Topology optimization methods with gradient-free perimeter perimeter approximation

Nicolas Van Goethem and Samuel Amstutz

*CMAF - Universidade de Lisboa - Portugal

Benasque - August 30, 2011

CLASSICAL EXAMPLE: THE CANTILEVER

Class of shapes $A_D := \{\Omega \subset D \text{ open}\}\$ with $D \subset \mathbb{R}^N$ bounded.

Seek optimal Ω : minimizing the cost function:

$$J(u) = \int_D Ae(u) \cdot e(u) dV + \ell Vol(\Omega)$$

where $u = \chi_{\Omega} \in \mathcal{E} := L^{\infty}(D, \{0, 1\}).$

The problem is ill posed. However

$$\inf\{J(u) + Per_D(\Omega)\} = \inf\{J(u) + TV(u)\}\$$

is well posed.

NUMERICAL ISSUE

- In topology optimization (in particular, to create holes in a structure) one needs to approximate $Per_D(\Omega) = TV(u)$.
- Other issue: $u = \chi_{\Omega}$ is nonsmooth and TV(u) = |Du|(D) is non-differentiable.
- Heuristically: let us consider a parabolic regularization

$$\partial_t v - \Delta v = 0$$
 with $v(0) = u$

• Let $\delta t = \epsilon^2$: short-time approximation of the time derivative at the first order:

$$\frac{v_{\epsilon} - u}{\epsilon^2} - \Delta v_{\epsilon} = 0 \Leftrightarrow (PDE): -\epsilon^2 \Delta v_{\epsilon} + v_{\epsilon} = u \quad (\star)$$

• Claim A: $\|u - v_{\epsilon}\|_{L^{2}(D)}^{2} \sim \frac{\epsilon}{4} \textit{Per}_{D}(\Omega)$

APPROXIMATION BY THE PDE

- Claim A is proved if $D = \mathbb{R}^N$ and Ω smooth.
- By (⋆):

$$\frac{1}{\epsilon}\|u-v_{\epsilon}\|_{L^{2}(D)}^{2}\sim F_{\epsilon}(u):=\frac{1}{2\epsilon}\|u-v_{\epsilon}\|_{L^{2}(D)}^{2}+\frac{\epsilon}{2}\|\nabla v_{\epsilon}\|_{L^{2}(D)}^{2}$$

• Observation:

$$F_{\epsilon}(u) = \inf_{v \in H^{1}(D)} \{ \frac{1}{2\epsilon} \|u - v\|_{L^{2}(D)}^{2} + \frac{\epsilon}{2} \|\nabla v\|_{L^{2}(D)}^{2} \}$$

• Relaxation in the weak* L^{∞} sense:

$$\tilde{F}_{\epsilon}(u) = \inf_{v \in H^{1}(D)} \left\{ \frac{1}{2\epsilon} \left(\|v\|_{L^{2}(D)}^{2} + \langle u, 1 - 2v \rangle \right) + \frac{\epsilon}{2} \|\nabla v\|_{L^{2}(D)}^{2} \right\}$$

GAMMA CONVERGENCE RESULT

Claim B:

$$ilde{F}_{\epsilon}(u) \stackrel{\Gamma}{\longrightarrow} ilde{F}(u) := \left\{ egin{array}{ll} rac{1}{4} |Du|(D) & ext{if} & u \in BV(D,\{0,1\}) \\ +\infty & ext{otherwise} \end{array}
ight.$$
 strongly in $L^1(D,[0,1])$.

• If $u = \chi_{\Omega} : |Du|(D) = Per(\Omega)$.

EQUICOERCIVITY

ullet Let $\widetilde{J}:L^\infty(D,[0,1]) o {\rm I\!R}$ be any cost function. Let

$$I_{\epsilon} := \inf_{u \in L^{\infty}(D,[0,1])} \left\{ \tilde{J}(u) + \alpha \tilde{F}_{\epsilon}(u) \right\}$$

and

$$I := \inf_{u \in L^{\infty}(D,[0,1])} \left\{ \tilde{J}(u) + \alpha \tilde{F}(u) \right\}$$

Theorem

Let u_{ϵ} be an approximate minimizer of I_{ϵ} , i.e.

$$\tilde{J}(u_{\epsilon}) + \alpha \tilde{F}_{\epsilon}(u_{\epsilon}) \leq I_{\epsilon} + \lambda_{\epsilon},$$

with $\lim_{\epsilon \to 0} \lambda_{\epsilon} = 0$. Assume that \tilde{J} is continuous on $L^1(D, [0, 1])$. Then we have $\tilde{J}(u_{\epsilon}) + \alpha \tilde{F}_{\epsilon}(u_{\epsilon}) \to I$. Moreover, (u_{ϵ}) admits cluster points, and each of these cluster points is a minimizer of I.

NUMERICAL APPROACH

$$I_{\epsilon} = \inf_{u \in L^{\infty}(D,[0,1])} \inf_{v \in H^{1}(D)} \left\{ \widetilde{J}(u) + \alpha \left[\frac{\epsilon}{2} \|\nabla v\|_{L^{2}(D)}^{2} + \frac{1}{2\epsilon} \left(\|v\|_{L^{2}(D)}^{2} + \langle u, 1 - 2v \rangle \right) \right] \right\}.$$

- In the compliance case with homogenization $\tilde{J}(u)$ is also an inf (by the complementary energy).
- One can use an explicit alternate minimization algorithm to solve the problem.

NUMERICAL RESULTS

Figure: Cantilever for $\alpha = 0.1, 2, 20, 50$, respectively.