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General form

In all the talk we will be interested in the solutions of

∇ · F (∇u) = f

with possible boundary conditions in Ω ⊂ Rd , where F : Rd → Rd is
given by F = ∇H∗, with H∗ : Rd → R a given convex function.
This equation is the Euler-Lagrange equation of

min

∫
Ω

H∗(∇u) + fu

and is linear whenever H∗ is quadratic. For other power functions, one
gets the p−Laplacian operator.
Boundary conditions : Dirichlet, Neumann (i.e. ∇H∗(∇u) · n = 0) . . .
Extensions : explicit dependence on x (i.e. H∗(x ,∇u)). . .
Simplest cases : radial functions H∗, depending on the modulus only.
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Why H∗ ? (convex duality)

Suppose that H∗ is the Legendre transform of another function H, i.e.

H∗(x) = sup x · y −H(y) : y ∈ Rd

Then our equation also appears when solving

min

∫
H(v) : ∇ · v = f .

Actually, the optimality condition here reads

for all w such that ∇ · w = 0 we have

∫
∇H(v) · w = 0.

Orthogonality to all divergence-free vector fields means being a gradient :

∇H(v) = ∇u ⇒ v = ∇H∗(∇u),

which allows to compute the optimal v if one solves ∇ · ∇H∗(∇u) = f .
Notice that if H and H∗ are strictly convex and differentiable then one
has ∇H∗ = (∇H)−1 and in general

y ∈ ∂H(x)⇔ x ∈ ∂H∗(y).

Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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Degeneracy - 1

The usual elliptic theory is based on the assumption D2H∗ ≥ c > 0.
This is assumption is not verified by the p−Laplace operator, where
D2H∗(z) = c |z |p−2 (for p > 2, this tends to 0 as z → 0).

Yet, we are here interested in a much worse situation :
suppose that D2H∗ identically vanish on a set.

This is the case for instance when one starts from a non-convex problem,
with

∫
W (∇u) and takes H∗ as the convex envelop of W .

This convexified case is the motivation of Carstensen and Müller in a
paper studying similar questions to ours under some assumptions on H∗
(in particular, quadratic growth).

C. Carstensen, S. Müller, Local stress regularity in scalar nonconvex variational

problems, SIAM J. Math. Anal. 2002.
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Degeneracy - 2

Another interesting case is obtained when one first chooses H, and takes
a function which is not differentiable. Suppose B(0, r) ⊂ ∂H(0). Then
∇H∗ = 0 on B(0, r). Then F = ∇H∗ vanishes on a whole ball ! !

Examples :

H(z) = |z | (but H∗ is not real-valued, H∗ = IB1 )

H(z) ≈ |z | for z ≈ 0 but H is strictly convex and superlinear. For
instance

Hp(z) = |z |+ 1

p
|z |p, H∗p(v) =

1

p′
(|v | − 1)p

′

+ .

Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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Duality-based equivalences

Consider the Monge-Kantorovitch problem

(P) min

∫
|x − y |dγ : γ ∈ P(Ω× Ω), (πx)#γ = µ, (πy )#γ = ν,

its dual

(D) max

∫
u d(µ− ν) : u ∈ Lip1(Ω),

as well as the minimal flow problem by Beckmann

(B) min

∫
|v | : ∇ · v = µ− ν.

Thanks to inf-sup interchanging and to the equivalence

u ∈ Lip1 ⇔ ∀x , y u(x)− u(y) ≤ |x − y | ⇔ ∀x |∇u(x)| ≤ 1

one can prove
(P) = (D) = (B).

L Kantorovitch, On the transfer of masses, Dokl. Acad. Nauk. USSR, 1942 ;

M. Beckmann, A continuous model of transportation, Econometrica, 1952.
Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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Non-uniform metrics

If, instead, one considers

min

∫
k(x)|v(x)| : ∇ · v = µ− ν,

then there is equivalence with the Monge problem for the distance

dk(x , y) = inf

{
Lk(σ) :=

∫ 1

0

k(σ(t))|σ′(t)|dt σ(0) = x , σ(1) = y

}
(Lk being the weighted length, with weight k , and dk the associated
geodesic distance, a Riemannian distance with a conformal metric k · Id).

This works fine when k is a geographical datum, given a priori ; in traffic
congestion, instead, k is supposed to depend on the traffic “intensity”,
i.e. on |v | itself ! One should consider

∫
k(|v |)|v |. . .

Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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The congested Beckmann’s problem

Let us call H the function t 7→ k(t)t. Take H(z) = H(|z |). We are again
brought to consider

min

∫
H(v) : ∇ · v = f := µ− ν.

It is reasonable to suppose H convex and superlinear.

The easiest example is H(t) = 1
p tp, for p > 1.

Yet, limt→0+ H(t)/t := k(0) should represent the metric when no
traffic is present, and should not vanish.

Hence, a more reasonable model is H(t) = t + 1
p tp.

Notice that superlinear minimization is more well-posed than min
∫
|v |,

which could fall out to the set of measures.

Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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Traffic intensity minimization

The main problem of the previous model is that using |v | to represent
traffic intensity can account for cancellations, which is not realistic.
Hence, let us change the model.
Describe a traffic configuration through a measure Q ∈ P(C ), where
C = {σ : [0, 1]→ Ω Lipschitz} is a set of path.
To such a Q, associate a traffic intensity measure iQ ∈M+(Ω) through∫

ϕdiQ :=

∫
C

dQ(σ)

∫ 1

0

ϕ(σ(t))|σ′(t)|dt =

∫
Lϕ(σ)dQ(σ).

Suppose for a while that iQ is a function. Then define the congested cost
of a path σ as Lk(iQ )(σ) and minimize the total cost∫

C

Lk(iQ )(σ)dQ(σ) =

∫
k(iQ(x))iQ(x)dx =

∫
H(iQ(x))dx .

The constraints are (e0)#Q = µ, (e1)#Q = ν, (where et : C → Ω is given
by et(σ) := σ(t)). If H is superlinear the minimization is well-posed.

Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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Wardrop equilibria

Network games : a typical question is to find an equilibrium when
agents commute on the network and produce a measure Q on the set of
paths ; find Q such that no agent will change its mind once observed the
payoffs Lk(iQ ). This is called Wardrop equilibrium.

Here the optimality conditions give : if Q minimizes
∫

H(iQ), and we set
k := H ′(iQ), then Q−a.e. path σ satisfies

Lk(σ) = dk(σ(0), σ(1)),

i.e. it is a geodesic for k . It is a Wardrop equilibrium in a continuous
(non-network) setting, for the congestion function H ′ instead of k !

Warning : defining dk is not evident for k /∈ C 0 or k defined only a.e.
Our goal : proving regularity results and write PDEs for the equilibrium.

J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst.
Civ. Eng., 1952. ;

G. Carlier, C. Jimenez, F. Santambrogio, Optimal transportation with traffic

congestion and Wardrop equilibria, SIAM J. Control Optim., 2008.
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Which equations and why ?
Monge-Kantorovitch and Beckmann’s problem

More refined models, equilibrium issues ans equivalences
Regularity results

Links between Beckmann and Wardrop, vector and scalar
problems

Is the minimization of
∫

H(iQ) equivalent or linked to that of
∫

H(|v |)
under ∇ · v = µ− ν ?
To every Q, associate a vector traffic intensity measure vQ ∈Md(Ω)
through ∫

~ϕ · dvQ :=

∫
C

dQ(σ)

∫ 1

0

~ϕ(σ(t)) · σ′(t)dt.

It is easy to check ∇ · vQ = µ− ν and |vQ | ≤ iQ .
Hence

min

∫
H(iQ) ≥ min

∫
H(|vQ |) ≥

(
min

∫
H(|v |) : ∇ · v = µ− ν

)
.

To get the complete equivalence we need the opposite inequality, i.e. we
need to take an optimal v and build a Q from it, guaranteeing iQ ≤ |v |.
Idea : following the integral curves of v .
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Which equations and why ?
Monge-Kantorovitch and Beckmann’s problem

More refined models, equilibrium issues ans equivalences
Regularity results

The flow we need

An idea from Dacorogna-Moser & Evans-Gangbo : set µt :=(1− t)µ+tν,
take the optimal vector field v and suppose that everything is regular.
Consider the vector field w(t, x) = v(x)/µt(x) and for every x ∈ Ω{

y ′x(t) = w(t, yx(t)),

yx(0) = x

Call Y (x) the curve (yx(t))t∈[0,1] and consider then the measure
Q := Y#µ ∈ P(C ).
Since both (et)#Q and µt solve the equation ∂tρ+∇ · (ρw) = 0 with
initial datum ρ0 = µ. By uniqueness, we get (et)#Q = µt and hence Q is
admissible. Moreover, it is possible to check iQ = |v |.
This would solve the equivalence problem. . .

but we would need regularity to do that.
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Which equations and why ?
Monge-Kantorovitch and Beckmann’s problem

More refined models, equilibrium issues ans equivalences
Regularity results

Regularity needs

Everything would be fine if w = v/µt was Lipschitz continuous.
We can add assumptions on µ, ν : let us suppose them to be a.c. with
Lipschitz densities bounded away from 0.

But what about v ? We have v = ∇H∗(∇u) with

∇ · ∇H∗(∇u) = µ− ν.

If H(t) = t2 : standard elliptic regularity !
If H∗(t) = tp : p−Laplacian !
How about the degenerate case H(t) = t + 1

p tp ?

can we expect u ∈W 2,∞ ? NOT
can we expect something on ∇H∗(∇u) ? YES
Less than Lipschitz could be enough ? YES

We can use DiPerna-Lions theory. We need w ∈W 1,1 and ∇ ·w ∈ L∞,
i.e. we need to prove that v is Sobolev and bounded.
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Here it is : Sobolevness and boundedness

Take p ≥ 2 and consider the very degenerate elliptic equation

∇ · Fp−1(∇u) = f
where Fr (z) = (|z | − 1)r+

z
|z| . Suppose f ∈W 1,p′

: then

1 Fp/2(∇u) ∈W 1,2.
2 |∇u| ∈ L∞ (here f ∈ Ld+ε is enough).
3 Fp−1(∇u) ∈W 1,2.

Tools : for 1) adapt the incremental ratio method for the p−Laplacian,
for 2) use suitable test functions based on (|∇u| − 2)+.

Strange assumptions on the datum f . Usually to get ∇u ∈W 1,p one
needs f ∈ Lp, not f ∈W 1,p. Actually we can arrive up to f ∈ BV ∩ Ld+ε

but not better, we need at least some differentiability ! This is due to the
degeneracy, which always asks for more regularity (also on ∂Ω).

L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics, weak flows
and very degenerate elliptic equations, J. Math. Pures et Appl., 2010.

L. Brasco, Global L∞ gradient estimates for solutions to a certain degenerate

elliptic equation, Nonlinear Analysis, 2011
Filippo Santambrogio Very degenerate elliptic equations: applications and regularity
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L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics, weak flows
and very degenerate elliptic equations, J. Math. Pures et Appl., 2010.

L. Brasco, Global L∞ gradient estimates for solutions to a certain degenerate

elliptic equation, Nonlinear Analysis, 2011
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More on regularity

Continuity in dimension two
Solve

∇ · F (∇u) = f

with F = ∇H∗, D2H∗(z) ≥ cδId , cδ > 0, for all z /∈ B1+δ, f ∈ L2+ε ,
d = 2 : suppose also F (∇u) ∈W 1,2 ∩ L∞. Then g(∇u) ∈ C 0 for every
g ∈ C 0(R2) with g = 0 sur B1.

Strategy : consider first ve,δ = (∇u · e − (1 + δ))+ which solves a better
equation, and prove continuity for it (actually the true assumption should
be ve,δ ∈W 1,2 rather than F (∇u) ∈W 1,2). C 0 estimates are uniform in
e, but degenerate as δ → 0. Yet, as δ → 0 we have uniform convergence,
and continuity is preserved. The modulus of continuity is very poor (for
δ > 0 it is logarithmic).

F. Santambrogio, V. Vespri, Continuity in two dimensions for a very degenerate

elliptic equation, Nonlinear analysis, 2010.
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Monge-Kantorovitch and Beckmann’s problem

More refined models, equilibrium issues ans equivalences
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Regularity : some perspectives

Anisotropy
The continuous congestion model leading to these PDEs is not the
homogenization limit of network on grids. Instead, non-isotropic functions
H appear. Apart from modeling (traffic intensities depending on
directions, not only on iQ) and homogenization (random networks)
questions one could study more general functions H. Even for the easiest
case H(v) = |v1|p + |v2|p + · · ·+ |vd |p (p > 2)

regularity results are not obvious, nor all known. (L. Brasco, G. Carlier)
The singular case
We only considered the degenerate case p > 2. What about continuity of
Fp−1(∇u) for p < 2 ? the idea is that ve,δ could be easy to deal with, and
then use the uniform limit as δ → 0. (L. Brasco, V. Julin)
Better continuity results
It seems that C 1,α techniques for the p−Laplacian could be used to
prove C 0,α for Fp−1(∇u). If it worked, it would improve the continuity
result we have, and be valid in any dimension ! (L. Caffarelli, A. Figalli).
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Transport density (but it does not really work)

Go back to min
∫
|v | : ∇ · v = µ− ν. The measure m = |v | = iQ (for the

optimal field v) is usually called transport density. It solves with the
Kantorovitch potential uthe Monge-Kantorovitch system of PDEs

∇ · (m∇u) = µ− ν; |∇u| ≤ 1; |∇u| = 1 a.e. on m > 0.
Several regularity questions have been analyzed on the transport density
m, such as µ, ν ∈ Lp ⇒ m ∈ Lp. But C 0 and differentiability are open.
A strategy : approximate through

min

∫
|v |+ ε

2
|v |2 : ∇ · v = µ− ν

We have H(t) = t + ε
2 t2, H∗(t) = 1

2ε (t − 1)2
+. Study, as ε→ 0, the PDE

∇F1(∇u) = εf
Problem : the non linearity of the operator does not allow easy estimates.

G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses
through Monge-. Kantorovich equation. J. Eur. Math. Soc. 2001,

L. De Pascale, L.C. Evans, A. Pratelli, Integral estimates for transport

densities, Bull. London Math. Soc. 2004
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. . .thanks for your attention
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