PRESSURE-LESS EULER-POISSON MODEL
SCALED BY GENERAL RELATIVITY (GR)

Denoting by (ρ, ρv, ϕ) the mass, momentum and gravity potential,
we use the pressure-less Euler Poisson model

∂t(t3/2ρv) +∇ · (t3/2ρv⊗ v) = −3t1/2

2
ρ∇ϕ

∂tρ+∇ · (ρv) = 0, ρ = 1 + t ∇2ϕ

All "big bang" coefficients in red come from general relativity
Typical solutions exhibit mass concentrations in finite time, i.e.
ρ = ρ(t,dx) becomes a measure with singular parts.
The inverse problem amounts to recovering the solution from the
knowledge of the density field at the present time.
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Trajectories with dynamical concentrations
(1D pressure-less Euler Poisson system)
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THE 1D NAVIER-STOKES POISSON SYSTEM

Concentration mechanisms in the pressure-less Euler-Poisson
model are unclear. One way to handle them is to go back to a
Navier-Stokes model. To simplify the discussion, we ignore the
general relativity terms. Denoting by (ρ, ρv, ϕ) the mass,
momentum and gravity potential, we consider the isentropic
NS-Poisson model

∂t(ρv) + ∂x(ρv2 + p) = ∂x(µ∂xv)− ρ∂xϕ

∂tρ+ ∂x(ρv) = 0, (ρ− 1)β = ∂2
xxϕ

with special (quite unphysical) pressure and viscosity law

p = λερ, µ = ερ

(λ, β) are fixed constants and we are interested in the ε = 0 limit
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THE TRAJECTORIAL VERSION OF THE 1D
NS-POISSON SYSTEM

Following the fluid particle trajectories (t,a)→ X(t,a) so that

∂tX(t,a) = v(t,X(t,a)), ∂aX(t,a)ρ(t,X(t,a)) = 1

we get the trajectorial formulation of the (special) 1D NS-Poisson
system

∂tX + ε ∂a(
1
∂aX

) = Z− λX, ∂tZ + λ(Z− λX) = (X− a)β

(this requires the special choice of the pressure and viscosity
laws)
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THE 1D NS-POISSON SYSTEM VIEWED AS A
MODIFIED HEAT EQUATION
The trajectorial formulation of the (special) 1D NS-Poisson system

∂tX + ε ∂a(
1
∂aX

) = Z− λX, ∂tZ + λ(Z− λX) = (X− a)β

looks like a mild modification of the scalar equation

∂tX + ε ∂a(
1
∂aX

) = 0

which is nothing but the trajectorial version of the heat equation
∂tρ = ∂2

xxρ

This suggests the use of a random particle scheme with
rearrangement that goes back to Alexander Chorin 1979 (for
reaction-diffusion equations) and Y.B. 1990 (for viscous scalar
conservation laws).
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A PSEUDO-RANDOM REARRANGEMENT
SCHEME

Let us discretize the trajectories (t,a)→ (X,Z)(t,a) by
(n, i)→ (Xn

i ,Z
n
i )

Zn+1 = Zn + h((Xn − A)β − λ(Zn − λXn))

Xn+1 = (Xn + h(Zn − λXn) +
√

2εhe)∗

where ∗ denotes the rearrangement in increasing order of a
sequence, Ai = i/N, ei = (−1)i respectively discretizes the
variable a and “simulates” (in a deterministic way!) a random step
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CONVERGENCE ANALYSIS

If the discretization parameters N,h are properly scaled -typically
Nh→ +∞ the scheme can be proven to be convergent to the
trajectorial formulation

∂tX + ε ∂a(
1
∂aX

) = Z− λX, ∂tZ + λ(Z− λX) = (X− a)β

In addition, the ε→ 0 limit can be shown to correspond to the
subdifferential system

−∂tX + Z− λX ∈ ∂ 1{∂aX≥0}, ∂tZ + λ(Z− λX) = (X− a)β

which is well posed in L2
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BALANCE BETWEEN PRESSURE AND
VISCOSITY

The zero-pressure and viscosity limit of the (special) 1d
NS-Poisson system is now clearly identified by the subdifferential
system

−∂tX + Z− λX ∈ ∂ 1{∂aX≥0}, ∂tZ + λ(Z− λX) = (X− a)β

that a priori does depend on λ which is somewhat surprising,
since it involves a fine balance between pressure and viscosity

p = λερ, µ = ερ

Yann Brenier (CNRS) limit of the 1D NS-Poisson system Benasque Aug 2011 12 / 14



DISCUSSION

For a special choice of vanishing pressure and viscosity laws, we
get a limit that a priori depends on the balance between viscosity
and pressure. Thus, one has to be very careful when dealing with
pressureless Euler-Poisson models. Numerics suggests that
there is indeed such a dependence in the repulsive case but not
in the attractive case, which is good news for the early universe
reconstruction problem.

Another issue is the possibility of using pseudo-random
rearrangement schemes in the multi-d case. This seems difficult
and, anyway, more related to Brenner’s modification of the NS
equations (as studied recently by Feireisl and Vasseur) than to
the original NS equations.
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