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Let us consider the Cauchy problem in Q := [0, T ]×Rnx
∂2
t u−

n∑
i,j=1

∂xi

(
aij(t, x)∂xju

)
= 0

u(0, x) = u0, ∂tu(0, x) = u1,

(CP)

under the strict hyperbolicity assumption

λ0|ξ|2 ≤
n∑

i,j=1

aij(t, x)ξiξj ≤ Λ0|ξ|2

0 < λ0 , aij = aji
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Classical assumptions:

t 7→ aij(t, x) Lipschitz continuous uniformly in x

x 7→ aij(t, x) smooth.

Then (CP) is C∞ and, ∀s ∈ R, Hs well-posed. Moreover

‖u(t)‖2Hs+‖∂tu(t)‖2Hs−1 ≤ Cs
(
‖u0‖2Hs + ‖u1‖2Hs−1

)
, ∀t ∈ [0, T ]

∀u0 ∈ Hs, ∀u1 ∈ Hs−1

5



In (C.DG.S.’79) one considers aij = aij(t) ∈ LL([0, T ]),

where f : I → R is said Log-Lipschitz continuous if

‖f‖LL(I) := sup
t,s∈I

0<|t−s|<1/2

|f(t)− f(s)|
|t− s|| log |t− s||

< +∞,

and one proves that (CP) is still C∞ well-posed, but the

phenomenon of the loss of derivatives arises:

‖u(t)‖2
Hs−βt + ‖∂tu(t)‖2Hs−1−βt ≤ Cs

(
‖u0‖2Hs + ‖u1‖2Hs−1

)

for some β > 0 depending on λ0, Λ0 and ‖aij‖LL([0,T ]).
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Idea of the proof: case n = 1, i.e. ∂2
t u− a(t)∂2

xu = 0

- Fourier transform in x

v(t, ξ) := ûx(t, ξ) =⇒ v solves v′′ + a(t)|ξ|2v = 0

- Introduce aε = a ∗ %ε

a ∈ LL =⇒


∫ T
0 |a− aε| dt ≤ Cε log

(
1
ε + 1

)
∫ T
0 |a′ε| dt ≤ C log

(
1
ε + 1

)
-Classical energy associate to the equation

E(t, ξ) = |v′(t)|2 + a(t)|ξ|2|v(t)|2
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- We define Approximate energy

Eε(t, ξ) = |v′(t)|2 + aε(t)|ξ|2|v(t)|2

and we obtain

Eε(t, ξ) ≤ Eε(0, ξ) exp

[
c

(∫ |a′ε|
aε

dt+ |ξ|
∫ |a− aε|√

aε
dt

)]
≤ Eε(0, ξ) exp [c(t| log ε|+ t|ξ|ε| log ε|)]

- Now we choose ε = |ξ|−1:

Eε(t, ξ) ≤ Eε(0, ξ) exp(c t log |ξ|)

=⇒ well-posedness in C∞:

loss of derivatives proportional to t
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Log-Lipschitz regularity is optimal

Theorem (C.DG.S.’79).There exists a(t), 1/2 ≤ a(t) ≤
3/2, a ∈

⋂
α<1C

α([0, T ]) ∩ C∞(]0, T ]) and there exist

u0, u1 ∈ C∞ s.t. (CP) has no solution u ∈ C([0, T ],D′)

More precisely:

Theorem (C.L.’95). ∀Ω(τ) s.t. limτ→0+ Ω(τ) = +∞
there exists a(t), 1/2 ≤ a(t) ≤ 3/2

|a(t+ τ)− a(t)| ≤ C|τ |
∣∣∣∣ log |τ |

∣∣∣∣Ω(|τ |)

and there exist u0, u1 ∈ C∞ such that (CP) has no

solution in D′
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Two natural questions:

(i) What well-posedness results for coefficients with

regularity between Lip and Log− Lip?

(ii) Loss of derivatives really occurs?
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Answer to (i):

Theorem (C.C.’06). Let aij(t) verify

|aij(t+ τ)− aij(t)| ≤ C|τ |
∣∣∣∣ log |τ |

∣∣∣∣ω(|τ |)

with ω(τ) ↘ 0 as τ → 0+. Then:

∀δ > 0, ∃Cδ > 0 s.t. ∀ t ∈ [0, T ]

‖u(t)‖Hs+1−δ + ‖∂tu(t)‖Hs−δ ≤ Cδ
(
‖u0‖Hs+1 + ‖u1‖Hs

)
i.e. loss of derivatives arbitrary small
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Answer to (ii):

Theorem (C.C.’06). For M > 0 let us set

A(M) =
{
a(t) :

1

2
≤ a(t) ≤

3

2
, ‖a‖LL ≤M

}
Then ∀M, ∃ {ak}k∈N ⊂ A(M) and ∃uk s.t.

• ∂2
t uk − ak(t)∂

2
xuk = 0,

• ‖uk(0)‖H1 + ‖∂tuk(0)‖H0 = 1

but ∀ t > 0, ∀ s0 < 1
10M t it results

sup
k∈N

(
‖uk(t)‖H1−s0 + ‖∂tuk(t)‖H−s0

)
= +∞.

Remark. Real loss of derivatives proportional to M t
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Coefficients aij depending also on x:

λ0|ξ|2 ≤
∑
i,j

aij(t, x)ξiξj ≤ Λ0|ξ|2, aij ∈ LL(Rt × Rnx)

Theorem (C.L.’95). Let u solution of (CP). Then

∃T ∗, ∃C, ∃β : ∀ t ∈ [0, T ∗] we have

sup
0≤s≤t

(
‖u(s)‖H1−βs + ‖∂tu(s)‖H−βs

)
≤ C

(
‖u0‖H1 + ‖u1‖H0

)
.

So (CP) is well-posed for t ≤ T ∗.

Remark. T ∗ depends on ‖aij‖LL(Rn+1)
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Let us now consider the case{
t 7→ aij(t, x) Log− Lip uniformly in x
x 7→ aij(t, x) C∞

with Dα
xaij ∈ L∞, |α| ≤ 2.

Theorem (C.L.’95). There exists β > 0, with β =
β(λ0,Λ0, ‖aij‖LL, ‖Dα

xaij‖L∞), |α| ≤ 2, s.t. if u is solution
of (CP), ∀m ≥ 0 there exists Cm

sup
0≤t≤T ∗

(
‖u(t)‖Hm+1−βt + ‖∂tu(t)‖Hm−βt

)
≤ Cm

(
‖u0‖Hm+1 + ‖u1‖Hm

)

In order to prove these theorems we use approximate

energy, Littlewood-Paley decomposition and Bony

paradifferential calculus.
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Idea of the proof: again for simplicity the case n = 1

We set

aε(t, x) :=
∫∫

ρε(t− s)ρε(x− y)a(s, y) ds dy

and we obtain

sup
(t,x)

|aε(t, x)− a(t, x)| ≤ C ε log
(
1

ε
+ 1

)
sup
(t,x)

|∂xaε(t, x)| ≤ C log
(
1

ε
+ 1

)
sup
(t,x)

|∂taε(t, x)| ≤ C log
(
1

ε
+ 1

)
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Now we use Littlewood-Paley decomposition.

Let ϕ0 ∈ C∞0 (Rξ), 0 ≤ ϕ0(ξ) ≤ 1, ϕ0(ξ) = 1 if |ξ| ≤ 1,

ϕ0(ξ) = 0 if |ξ| ≥ 2, ϕ0 even and ϕ0 decreasing on

[0,+∞).

We set ϕ(ξ) = ϕ0(ξ) − ϕ0(2ξ) and, if ν ≥ 1, ϕν(ξ) =

ϕ(2−νξ).
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Let w be a tempered distribution; we define

wν(x) = ϕν(Dx)w(x) =
1

2π

∫
eixξϕν(ξ)ŵ(ξ) dξ

=
1

2π

∫
ϕ̂ν(y)w(x− y) dy

For all ν, wν is an entire analytic function belonging to

L2 and for all m ∈ R there exists Km > 0 such that

1

Km

∞∑
ν=0

‖wν‖2L22
2mν ≤ ‖w‖2Hm ≤ Km

∞∑
ν=0

‖wν‖2L22
2mν.
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Let now u(t, x) be a solution of L(u) = 0 in C2([0, T ], H∞(R)).

We set uν(t, x) = ϕν(D)u(t, x).

We obtain

∂2
t uν = ∂x(a(t, x)∂xuν) + ∂x([ϕν, a]∂xu).

We introduce the approximate energy of uν, setting

eν,ε(t) :=
∫
R

(
|∂tuν|2 + aε|∂xuν|2 + |uν|2

)
dx,

and we estimate d
dteν,ε(t) by using the equation.
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Finally we choose ε = 2−ν.

We define the total energy for the function u setting

E(t) :=
∞∑
ν=0

exp(−2β(ν + 1)t) 2−2νθeν,2−ν(t),

with β > 0 and 0 < θ < 1/2 to be suitably chosen and

we estimate d
dtE(t):

d

dt
E(t) ≤ (C−2β)

∞∑
ν=0

(ν+1)exp(−2β(ν+1)t)2−2νθeν,2−ν(t)+R

for some constant C, and with the reminder R due to

the commutator ∂x([ϕν, a]∂xu).
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In (C.L.’95) homogeneous assumptions in (t, x), but

only global in x results

Questions:

• local existence results?

• local uniqueness results?
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Local results (C.M.’08)

Lu :=
n∑

i,j=0

∂yi

(
aij∂yju

)
+

n∑
j=0

[
bj∂yju+ ∂yj(cju)

]
+ du, y ∈ Rn+1

Assumptions: L defined in a neighborhood of y ∈ Ω;

aij ∈ LL(Ω), bj, cj ∈ Cα(Ω) with 1
2 < α < 1; d ∈ L∞
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Σ smooth surface, y ∈ Σ, L strictly hyperbolic in the

direction conormal to Σ. We can suppose Σ = {ϕ = 0}
near y

Lemma. (i) ∀ s ∈]1−α, α[ and u ∈ Hs
loc(Ω∩{ϕ > 0}) all

terms in L are well-defined as elements of Hs−2
loc (Ω∩

{ϕ > 0})

(ii) If u ∈ Hs
loc(Ω ∩ {ϕ > 0}) and Lu ∈ L1

loc(Ω ∩ {ϕ > 0})
=⇒ u|Σ and XΣu are well-defined

Here XΣ is a first order operator, depending on the

second order part of L
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We can now state the local results (C.M.’08)

Local existence:

Theorem. Let s > 1−α and ω neighborhood of y in Σ.

Then ∃ s′ ∈]1−α, α[, Ω′ neighborhood of y in Rn+1 s.t.

∀


(u0, u1) ∈ Hs(ω)×Hs−1(ω)

f ∈ L2(Ω′ ∩ {ϕ > 0})
the Cauchy problem

Lu = f, u|Σ = u0, XΣu = u1

has a solution u ∈ Hs′(Ω′ ∩ {ϕ > 0})
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Local uniqueness:

Theorem. If s > 1−α and u ∈ Hs(Ω∩{ϕ > 0}) satisfies

Lu = 0, u|Σ = 0, XΣu = 0

then u ≡ 0 near y
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Application: a blow up criterion for nonlinear wave equations

Let us consider

∂t(a0(u)∂tu) +
n∑

j=1

[∂t(aj(u)∂xj)u+ ∂xj(aj(u)∂tu)]

−
n∑

i,j=1

∂xi(aij(u)∂xju) + ∂t(b0(u))

+
n∑

j=1

∂xj(bj(u)) = F (u)

Assumptions:

- strict hyperbolicity

- all coefficients ∈ C∞
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Let s > n
2 + 1 and u0 ∈ Hs(Rn), u1 ∈ Hs−1(Rn)

It is well-known that (CP) is well-posed, i.e. for some

T > 0

∃!u ∈ C0([0, T ], Hs) ∩ C1([0, T ], Hs−1)

Moreover by uniqueness there exists T ∗ s.t. T ∗ is the

maximal time of existence
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Classical blow-up criterion:

If T ∗ < +∞, then

sup
0<t<T ∗

[
‖u(t)‖L∞ + ‖Du(t)‖L∞

]
= +∞ (?)

where D := (∂t, ∂x1, . . . , ∂xn)

Theorem.Thanks to the previous local results, one can

replace in (?) Lip norms with Log− Lip ones, i.e.

sup
0<t<T ∗

[
‖u(t)‖L∞(Rnx) + ‖u(t)‖LL([0,t]×Rnx))

]
= +∞ (??)
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Until now, regularity of coefficients of Log− Lip type

In (C.DS.K.’02) another type of regularity, like

aij(t) ∈ C1(]0, T ]); |∂taij(t)| ≤
C

t

=⇒ (CP) well-posed in C∞, again with loss of deriva-

tives

Proof is based on approximate energy, by using again

first derivatives of aij(t)
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In (C.DS.R.’03) we use first and second derivatives:

aij(t) ∈ C2(]0, T ]); |∂kt aij(t)| ≤ C

(
1

t
log

1

t

)k
, k = 1,2

=⇒ (CP) well-posed in C∞, with loss of derivatives

Problem. If the previous assumption holds only for k =

1, do we have well-posedness?
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Some energy estimates obtained by using

∂kt aij(t), k = 1,2, in S. Tarama ’07

Assumption: Log–Zygmund type regularity

|aij(t+ τ) + aij(t− τ)− 2aij(t)| ≤ C|τ |
∣∣∣∣ log |τ |

∣∣∣∣, |τ | < 1

2
(LZ)

Remark. aij ∈ LL =⇒ (LZ) satisfied. The converse is

not true

Example. The Weierstrass function

w(t) =
∞∑
n=1

2−nn sin(2nt)

satisfies (LZ) but is not LL
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Tarama uses approximate energy Ẽ(t, ξ) defined as

Ẽ(t, ξ) =
1

a(t)

∣∣∣∣∣∂tv(t, ξ) +
a′(t)

2a(t)
v(t, ξ)

∣∣∣∣∣
2

+ a(t)|v(t, ξ)|2

where again v(t, ξ) := ûx(t, ξ) is the Fourier transform

with respect to x of the solution u(t, x) (here for sim-

plicity n = 1) and he proves that

(LZ) =⇒ (CP) is well-posed

31



Log–Zygmund hyperbolic equations with coeffi-

cients depending on time and space - case n = 1.
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In (C.DS.’09) one considers the case n = 1

Lu := ∂2
t u− ∂x(a(t, x)∂xu), with 0 < λ0 ≤ a(t, x) ≤ Λ0

Assumptions:

|a(t+ τ, x) + a(t− τ, x)− 2a(t, x)| ≤ C|τ |
∣∣∣∣ log |τ |

∣∣∣∣ (A)

|a(t, x+ y)− a(t, x)| ≤ C|y|
∣∣∣∣ log |y|

∣∣∣∣ (B)

Theorem. (A) and (B) =⇒ (CP) for L is C∞ well-posed

with loss of derivatives
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Idea of the proof. We set again

aε(t, x) :=
∫∫

ρε(t− s)ρε(x− y)a(s, y) ds dy,

and we obtain

sup
(t,x)

|aε(t, x)− a(t, x)| ≤ C ε log
(
1

ε
+ 1

)
sup
(t,x)

|∂xaε(t, x)| ≤ C log
(
1

ε
+ 1

)

sup
(t,x)

|∂taε(t, x)| ≤ C

(
log

(
1

ε
+ 1

))2

sup
(t,x)

|∂2
t aε(t, x)|| ≤ C

1

ε
log

(
1

ε
+ 1

)
sup
(t,x)

|∂t∂xaε(t, x)| ≤ C
1

ε
log

(
1

ε
+ 1

)
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The total energy is

E(t) :=
∞∑
ν=0

exp(−2β(ν + 1)t) 2−2νθeν,2−ν(t),

where 0 < θ < 1
2 and β > 0 to be suitably chosen, while

eν,ε(t) :=
∫
R

(
1
√
aε

∣∣∣∣∣∂tuν +
∂t
√
aε

2
√
aε
uν

∣∣∣∣∣
2

+
√
aε|∂xuν|2+|uν|2

)
dx,

and uν is the standard Littlewood-Paley decomposi-
tion of u. Finally again we choose ε = 2−ν.

Remark that in the case of Colombini and Lerner the
approximate energy of the ν component was simply

eν,ε(t) :=
∫
R

(
|∂tuν|2 + aε|∂xuν|2 + |uν|2

)
dx.
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Again we have to estimate d
dtE(t):

d

dt
E(t) ≤ (C−2β)

∞∑
ν=0

(ν+1)exp(−2β(ν+1)t)2−2νθeν,2−ν(t)+R

and the term R from the commutator ∂x([ϕν, a]∂xu) is

now much more complicate to estimate.
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The term to estimate is
∞∑
ν=0

exp(− 2β(ν + 1)t)2−2νθ

·
∫ 2
√
a2−ν

Re
(
∂x([ϕν, a]∂xu) ·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

We set ϕ−1 := 0 and we define, for µ ≥ 0, ψµ :=

ϕµ−1 + ϕµ + ϕµ+1. Then

ψµ(Dx)(ϕµ(Dx)∂xu) = ϕµ(Dx)∂xu = ∂xuµ,

and, consequently,

[ϕν, a]∂xu = [ϕν, a]
(∑

µ
∂xuµ

)
=
∑
µ

([ϕν, a]ψµ)∂xuµ.
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The term to estimate will be dominated by

C
∑
ν,µ

kν,µ(ν + 1)1/2 exp(−β(ν + 1)t)2−νθ(eν,2−ν(t))
1/2

· (µ+ 1)1/2 exp(−β(µ+ 1)t)2−µθ(eµ,2−µ(t))
1/2,

where

kν,µ = e−(ν−µ)βt 2−(ν−µ)θ 2ν(ν+1)−1/2(µ+1)−1/2‖([ϕν, a]ψµ)‖L(L2)

and

‖([ϕν, a]ψµ)‖L(L2)

≤


C2−ν(ν + 1) if |ν − µ| ≤ 2

C2−max{ν,µ}max{ν + 1, µ+ 1} if |ν − µ| ≥ 3
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Our aim is to use Schur’s Lemma, so we have to esti-

mate

sup
µ

∑
ν
|kν,µ|+ sup

ν

∑
µ
|kν,µ|.

Fixing suitably the value of βT ∗, it is possible to prove

that there exists a positive constant Γθ such that

sup
µ

+∞∑
ν=0

|kν,µ|+ sup
ν

+∞∑
µ=0

|kν,µ| ≤ Γθ.
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We finally obtain∣∣∣∣ ∞∑
ν=0

exp(−2β(ν + 1)t)2−2νθ

·
∫ 2
√
a2−ν

Re

(
∂x([ϕν, a]∂xu) ·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

∣∣∣∣
≤ Γθ

∞∑
ν=0

(ν + 1)exp(−2β(ν + 1)t)2−2νθeν,2−ν(t)

The conclusion follows.
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In (C.F.’10) one considers the complete second order
operator (again n = 1)

Lu := ∂2
t u− ∂x(a(t, x)∂xu)+ b0(t, x)∂tu+ b1(t, x)∂xu+ c(t, x)u ,

0 < λ0 ≤ a(t, x) ≤ Λ0

with coefficient a(t, x) again satisfying conditions

(A) (Log-Zygmund continuity in t)

(B) (Log-Lipschitz continuity in x)

while b0 , b1 ∈ L∞(Rt;Cα(Rx)), α > 0, c ∈ L∞(Rt×Rx) .

Theorem. (CP) for L is C∞ well-posed with loss of
derivatives
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Log–Zygmund hyperbolic equations with coeffi-

cients depending on time and space - case n > 1.
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In (C.DS.F.M. in progress) one considers the case of

more space variables: n ≥ 1.

We consider

L = ∂2
t −

n∑
j,k=1

∂xj(ajk(t, x)∂xk)

strictly hyperbolic on the strip [0, T ]×Rn. Assumptions:

sup
(t,x)

|aj,k(t+τ, x)+aj,k(t−τ, x)−2aj,k(t, x)| ≤ C|τ |
∣∣∣∣ log |τ |

∣∣∣∣,
sup
(t,x)

|aj,k(t, x+ y)− aj,k(t, x)| ≤ C|y|
∣∣∣∣ log |y|

∣∣∣∣.
Theorem. (CP) for L is C∞ well-posed with loss of

derivatives
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Idea of the proof. We have now a difficulty in the

definition of the approximate energy. In the case of

Colombini and Lerner it is possible to pass from

eν,ε(t) :=
∫
R

(
|∂tuν|2 + aε|∂xuν|2 + |uν|2

)
dx

to

eν,ε(t) :=
∫
Rn

(
|∂tuν|2 +

n∑
j,k

aεj,k∂xjuν∂xkuν + |uν|2
)
dx,

where

aεj,k(t, x) :=
∫∫

ρε(t− s)ρε(x− y)aj,k(s, y) ds dy.

Now the presence of aε to the denominator is the cause

of the introduction of paradifferential operators.
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We define

aε(t, x, ξ) :=
∫ n∑
j,k

ρε(t− s)aj,k(s, x)ξjξk ds

(remark that there is the regularization only w.r.t. t).

We denote by Taε the paradifferential operator associ-

ated to the symbol aε and by σaε its classical symbol

and the same for ∂taε, ∂2
t aε and the powers of aε. It is

possible to show that

|∂αξ σaε(t, x, ξ)| ≤ Cα(1 + |ξ|)2−|α|,

|∂αξ ∂
β
xσaε(t, x, ξ)| ≤ Cα,β(1 + |ξ|)2−|α|+|β|−1 log(2 + |ξ|).

Moreover for σaε the usual paradifferential spectral con-

ditions hold.
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Moreover

|∂αξ σ∂taε(t, x, ξ)| ≤ Cα log(2 +
1

ε
)(1 + |ξ|)2−|α|,

|∂αξ ∂
β
xσ∂taε(t, x, ξ)| ≤ Cα,β

1

ε
(1+ |ξ|)2−|α|+|β|−1 log(2+ |ξ|),

and

|∂αξ σ∂2
t aε

(t, x, ξ)| ≤ Cα
1

ε
log(2 +

1

ε
)(1 + |ξ|)2−|α|,

|∂αξ ∂
β
xσ∂2

t aε
(t, x, ξ)| ≤ Cα,β

1

ε2
(1+|ξ|)2−|α|+|β|−1 log(2+|ξ|),

and for both of them the usual spectral conditions hold.

Similarly we define and check the behaviour of the pa-

radifferential operators associated to the powers of aε.
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Finally we set

eν,ε(t) := ‖T
a
−1/4
ε

∂tuν − T
∂t(a

−1/4
ε )

uν‖2L2 + ‖T
a
1/4
ε
uν‖2L2,

and the computations follow similarly to the previous

case.
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Open Problem. The case of coefficients aij(t, x), x ∈
Rn, with Log–Zygmund regularity in all the variables t

and x, even for n = 1.
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Partial Answer (C.DS.F.M. in progress). The case
of coefficients aij(t, x), x ∈ Rn, with Zygmund regularity
(not only Log–Zygmund) in all the variables t and x.

In this case the coefficients are Log–Lipschitz contin-
uous, and so (C.L.’95) the Cauchy problem is well
posed, but with a loss of regularity.

Really, it is possible to prove, again by using the para-
differential calculus, that, thanks to the Zygmund regu-
larity, the Cauchy problem is well posed without a loss
of regularity for initial data u0, u1 in precise Sobolev
spaces: H1/2, H−1/2.

More precisely, one can prove for the solution of the
Cauchy problem the following energy estimate:

‖u(t)‖2
H1/2 + ‖∂tu(t)‖2H−1/2 ≤ C

(
‖u0‖2H1/2 + ‖u1‖2H−1/2

)
.
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