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Let us consider the Cauchy problem in Q := [0,T] x R?

( n
8152u — Z Oz, (a,,;j(t,:c)(%;ju) =0
. 1,j=1 (CP)

U’(Oam) — U, atu(o7x) — Uuj,

\

under the strict hyperbolicity assumption

n
Mlél? < ST aii(t )€€ < Nol€)?
1,j=1

0<Ap, Qj; = Qjj



Classical assumptions:

t— a;;(t,x) Lipschitz continuous uniformly in x

r +— a;;(t,z) smooth.

Then (CP) is C*® and, Vs € R, H® well-posed. Moreover

a1 Zs 101 3e-1 < Cs (lluollFrs + luallze-1) » vt € [0, 7]

Yug € H°, Yuq € Hs—1



In (C.DG.S.’79) one considers a;; = a;;(t) € LL([0,T1]),
where f : I — R is said Log-Lipschitz continuous if

o 1F(8) = f(s)]
ooy = SUP T lllog lt — sl < +o0,
0<|t—s|<1/2

and one proves that (CP) is still C°° well-posed, but the
phenomenon of the loss of derivatives arises:

luC 1555 + 10| 3e-1-pe < Cs (IuollFrs + lluallZe—)

for some B> 0 depending on Ag, Ag and |lai;llLr(j0.17)-



Idea of the proof: case n =1, i.e. 97u — a(t)d2u = 0O

- Fourier transform in x
v(t, &) 1= a*%(t, &) = v solves v + a(t)|£]?v =0
- Introduce as = a * ¢

( TCL—(l 1
a € LL = (¢

\ Jo laL| dt < C'log <§+ 1)

-Classical energy associate to the equation

E(t,€) = [v'(#)|% + a(t)|¢]?[v(t)|?



- We define Approximate energy

Eo(t,€) = [/ (D[ + a=(#)[€]|v(#)]?

and we obtain

E-(t,€) < Ee(0,£) exp [c (/'Zﬂdt +1¢l | '“Ja_%' dt)]

< Ee(0,8) exp [c(t] log g| + t[¢]e] log g])]
- Now we choose ¢ = |¢]71:

E:(t,&) < E-(0,¢) exp(ctlog|€])

— well-posedness in C°°:

loss of derivatives proportional to ¢



LLog-Lipschitz regularity is optimal
Theorem (C.DG.S.’79). Thereexistsa(t), 1/2 <a(t) <

3/2, a € Nac1 C¥(0,T]) N C°(]0,T]) and there exist
ug,u; € C® s.t. (CP) has no solution uw € C([0,T],D’)

More precisely:

Theorem (C.L.’95).VQ(7) s.t. lim__ 4+ Q(7) = +o0
there exists a(t), 1/2 < a(t) < 3/2

a(t 4 7) —a(t)| < Cr||log|7|| €2(]|7|)

and there exist ug,u; € C° such that (CP) has no
solution in D’



Two natural questions:

(i) What well-posedness results for coefficients with
regularity between Lip and Log — Lip?

(ii) Loss of derivatives really occurs?
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Answer to (i):

Theorem (C.C.’06). Let a;;(t) verify

a;;(t +7) —a;;(t)] < C|r||log |7|

w (7))

with w(r) \, 0 as T — 0F. Then:

V6 >0,3Cs >0 s.t. Vit € [0,T]

lu(®) | gger1-s + 10u(®)]| ra—s < Cs (lluoll gars + llutllzs)

i.e. loss of derivatives arbitrary small
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Answer to (ii):
Theorem (C.C.’06). For M > 0 let us set

1 3
A ={a(®) : 5 <a® <>, ol < M|
Then VM, 4 {ak}keN C A(M) and Juy s.t.

° (97521% — ak(t)a%uk = 0,
o [[up(0)|lg1 + [[0rur(O)[[ o =1

but Vt >0, Vsg < {5Mt it results
sup (([u (Dl r1-so + 100k (®) | -+ ) = o0

Remark. Real loss of derivatives proportional to Mt
12



Coefficients a;; depending also on z:

Molél? <3 aii(t, x)€€; < Nol€l?, ayj € LL(R, x RY)
1,7

Theorem (C.L.’95). Let u solution of (CP). Then
37*,3C, 36 : Vt € [0,T*] we have

sup_ ([[u()ll a-ps + 10u() | r-s5) < C (lluoll 1 + luallgo) -
0<s<t

So (CP) is well-posed for t < T*.

Remark. T* depends on ||aij||LL(Rn+1)
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Let us now consider the case
{ t +— a;j(t,z) Log— Lip uniformly in x
r — a;(t, ) C>°
with Dfa;; € L, |af < 2.
Theorem (C.L.'95). There exists 3 > 0, with § =

ﬁ()\o,/\o, ||a’ij||LL7 ||D%az-j||Loo), a| < 2, s.t. ifu issolution
of (CP), Vm > 0 there exists Cp,

sup w(t ma1—at + |[Oru(t m—
oS48 (el omsa-s + 100 () | -

< Com (luoll grmt1 + llua |l gm)

In order to prove these theorems we use approximate

energy, Littlewood-Paley decomposition and Bony
paradifferential calculus.
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Idea of the proof: again for simplicity the case n =1

We set

ac(t, ) :=/ et — 8)pe(z — y)a(s, y) ds dy

and we obtain

sup |as(t,z) —a(t,x)| < Celog (1 + 1)
(t,z) &

1
sup |0zas(t, x)| < C'log (— + 1)
£

(t,z)

1
sup |0tacs(t, )| < C'log (— + 1)
S

(t,z)
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Now we use Littlewood-Paley decomposition.

Let oo € C5°(Re), 0 < 9p(§) <1, po(§) = 1 if [¢] <1,
wo(&) = 0 if |£] > 2, ¢o even and ¢ decreasing on

[0, +00).

We set o(&) = ¢o(§) — po(28) and, if v > 1, pu(§) =
p(277¢).
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Let w be a tempered distribution; we define
1 : R
wy () = pu(Dr)w(@) = 5— [ ™ pu()a¢) dg

= [ -y dy

For all v, wy, is an entire analytic function belonging to

L2 and for all m € R there exists K,, > 0 such that

1 & 2 A2 2 — 2 A2
— > Nwll522°™ < Nwllgm < Km Y |lwy||722°™.
m =0 =0
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Let now u(t, z) be a solution of L(u) = 0 in C2([0,T], H>®(R)).
We set uy(t,z) = o (D)u(t, z).

We obtain

81527111/ — 85@(&(75, -T)@gc'dy) + 833([%01/, a,]aaj'UI)

We introduce the approximate energy of wu,, setting
eve(t) == /R (|(’9tuy|2 + ac|Orun|® + |uy|2> dz,

and we estimate %ey,g(t) by using the equation.
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Finally we choose ¢ =277,

We define the total energy for the function u setting

E(t) = i exp(—28(v + 1)) 272", 5 (1),
=0

with 3> 0 and 0 < 6 < 1/2 to be suitably chosen and
we estimate %E(t):

9 B(1) < (€-28) Y (1) exp(-28(+ 12 e, 5 (D +R
=0

for some constant C, and with the reminder R due to
the commutator 9, ([pv, a]dzu).
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In (C.L."95) homogeneous assumptions in (¢,z), but
only global in x results

Questions:

e |local existence results?

e |local uniqueness results?
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Local results (C.M.’08)

n n
Lu:= 37 Oy (a0yu) + 3 |bjdyu+ y;(cju)| + du, y € R

Assumptions: L defined in a neighborhood of y € €;
a;; € LL(2), bj,c; € C*(Q) with L <a<1;de L™
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2. smooth surface, y € >, L strictly hyperbolic in the
direction conormal to . We can suppose > = {p = 0}

near y
Lemma. (i) Vs €]l —a,af andu € Hj, .(2Nn{p > 0}) all
terms in L are well-defined as elements of HS_Q(QG

loC
{p > 0})

(i) Ifu € HE (2N {p > 0}) and Lu € L, (2N {p > 0})

loc
== u|xz and Xyu are well-defined

Here Xs is a first order operator, depending on the
second order part of L
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We can now state the local results (C.M.’08)

Local existence:
Theorem. Let s > 1—«a and w neighborhood of 3y in 3.
Then 3¢ €]1 —a, af, Q' neighborhood of 5 in R*t1 s.t.

y (ug,u1) € H3(w) x H*71(w)
feL?(Qn{e>0})

the Cauchy problem
Lu = f, U|s = ug, Xsu = uj

has a solution u € H¥ (' N {¢ > 0})
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Local uniqueness:

Theorem.Ifs>1—«a andu € H5(2N{p > 0}) satisfies
Lu =0, u|Z=O, Xsu =20

then w= 0 neary
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Application: a blow up criterion for nonlinear wave equations

Let us consider

O¢(ap(u)owu) + ) [0¢(a;(u)0z;)u + Ox;(a;(u)Opu)]
j=1

— Y 0, (aij(u)dr,u) 4+ 9 (bo(u))

,j=1
n
+ > 9z,(bj(u)) = F(u)
J=1
Assumptions:

- strict hyperbolicity

- all coefficients € C*®
25



Let s > %+ 1 and ug € H5(R"), u; € H5~1(R")
It is well-known that (CP) is well-posed, i.e. for some
T>0

J1u e C0([0,T], H®) n c1(o, 7], H5™ 1)

Moreover by uniqueness there exists T* s.t. T* is the
maximal time of existence

26



Classical blow-up criterion:

If T* < 400, then

sup_ [ I[u(®)llz + IDu(®) 1| = o0 ()

o<t<T™
where D := (0, Oz, - - -, Oxy)

Theorem. Thanks to the previous local results, one can
replace in (x) Lip norms with Log — Lip ones, i.e.

39l + 020 xmg| = +00 ()
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Until now, regularity of coefficients of Log — Lip type

In (C.DS.K.’02) another type of regularity, like

a;;(t) € ctqo, ); 0ra;; ()] < g

— (CP) well-posed in C®°, again with loss of deriva-
tives

Proof is based on approximate energy, by using again
first derivatives of a;;(t)

28



In (C.DS.R.’03) we use first and second derivatives:

1 1\ %
a(8) € €200, 7)); |ofay () < C (S log~) . k=1,2
— (CP) well-posed in C*°, with loss of derivatives
Problem. If the previous assumption holds only for k =
1, do we have well-posedness?

29



Some energy estimates obtained by using

8faz-j(t), k=1,2, inS. Tarama '07
Assumption: Log—Zygmund type regularity

1

, Tl < >

(LZ)

Remark. a;; € LL = (LZ) satisfied. The converse is
not true

Example. The Weierstrass function

aij(t 4 7) + agi(t = ) — 2a;4(D)| < Clr]| 10g]7]

©.@)
w(t) = > 27 "n sin(2"t)
n=1
satisfies (LZ) but is not LL
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Tarama uses approximate energy E(t,ﬁ) defined as

B(t,€) = Wlt) pu(t, €) + ;{%

where again v(t,€) = u*(¢t,€) is the Fourier transform

with respect to z of the solution u(¢,z) (here for sim-
plicity n = 1) and he proves that

2
v(t, &) 4 a®)|v(t, £)]?

(LZ) = (CP) is well-posed

31



Log—Zygdmund hyperbolic equations with coeffi-
cients depending on time and space - case n = 1.
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In (C.DS.’09) one considers the case n =1
Lu := 8,52u — Oz(a(t,x)0zu), with O < XAg <a(t,z) < Ag

Assumptions:

la(t+ 7,2) + a(t — 7,2) — 2a(t,z)| < C|7|

log | 7|

(A)

a(t, +y) — a(t,z)| < c|y|\ l0g |y|\ (B)

Theorem. (A) and (B) = (CP) for L is C*° well-posed
with loss of derivatives

33



Idea of the proof. We set again

as(t,) i= [[ pe(t = $)p=(x — y)a(s,y) ds dy,

and we obtain

sup |as(t,z) —a(t,x)| < Celog (l + 1>
£

(t,z)

sup |0zacs(t, x)| < C'log (1 + 1)
(t,x) &

sup |Orae(t,z)| < C (Iog <é + 1))2

(t,z)

1 1
sup [0Pac(t,2)|| < € log (=~ +1)
g )

(t,2)

1 /1
sup |9s0sac(t, )| < C~ 10g (— + 1)
(t,z) € €
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The total energy is

B(r) = Y exp(—26(v + 1)6) 272, (1),
v=0

where 0 < 0 < % and B8 > 0 to be suitably chosen, while

2
1 O+/
eu,e(t) :/R< = 8tu1/+ 2t zsuz/ +\/a€|aacul/|2+|uz/|2> da?a
\/ Qe \/ Qe

and uy is the standard Littlewood-Paley decomposi-
tion of w. Finally again we choose ¢ =27V,

Remark that in the case of Colombini and Lerner the
approximate energy of the v component was simply

eve(t) == /]R{ (|8tu]/|2 + ac|Orun|® + |uy|2> dz.
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Again we have to estimate %E(t):

9 B(t) < (0-28) Y- (+1) exp(~28+ 102 e, 5 (DR
=0

and the term R from the commutator 0, ([¢y, alOzu) is
now much more complicate to estimate.
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The term to estimate is

i exp( — 26(v + 1)t)272"¢

=0
2 815«/0, 1/
an—v QW
We set p_1 = 0 and we define, for p > 0, ¢, =

Ppu—1+ pu+ u+1- Then

¢M(Dx)(90,u(Dw)8xu) — SOM(D:B)&U’UJ — 83;’(1,“,

and, consequently,

[ov, alOzu = [pv, a](z axuu) — Z([Sﬁl/a a]¢u)aazuu-
p p

37



The term to estimate will be dominated by

CY k(v + 1) 2 exp(—B(v + 1)1)27 (e, -0 (1) /2

U,
(p+ DY exp(—B(n+ 1)1)27H (e, 5-u(t)) /2,

where
Ky, = e~ (V=p)Bt o—(v—p)b 2’/(1/—|—1)_1/2(,u+1)_1/2||([SOV, CL]ID,UJ)HL(LQ)
and

H([SOV, a]wu) ||L(L2)

C27V(v+1) if v —pl <2
<
C

2-max{vitt max{y + 1, u+ 1}  if lv—p| >3

38



Our aim is to use Schur’s Lemma, so we have to esti-
mate

sup Y |kv,ul +sup ) |kupul.

Fixing suitably the value of BT, it is possible to prove
that there exists a positive constant 'y such that

“+ oo o0
o v=0 Y u=0

39



We finally obtain

> exp(—28(v + 1)1)27 2
vr=0
2 875, /Ao—v
/ T Re (&c([goy,a]@xu)- <8tU/1/ + W u,,)) daz‘
<Tp Y (v+ 1) exp(—28 + 1)1)27 e, 5 (1)
vr=0

T he conclusion follows.

40



In (C.F.’10) one considers the complete second order
operator (again n=1)

Lu = 8,52u — Orx(a(t, z)0zu) + bo(t, )0+ b1 (t, 2)0zu + c(t, z)u ,
O0< A <al(t,r) <Agp

with coefficient a(¢,z) again satisfying conditions

(A) (Log-Zygmund continuity in t)

(B) (Log-Lipschitz continuity in x)

while bg, b1 € L®°(Ry; C*(Rz)), a >0, ce LRy xRy) .

Theorem. (CP) for L is C*® well-posed with loss of
derivatives

41



Log—Zygdmund hyperbolic equations with coeffi-
cients depending on time and space - case n > 1.
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In (C.DS.F.M. in progress) one considers the case of
more space variables: n > 1.

We consider

n
L=07— Y 0r;(aj,(t,)0x,)
J,k=1

strictly hyperbolic on the strip [0, T] x R"™. Assumptions:

sup |a; ,(t+7,2)+a; ,(t—7,2) —2a; (¢, z)| < C|7|

log | 7|
(t,x)

Y

sup Ja; (1,2 + ) — a1, 2)] < C\m\ 10 |y|\.
T

Theorem. (CP) for L is C*® well-posed with loss of
derivatives
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Idea of the proof. We have now a difficulty in the
definition of the approximate energy. In the case of
Colombini and Lerner it is possible to pass from

ey,g(t) .= /]R (|8t'U/y|2 —I_ a/5|axu;/|2 —I_ |U]/|2) dx
to
n -
eve(t) i= /Rn (|(9tuy|2 + Za?)kﬁxjuyﬁxkuy + |U1/|2) dx,
g,k
where

a5 (t,2) = [[ pelt = $)pe(@ — )ajr(s,y) ds dy.

Now the presence of as to the denominator is the cause
of the introduction of paradifferential operators.
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We define
as(t,,€) = [ Y pe(t — 5)a; 4 (s, 2)¢6 ds
7,k

(remark that there is the regularization only w.r.t. ¢).

We denote by T;,. the paradifferential operator associ-
ated to the symbol as and by o4, its classical symbol
and the same for diae, d7as and the powers of ac. It is
possible to show that

880a.(t,2,6)| < Ca(l + [¢)271,

020804, (t,2,8)| < Cp (1 +[€)27IFIAITL10g(2 + [¢)).

Moreover for o,. the usual paradifferential spectral con-
ditions hold.
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Moreover

1
0 0010 (1,2, €)] < Calog(2+ 2)(1 + €))%~ lel,

1 _ _
980 03,0. (8,2, )| < Co - (116D 12T 10g 2+ J¢)),
and

1 1
8805, (t,2,8)] < Ca~log(2 + =)(1 + |21,
t de € €

1 _ _
080050, (1,2, )| < Ca g5 (1+1ED* I L iog 2+ ),

and for both of them the usual spectral conditions hold.

Similarly we define and check the behaviour of the pa-
radifferential operators associated to the powers of ac.
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Finally we set

eve@®) =T 1/a0puw =T, 1jaywnlfo +IIT 1jaunlZo,
and the computations follow similarly to the previous

case.

a7



Open Problem. The case of coefficients a;;(t,z), = €
R"™, with Log—Zygmund regularity in all the variables ¢
and xz, even for n = 1.
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Partial Answer (C.DS.F.M. in progress). The case
of coefficients a;;(t,z), z € R, with Zygmund regularity
(not only Log—Zygmund) in all the variables ¢ and .

In this case the coefficients are Log—Lipschitz contin-
uous, and so (C.L.'95) the Cauchy problem is well
posed, but with a loss of regularity.

Really, it is possible to prove, again by using the para-
differential calculus, that, thanks to the Zygmund requ-
larity, the Cauchy problem is well posed without a loss
of regularity for initial data ug, w1 in precise Sobolev
spaces: H/2 g—1/2

More precisely, one can prove for the solution of the
Cauchy problem the following energy estimate:

la(®)121)2 + 10012 12 < C (IluolZz + lutl?_12)
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