Very degenerate elliptic equations: applications and regularity

Filippo Santambrogio

Université Paris-Sud 11, filippo.santambrogio@math.u-psud.fr

Partial differential equations
Benasque,
August 30th, 2011
Which equations and why?

- General form of these nonlinearities
- Variational interpretation
- Examples of degeneracy

Links with optimal transport

- Beckmann’s problem and duality
- Non-uniform metrics
- Simple congestion models

More refined models for congestion and the need for regularity

- Vector and scalar traffic intensity
- Heuristics
- Regular flows

Precise regularity results

- Sobolev
- L^∞
- C^0
- Perspectives
Which equations and why?
- General form of these nonlinearities
- Variational interpretation
- Examples of degeneracy

Links with optimal transport
- Beckmann’s problem and duality
- Non-uniform metrics
- Simple congestion models

More refined models for congestion and the need for regularity
- Vector and scalar traffic intensity
- Heuristics
- Regular flows

Precise regularity results
- Sobolev
- L^∞
- C^0
- Perspectives
Which equations and why?
- General form of these nonlinearities
- Variational interpretation
- Examples of degeneracy

Links with optimal transport
- Beckmann’s problem and duality
- Non-uniform metrics
- Simple congestion models

More refined models for congestion and the need for regularity
- Vector and scalar traffic intensity
- Heuristics
- Regular flows

Precise regularity results
- Sobolev
- L^∞
- C^0
- Perspectives
1. Which equations and why?
 - General form of these nonlinearities
 - Variational interpretation
 - Examples of degeneracy

2. Links with optimal transport
 - Beckmann’s problem and duality
 - Non-uniform metrics
 - Simple congestion models

3. More refined models for congestion and the need for regularity
 - Vector and scalar traffic intensity
 - Heuristics
 - Regular flows

4. Precise regularity results
 - Sobolev
 - L^∞
 - C^0
 - Perspectives
In all the talk we will be interested in the solutions of

$$\nabla \cdot F(\nabla u) = f$$

with possible boundary conditions in $\Omega \subset \mathbb{R}^d$, where $F : \mathbb{R}^d \to \mathbb{R}^d$ is
given by $F = \nabla \mathcal{H}^*$, with $\mathcal{H}^* : \mathbb{R}^d \to \mathbb{R}$ a given convex function.

This equation is the Euler-Lagrange equation of

$$\min \int_{\Omega} \mathcal{H}^*(\nabla u) + fu$$

and is linear whenever \mathcal{H}^* is quadratic. For other power functions, one
gets the $p-$Laplacian operator.

Boundary conditions: Dirichlet, Neumann (i.e. $\nabla \mathcal{H}^*(\nabla u) \cdot n = 0$)...

Extensions: explicit dependence on x (i.e. $\mathcal{H}^*(x, \nabla u)$)...

Simplest cases: radial functions \mathcal{H}^*, depending on the modulus only.
In all the talk we will be interested in the solutions of

\[\nabla \cdot F(\nabla u) = f \]

with possible boundary conditions in \(\Omega \subset \mathbb{R}^d \), where \(F : \mathbb{R}^d \to \mathbb{R}^d \) is
given by \(F = \nabla \mathcal{H}^* \), with \(\mathcal{H}^* : \mathbb{R}^d \to \mathbb{R} \) a given convex function. This equation is the Euler-Lagrange equation of

\[\min \int_{\Omega} \mathcal{H}^*(\nabla u) + fu \]

and is linear whenever \(\mathcal{H}^* \) is quadratic. For other power functions, one gets the \(p \)-Laplacian operator.

\textit{Boundary conditions} : Dirichlet, Neumann (i.e. \(\nabla \mathcal{H}^*(\nabla u) \cdot n = 0 \)) …

\textit{Extensions} : explicit dependence on \(x \) (i.e. \(\mathcal{H}^*(x, \nabla u) \)) …

\textit{Simplest cases} : radial functions \(\mathcal{H}^* \), depending on the modulus only.
In all the talk we will be interested in the solutions of

\[\nabla \cdot F(\nabla u) = f \]

with possible boundary conditions in \(\Omega \subset \mathbb{R}^d \), where \(F : \mathbb{R}^d \to \mathbb{R}^d \) is given by \(F = \nabla H^* \), with \(H^* : \mathbb{R}^d \to \mathbb{R} \) a given convex function. This equation is the Euler-Lagrange equation of

\[\min \int_\Omega H^*(\nabla u) + fu \]

and is linear whenever \(H^* \) is quadratic. For other power functions, one gets the \(p \)–Laplacian operator.

Boundary conditions: Dirichlet, Neumann (i.e. \(\nabla H^*(\nabla u) \cdot n = 0 \)) …

Extensions: explicit dependence on \(x \) (i.e. \(H^*(x, \nabla u) \)) …

Simplest cases: radial functions \(H^* \), depending on the modulus only.
Why \mathcal{H}^*? (convex duality)

Suppose that \mathcal{H}^* is the Legendre transform of another function \mathcal{H}, i.e.,

$$\mathcal{H}^*(x) = \sup y \cdot x - \mathcal{H}(y) : y \in \mathbb{R}^d$$

Then our equation also appears when solving

$$\min \int \mathcal{H}(\nu) : \nabla \cdot \nu = f.$$

Actually, the optimality condition here reads

for all w such that $\nabla \cdot w = 0$ we have $\int \nabla \mathcal{H}(\nu) \cdot w = 0$.

Orthogonality to all divergence-free vector fields means being a gradient:

$$\nabla \mathcal{H}(\nu) = \nabla u \Rightarrow \nu = \nabla \mathcal{H}^*(\nabla u),$$

which allows to compute the optimal ν if one solves $\nabla \cdot \nabla \mathcal{H}^*(\nabla u) = f$.

Notice that if \mathcal{H} and \mathcal{H}^* are strictly convex and differentiable then one has $\nabla \mathcal{H}^* = (\nabla \mathcal{H})^{-1}$ and in general

$$y \in \partial \mathcal{H}(x) \Leftrightarrow x \in \partial \mathcal{H}^*(y).$$
Why \mathcal{H}^*? (convex duality)

Suppose that \mathcal{H}^* is the Legendre transform of another function \mathcal{H}, i.e.

$$\mathcal{H}^*(x) = \sup_{y \in \mathbb{R}^d} x \cdot y - \mathcal{H}(y)$$

Then our equation also appears when solving

$$\min \int \mathcal{H}(v) : \nabla \cdot v = f.$$

Actually, the optimality condition here reads

for all w such that $\nabla \cdot w = 0$ we have $\int \nabla \mathcal{H}(v) \cdot w = 0.$

Orthogonality to all divergence-free vector fields means being a gradient:

$$\nabla \mathcal{H}(v) = \nabla u \Rightarrow v = \nabla \mathcal{H}^*(\nabla u),$$

which allows to compute the optimal v if one solves $\nabla \cdot \nabla \mathcal{H}^*(\nabla u) = f.$

Notice that if \mathcal{H} and \mathcal{H}^* are strictly convex and differentiable then one has $\nabla \mathcal{H}^* = (\nabla \mathcal{H})^{-1}$ and in general

$$y \in \partial \mathcal{H}(x) \Leftrightarrow x \in \partial \mathcal{H}^*(y).$$
Why \mathcal{H}^*? (convex duality)

Suppose that \mathcal{H}^* is the Legendre transform of another function \mathcal{H}, i.e.

$$\mathcal{H}^*(x) = \sup x \cdot y - \mathcal{H}(y) : y \in \mathbb{R}^d$$

Then our equation also appears when solving

$$\min \int \mathcal{H}(v) : \nabla \cdot v = f.$$

Actually, the optimality condition here reads

for all w such that $\nabla \cdot w = 0$ we have $\int \nabla \mathcal{H}(v) \cdot w = 0$.

Orthogonality to all divergence-free vector fields means being a gradient:

$$\nabla \mathcal{H}(v) = \nabla u \Rightarrow v = \nabla \mathcal{H}^*(\nabla u),$$

which allows to compute the optimal v if one solves $\nabla \cdot \nabla \mathcal{H}^*(\nabla u) = f$.

Notice that if \mathcal{H} and \mathcal{H}^* are strictly convex and differentiable then one has $\nabla \mathcal{H}^* = (\nabla \mathcal{H})^{-1}$ and in general

$$y \in \partial \mathcal{H}(x) \Leftrightarrow x \in \partial \mathcal{H}^*(y).$$
Why \mathcal{H}^*? (convex duality)

Suppose that \mathcal{H}^* is the Legendre transform of another function \mathcal{H}, i.e.

$$\mathcal{H}^*(x) = \sup_{y \in \mathbb{R}^d} x \cdot y - \mathcal{H}(y):$$

Then our equation also appears when solving

$$\min \int \mathcal{H}(v) : \nabla \cdot v = f.$$

Actually, the optimality condition here reads

for all w such that $\nabla \cdot w = 0$ we have

$$\int \nabla \mathcal{H}(v) \cdot w = 0.$$

Orthogonality to all divergence-free vector fields means being a gradient:

$$\nabla \mathcal{H}(v) = \nabla u \Rightarrow v = \nabla \mathcal{H}^*(\nabla u),$$

which allows to compute the optimal v if one solves $\nabla \cdot \nabla \mathcal{H}^*(\nabla u) = f$.

Notice that if \mathcal{H} and \mathcal{H}^* are strictly convex and differentiable then one has $\nabla \mathcal{H}^* = (\nabla \mathcal{H})^{-1}$ and in general

$$y \in \partial \mathcal{H}(x) \Leftrightarrow x \in \partial \mathcal{H}^*(y).$$
The usual elliptic theory is based on the assumption $D^2\mathcal{H}^* \geq c > 0$. This assumption is not verified by the $p-$Laplace operator, where $D^2\mathcal{H}^*(z) = c|z|^{p-2}$ (for $p > 2$, this tends to 0 as $z \to 0$).

Yet, we are here interested in a much worse situation: suppose that $D^2\mathcal{H}^*$ identically vanish on a set.

This is the case for instance when one starts from a non-convex problem, with $\int W(\nabla u)$ and takes \mathcal{H}^* as the convex envelop of W. This convexified case is the motivation of Carstensen and Müller in a paper studying similar questions to ours under some assumptions on \mathcal{H}^* (in particular, quadratic growth).

Degeneracy - 1

The usual elliptic theory is based on the assumption $D^2H^* \geq c > 0$. This assumption is not verified by the $p-$Laplace operator, where $D^2H^*(z) = c|z|^{p-2}$ (for $p > 2$, this tends to 0 as $z \to 0$).

Yet, we are here interested in a much worse situation: suppose that D^2H^* identically vanish on a set.

This is the case for instance when one starts from a non-convex problem, with $\int W(\nabla u)$ and takes H^* as the convex envelop of W. This convexified case is the motivation of Carstensen and Müller in a paper studying similar questions to ours under some assumptions on H^* (in particular, quadratic growth).

Degeneracy - 1

The usual elliptic theory is based on the assumption $D^2\mathcal{H}^* \geq c > 0$. This assumption is not verified by the $p-$Laplace operator, where $D^2\mathcal{H}^*(z) = c|z|^{p-2}$ (for $p > 2$, this tends to 0 as $z \to 0$).

Yet, we are here interested in a much worse situation: suppose that $D^2\mathcal{H}^*$ identically vanish on a set.

This is the case for instance when one starts from a non-convex problem, with $\int W(\nabla u)$ and takes \mathcal{H}^* as the convex envelop of W. This convexified case is the motivation of Carstensen and Müller in a paper studying similar questions to ours under some assumptions on \mathcal{H}^* (in particular, quadratic growth).

The usual elliptic theory is based on the assumption $D^2\mathcal{H}^* \geq c > 0$. This assumption is not verified by the $p-$Laplace operator, where $D^2\mathcal{H}^*(z) = c|z|^{p-2}$ (for $p > 2$, this tends to 0 as $z \to 0$).

Yet, we are here interested in a much worse situation: suppose that $D^2\mathcal{H}^*$ identically vanish on a set.

This is the case for instance when one starts from a non-convex problem, with $\int W(\nabla u)$ and takes \mathcal{H}^* as the convex envelop of W. This convexified case is the motivation of Carstensen and Müller in a paper studying similar questions to ours under some assumptions on \mathcal{H}^* (in particular, quadratic growth).

Another interesting case is obtained when one first chooses \mathcal{H}, and takes a function which is not differentiable. Suppose $B(0, r) \subset \partial \mathcal{H}(0)$. Then $\nabla \mathcal{H}^* = 0$ on $B(0, r)$. Then $F = \nabla \mathcal{H}^*$ vanishes on a whole ball!!

Examples:

- $\mathcal{H}(z) = |z|$ (but \mathcal{H}^* is not real-valued, $\mathcal{H}^* = I_{B_1}$)
- $\mathcal{H}(z) \approx |z|$ for $z \approx 0$ but \mathcal{H} is strictly convex and superlinear. For instance

$$\mathcal{H}_p(z) = |z| + \frac{1}{p} |z|^p, \quad \mathcal{H}^*_p(v) = \frac{1}{p'} (|v| - 1)^{p'}.$$
Another interesting case is obtained when one first chooses \mathcal{H}, and takes a function which is not differentiable. Suppose $B(0, r) \subset \partial \mathcal{H}(0)$. Then $\nabla \mathcal{H}^* = 0$ on $B(0, r)$. Then $F = \nabla \mathcal{H}^*$ vanishes on a whole ball!!

Examples:

- $\mathcal{H}(z) = |z|$ (but \mathcal{H}^* is not real-valued, $\mathcal{H}^* = I_{B_1}$)
- $\mathcal{H}(z) \approx |z|$ for $z \approx 0$ but \mathcal{H} is strictly convex and superlinear. For instance

 $$\mathcal{H}_p(z) = |z| + \frac{1}{p} |z|^p, \quad \mathcal{H}_p^*(v) = \frac{1}{p'}(|v| - 1)^{p'}.$$
Consider the Monge-Kantorovitch problem

\[(P) \quad \min \int |x - y| d\gamma : \gamma \in P(\Omega \times \Omega), (\pi_x)_\#\gamma = \mu, (\pi_y)_\#\gamma = \nu,\]

its dual

\[(D) \quad \max \int u d(\mu - \nu) : \ u \in \text{Lip}_1(\Omega),\]

as well as the minimal flow problem by Beckmann

\[(B) \quad \min \int |v| : \nabla \cdot v = \mu - \nu.\]

Thanks to inf-sup interchanging and to the equivalence

\[u \in \text{Lip}_1 \iff \forall x, y \ u(x) - u(y) \leq |x - y| \iff \forall x \ |\nabla u(x)| \leq 1\]

one can prove

\[(P) = (D) = (B).\]

Duality-based equivalences

Consider the Monge-Kantorovitch problem

\[(P) \quad \min \int |x - y| d\gamma : \gamma \in \mathcal{P}(\Omega \times \Omega), (\pi_x)_\# \gamma = \mu, (\pi_y)_\# \gamma = \nu,\]

its dual

\[(D) \quad \max \int u d(\mu - \nu) : u \in \text{Lip}_1(\Omega),\]

as well as the minimal flow problem by Beckmann

\[(B) \quad \min \int |v| : \nabla \cdot v = \mu - \nu.\]

Thanks to inf-sup interchanging and to the equivalence

\[u \in \text{Lip}_1 \iff \forall x, y \ u(x) - u(y) \leq |x - y| \iff \forall x \ |\nabla u(x)| \leq 1\]

one can prove

\[(P) = (D) = (B).\]

Non-uniform metrics

If, instead, one considers

$$\min \int k(x)|v(x)| : \nabla \cdot v = \mu - \nu,$$

then there is equivalence with the Monge problem for the distance

$$d_k(x, y) = \inf \left\{ L_k(\sigma) := \int_0^1 k(\sigma(t))|\sigma'(t)|dt \mid \sigma(0) = x, \sigma(1) = y \right\}$$

(L_k being the weighted length, with weight k, and d_k the associated geodesic distance, a Riemannian distance with a conformal metric $k \cdot l_d$).

This works fine when k is a geographical datum, given a priori; in traffic congestion, instead, k is supposed to depend on the traffic “intensity”, i.e. on $|v|$ itself! One should consider $\int k(|v|)|v|...$
Non-uniform metrics

If, instead, one considers

$$\min \int k(x)|v(x)| : \nabla \cdot v = \mu - \nu,$$

then there is equivalence with the Monge problem for the distance

$$d_k(x, y) = \inf \left\{ L_k(\sigma) := \int_0^1 k(\sigma(t))|\sigma'(t)|dt \quad \sigma(0) = x, \sigma(1) = y \right\}$$

(L_k being the weighted length, with weight k, and d_k the associated geodesic distance, a Riemannian distance with a conformal metric $k \cdot l_d$).

This works fine when k is a geographical datum, given a priori; in traffic congestion, instead, k is supposed to depend on the traffic “intensity”, i.e. on $|v|$ itself! One should consider $\int k(|v|)|v| \ldots$
Non-uniform metrics

If, instead, one considers

$$\min \int k(x)|v(x)| : \nabla \cdot v = \mu - \nu,$$

then there is equivalence with the Monge problem for the distance

$$d_k(x, y) = \inf \left\{ L_k(\sigma) := \int_0^1 k(\sigma(t))|\sigma'(t)| dt \quad \sigma(0) = x, \sigma(1) = y \right\}$$

(L_k being the weighted length, with weight k, and d_k the associated geodesic distance, a Riemannian distance with a conformal metric $k \cdot l_d$).

This works fine when k is a geographical datum, given a priori; in traffic congestion, instead, k is supposed to depend on the traffic “intensity”, i.e. on $|v|$ itself! One should consider $\int k(|v|)|v|\ldots$
The congested Beckmann’s problem

Let us call H the function $t \mapsto k(t)t$. Take $\mathcal{H}(z) = H(|z|)$. We are again brought to consider

$$\min \int \mathcal{H}(v) : \nabla \cdot v = f := \mu - \nu.$$

- It is reasonable to suppose H convex and superlinear.
- The easiest example is $H(t) = \frac{1}{p} t^p$, for $p > 1$.
- Yet, $\lim_{t \to 0^+} H(t)/t := k(0)$ should represent the metric when no traffic is present, and should not vanish.
- Hence, a more reasonable model is $H(t) = t + \frac{1}{p} t^p$.

Notice that superlinear minimization is more well-posed than $\min \int |v|$, which could fall out to the set of measures.
The congested Beckmann’s problem

Let us call H the function $t \mapsto k(t)t$. Take $\mathcal{H}(z) = H(|z|)$. We are again brought to consider

$$\min \int \mathcal{H}(v) : \nabla \cdot v = f := \mu - \nu.$$

- It is reasonable to suppose H convex and superlinear.
- The easiest example is $H(t) = \frac{1}{p}t^p$, for $p > 1$.
- Yet, $\lim_{t \to 0^+} H(t)/t := k(0)$ should represent the metric when no traffic is present, and should not vanish.
- Hence, a more reasonable model is $H(t) = t + \frac{1}{p}t^p$.

Notice that superlinear minimization is more well-posed than $\min \int |v|$, which could fall out to the set of measures.
Let us call H the function $t \mapsto k(t)t$. Take $\mathcal{H}(z) = H(|z|)$. We are again brought to consider

$$\min \int \mathcal{H}(v) : \nabla \cdot v = f := \mu - \nu.$$

- It is reasonable to suppose H convex and superlinear.
- The easiest example is $H(t) = \frac{1}{p} t^p$, for $p > 1$.
- Yet, $\lim_{t \to 0^+} H(t)/t := k(0)$ should represent the metric when no traffic is present, and should not vanish.
- Hence, a more reasonable model is $H(t) = t + \frac{1}{p} t^p$.

Notice that superlinear minimization is more well-posed than $\min \int |v|$, which could fall out to the set of measures.
The congested Beckmann’s problem

Let us call H the function $t \mapsto k(t)t$. Take $\mathcal{H}(z) = H(|z|)$. We are again brought to consider

$$
\min \int \mathcal{H}(v) : \nabla \cdot v = f := \mu - \nu.
$$

- It is reasonable to suppose H convex and superlinear.
- The easiest example is $H(t) = \frac{1}{p} t^p$, for $p > 1$.
- Yet, $\lim_{t \to 0^+} H(t)/t := k(0)$ should represent the metric when no traffic is present, and should not vanish.
- Hence, a more reasonable model is $H(t) = t + \frac{1}{p} t^p$.

Notice that superlinear minimization is more well-posed than $\min \int |v|$, which could fall out to the set of measures.
The congested Beckmann’s problem

Let us call H the function $t \mapsto k(t)t$. Take $\mathcal{H}(z) = H(|z|)$. We are again brought to consider

$$\min \int \mathcal{H}(\nu) : \nabla \cdot \nu = f := \mu - \nu.$$

- It is reasonable to suppose H convex and superlinear.
- The easiest example is $H(t) = \frac{1}{p} t^p$, for $p > 1$.
- Yet, $\lim_{t \to 0^+} H(t)/t := k(0)$ should represent the metric when no traffic is present, and should not vanish.
- Hence, a more reasonable model is $H(t) = t + \frac{1}{p} t^p$.

Notice that superlinear minimization is more well-posed than $\min \int |\nu|$, which could fall out to the set of measures.
Traffic intensity minimization

The main problem of the previous model is that using $|v|$ to represent traffic intensity can account for cancellations, which is not realistic. Hence, let us change the model.

Describe a traffic configuration through a measure $Q \in \mathcal{P}(C)$, where $C = \{\sigma : [0, 1] \to \Omega \text{ Lipschitz}\}$ is a set of path.

To such a Q, associate a traffic intensity measure $i_Q \in \mathcal{M}_+(\Omega)$ through

$$
\int C \varphi di_Q := \int C dQ(\sigma) \int_0^1 \varphi(\sigma(t))|\sigma'(t)|dt = \int L\varphi(\sigma)dQ(\sigma).
$$

Suppose for a while that i_Q is a function. Then define the congested cost of a path σ as $L_{k(i_Q)}(\sigma)$ and minimize the total cost

$$
\int C L_{k(i_Q)}(\sigma)dQ(\sigma) = \int k(i_Q(x))i_Q(x)dx = \int H(i_Q(x))dx.
$$

The constraints are $(e_0)_#Q = \mu$, $(e_1)_#Q = \nu$, (where $e_t : C \to \Omega$ is given by $e_t(\sigma) := \sigma(t)$). If H is superlinear the minimization is well-posed.
Traffic intensity minimization

The main problem of the previous model is that using $|v|$ to represent traffic intensity can account for cancellations, which is not realistic. Hence, let us change the model.

Describe a traffic configuration through a measure $Q \in \mathcal{P}(C)$, where $C = \{\sigma : [0, 1] \to \Omega \text{ Lipschitz}\}$ is a set of path.

To such a Q, associate a traffic intensity measure $i_Q \in \mathcal{M}_+(\Omega)$ through

$$
\int \varphi d i_Q := \int_C dQ(\sigma) \int_0^1 \varphi(\sigma(t))|\sigma'(t)|dt = \int L\varphi(\sigma)dQ(\sigma).
$$

Suppose for a while that i_Q is a function. Then define the congested cost of a path σ as $L_k(i_Q)(\sigma)$ and minimize the total cost

$$
\int_C L_k(i_Q)(\sigma)dQ(\sigma) = \int k(i_Q(x))i_Q(x)dx = \int H(i_Q(x))dx.
$$

The constraints are $(e_0)\#Q = \mu$, $(e_1)\#Q = \nu$, (where $e_t : C \to \Omega$ is given by $e_t(\sigma) := \sigma(t)$). If H is superlinear the minimization is well-posed.
Traffic intensity minimization

The main problem of the previous model is that using $|v|$ to represent traffic intensity can account for cancellations, which is not realistic. Hence, let us change the model. Describe a traffic configuration through a measure $Q \in \mathcal{P}(C)$, where $C = \{\sigma : [0, 1] \to \Omega \text{ Lipschitz} \}$ is a set of path. To such a Q, associate a traffic intensity measure $i_Q \in \mathcal{M}_+(\Omega)$ through

$$\int \varphi \, di_Q := \int_C dQ(\sigma) \int_0^1 \varphi(\sigma(t))|\sigma'(t)| \, dt = \int L\varphi(\sigma) \, dQ(\sigma).$$

Suppose for a while that i_Q is a function. Then define the congested cost of a path σ as $L_k(i_Q)(\sigma)$ and minimize the total cost

$$\int_C L_k(i_Q)(\sigma) \, dQ(\sigma) = \int k(i_Q(x))i_Q(x) \, dx = \int H(i_Q(x)) \, dx.$$

The constraints are $(e_0)_\# Q = \mu$, $(e_1)_\# Q = \nu$, (where $e_t : C \to \Omega$ is given by $e_t(\sigma) := \sigma(t)$). If H is superlinear the minimization is well-posed.
Traffic intensity minimization

The main problem of the previous model is that using $|v|$ to represent traffic intensity can account for cancellations, which is not realistic. Hence, let us change the model. Describe a traffic configuration through a measure $Q \in \mathcal{P}(C)$, where $C = \{\sigma : [0, 1] \to \Omega \text{ Lipschitz} \}$ is a set of path. To such a Q, associate a traffic intensity measure $i_Q \in \mathcal{M}_+^+(\Omega)$ through

$$\int \varphi di_Q := \int_C dQ(\sigma) \int_0^1 \varphi(\sigma(t))|\sigma'(t)|dt = \int L_\varphi(\sigma)dQ(\sigma).$$

Suppose for a while that i_Q is a function. Then define the congested cost of a path σ as $L_{k(i_Q)}(\sigma)$ and minimize the total cost

$$\int_C L_{k(i_Q)}(\sigma)dQ(\sigma) = \int k(i_Q(x))i_Q(x)dx = \int H(i_Q(x))dx.$$

The constraints are $(e_0)\#Q = \mu$, $(e_1)\#Q = \nu$, (where $e_t : C \to \Omega$ is given by $e_t(\sigma) := \sigma(t)$). If H is superlinear the minimization is well-posed.
Network games: a typical question is to find an equilibrium when agents commute on the network and produce a measure Q on the set of paths; find Q such that no agent will change its mind once observed the payoffs $L_k(i_Q)$. This is called Wardrop equilibrium. Here the optimality conditions give: if \overline{Q} minimizes $\int H(i_Q)$, and we set $\overline{k} := H'(i_Q)$, then \overline{Q}—a.e. path σ satisfies

$$L_{\overline{k}}(\sigma) = d_{\overline{k}}(\sigma(0), \sigma(1)),$$

i.e. it is a geodesic for \overline{k}. It is a Wardrop equilibrium in a continuous (non-network) setting, for the congestion function H' instead of k!

Warning: defining $d_{\overline{k}}$ is not evident for $\overline{k} \not\in C^0$ or \overline{k} defined only a.e.

Our goal: proving regularity results and write PDEs for the equilibrium.

Network games: a typical question is to find an equilibrium when agents commute on the network and produce a measure \(Q \) on the set of paths; find \(Q \) such that no agent will change its mind once observed the payoffs \(L_k(i_Q) \). This is called Wardrop equilibrium.

Here the optimality conditions give: if \(\bar{Q} \) minimizes \(\int H(i_Q) \), and we set \(\bar{k} := H'(i_Q) \), then \(\bar{Q} \)-a.e. path \(\sigma \) satisfies

\[
L_{\bar{k}}(\sigma) = d_{\bar{k}}(\sigma(0), \sigma(1)),
\]

i.e. it is a geodesic for \(\bar{k} \). It is a Wardrop equilibrium in a continuous (non-network) setting, for the congestion function \(H' \) instead of \(k \)!

Warning: defining \(d_{\bar{k}} \) is not evident for \(\bar{k} \notin C^0 \) or \(\bar{k} \) defined only a.e.

Our goal: proving regularity results and write PDEs for the equilibrium.

Network games: a typical question is to find an equilibrium when agents commute on the network and produce a measure Q on the set of paths; find Q such that no agent will change its mind once observed the payoffs $L_k(i_Q)$. This is called Wardrop equilibrium. Here the optimality conditions give: if \bar{Q} minimizes $\int H(i_Q)$, and we set $\bar{k} := H'(i_Q)$, then \bar{Q}—a.e. path σ satisfies

$$L_{\bar{k}}(\sigma) = d_{\bar{k}}(\sigma(0), \sigma(1)),$$

i.e. it is a geodesic for \bar{k}. It is a Wardrop equilibrium in a continuous (non-network) setting, for the congestion function H' instead of k!

Warning: defining $d_{\bar{k}}$ is not evident for $\bar{k} \notin C^0$ or \bar{k} defined only a.e.

Our goal: proving regularity results and write PDEs for the equilibrium.

Wardrop equilibria

Network games: a typical question is to find an equilibrium when agents commute on the network and produce a measure Q on the set of paths; find Q such that no agent will change its mind once observed the payoffs $L_k(i_Q)$. This is called Wardrop equilibrium. Here the optimality conditions give: if \overline{Q} minimizes $\int H(i_Q)$, and we set $\overline{k} := H'(i_Q)$, then \overline{Q}—a.e. path σ satisfies

$$L_{\overline{k}}(\sigma) = d_{\overline{k}}(\sigma(0), \sigma(1)),$$

i.e. it is a geodesic for \overline{k}. It is a Wardrop equilibrium in a continuous (non-network) setting, for the congestion function H' instead of k!

Warning: defining $d_{\overline{k}}$ is not evident for $\overline{k} \notin C^0$ or \overline{k} defined only a.e.

Our goal: proving regularity results and write PDEs for the equilibrium.

Links between Beckmann and Wardrop, vector and scalar problems

Is the minimization of \(\int H(i_Q) \) equivalent or linked to that of \(\int H(|v|) \) under \(\nabla \cdot v = \mu - \nu \)?

To every \(Q \), associate a vector traffic intensity measure \(v_Q \in \mathcal{M}^d(\Omega) \) through

\[
\int \vec{\varphi} \cdot dv_Q := \int_C dQ(\sigma) \int_0^1 \vec{\varphi}(\sigma(t)) \cdot \sigma'(t) dt.
\]

It is easy to check \(\nabla \cdot v_Q = \mu - \nu \) and \(|v_Q| \leq i_Q \).

Hence

\[
\min \int H(i_Q) \geq \min \int H(|v_Q|) \geq \left(\min \int H(|v|) : \nabla \cdot v = \mu - \nu \right).
\]

To get the complete equivalence we need the opposite inequality, i.e. we need to take an optimal \(v \) and build a \(Q \) from it, guaranteeing \(i_Q \leq |v| \).

Idea: following the integral curves of \(v \).
Links between Beckmann and Wardrop, vector and scalar problems

Is the minimization of $\int H(i_Q)$ equivalent or linked to that of $\int H(|v|)$ under $\nabla \cdot v = \mu - \nu$?

To every Q, associate a vector traffic intensity measure $v_Q \in \mathcal{M}^d(\Omega)$ through

$$\int \tilde{\varphi} \cdot dv_Q := \int_C dQ(\sigma) \int_0^1 \tilde{\varphi}(\sigma(t)) \cdot \sigma'(t) dt.$$

It is easy to check $\nabla \cdot v_Q = \mu - \nu$ and $|v_Q| \leq i_Q$.

Hence

$$\min \int H(i_Q) \geq \min \int H(|v_Q|) \geq \left(\min \int H(|v|) : \nabla \cdot v = \mu - \nu \right).$$

To get the complete equivalence we need the opposite inequality, i.e. we need to take an optimal v and build a Q from it, guaranteeing $i_Q \leq |v|$.

Idea: following the integral curves of v.
Is the minimization of $\int H(i_Q)$ equivalent or linked to that of $\int H(|v|)$ under $\nabla \cdot v = \mu - \nu$?

To every Q, associate a vector traffic intensity measure $v_Q \in \mathcal{M}^d(\Omega)$ through

$$\int \bar{\varphi} \cdot dv_Q := \int_C dQ(\sigma) \int_0^1 \bar{\varphi}(\sigma(t)) \cdot \sigma'(t) dt.$$

It is easy to check $\nabla \cdot v_Q = \mu - \nu$ and $|v_Q| \leq i_Q$.

Hence

$$\min \int H(i_Q) \geq \min \int H(|v_Q|) \geq \left(\min \int H(|v|) : \nabla \cdot v = \mu - \nu \right).$$

To get the complete equivalence we need the opposite inequality, i.e. we need to take an optimal v and build a Q from it, guaranteeing $i_Q \leq |v|$.

Idea: following the integral curves of v.
Links between Beckmann and Wardrop, vector and scalar problems

Is the minimization of $\int H(i_Q)$ equivalent or linked to that of $\int H(|v|)$ under $\nabla \cdot v = \mu - \nu$?

To every Q, associate a vector traffic intensity measure $v_Q \in M^d(\Omega)$ through

$$\int C dQ(\sigma) \int_0^1 \bar{\varphi}(\sigma(t)) \cdot \sigma'(t) dt.$$

It is easy to check $\nabla \cdot v_Q = \mu - \nu$ and $|v_Q| \leq i_Q$.

Hence

$$\min \int H(i_Q) \geq \min \int H(|v_Q|) \geq \left(\min \int H(|v|) : \nabla \cdot v = \mu - \nu \right).$$

To get the complete equivalence we need the opposite inequality, i.e. we need to take an optimal v and build a Q from it, guaranteeing $i_Q \leq |v|$.

Idea: following the integral curves of v.

Filippo Santambrogio

Very degenerate elliptic equations: applications and regularity
The flow we need

An idea from Dacorogna-Moser & Evans-Gangbo: set $\mu_t := (1 - t)\mu + t\nu$, take the optimal vector field ν and suppose that everything is regular. Consider the vector field $w(t, x) = \nu(x)/\mu_t(x)$ and for every $x \in \Omega$

$$
\begin{align*}
 y'_x(t) &= w(t, y_x(t)), \\
 y_x(0) &= x
\end{align*}
$$

Call $Y(x)$ the curve $(y_x(t))_{t \in [0,1]}$ and consider then the measure $Q := Y_#\mu \in \mathcal{P}(C)$. Since both $(e_t)_#Q$ and μ_t solve the equation $\partial_t \rho + \nabla \cdot (\rho w) = 0$ with initial datum $\rho_0 = \mu$. By uniqueness, we get $(e_t)_#Q = \mu_t$ and hence Q is admissible. Moreover, it is possible to check $i_Q = |\nu|$. This would solve the equivalence problem...

but we would need regularity to do that.
The flow we need

An idea from Dacorogna-Moser & Evans-Gangbo: set $\mu_t := (1 - t)\mu + t\nu$, take the optimal vector field ν and suppose that everything is regular. Consider the vector field $w(t, x) = \nu(x)/\mu_t(x)$ and for every $x \in \Omega$

$$\begin{cases} y'_x(t) = w(t, y_x(t)), \\ y_x(0) = x \end{cases}$$

Call $Y(x)$ the curve $(y_x(t))_{t \in [0,1]}$ and consider then the measure $Q := Y_#\mu \in \mathcal{P}(C)$. Since both $(e_t)_#Q$ and μ_t solve the equation $\partial_t \rho + \nabla \cdot (\rho w) = 0$ with initial datum $\rho_0 = \mu$. By uniqueness, we get $(e_t)_#Q = \mu_t$ and hence Q is admissible. Moreover, it is possible to check $i_Q = |\nu|$. This would solve the equivalence problem...

but we would need regularity to do that.
Regularity needs

Everything would be fine if \(w = \nabla \bar{v}/\mu_t \) was Lipschitz continuous. We can add assumptions on \(\mu, \nu \) : let us suppose them to be a.c. with Lipschitz densities bounded away from 0. But what about \(\bar{v} \)? We have \(\bar{v} = \nabla H^*(\nabla u) \) with

\[\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu. \]

If \(H(t) = t^2 \): standard elliptic regularity!
If \(H^*(t) = t^p \): \(p \)–Laplacian!
How about the degenerate case \(H(t) = t + \frac{1}{p} t^p \)?

- can we expect \(u \in W^{2,\infty} \)? \(\text{NOT} \)
- can we expect something on \(\nabla H^*(\nabla u) \)? \(\text{YES} \)
- Less than Lipschitz could be enough? \(\text{YES} \)

We can use \textbf{DiPerna–Lions theory}. We need \(w \in W^{1,1} \) and \(\nabla \cdot w \in L^\infty \), i.e. we need to prove that \(\bar{v} \) is Sobolev and bounded.
Regularity needs

Everything would be fine if \(w = \overline{v}/\mu_t \) was Lipschitz continuous. We can add assumptions on \(\mu, \nu \) : let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \(\overline{v} \)? We have \(\overline{v} = \nabla H^*(\nabla u) \) with

\[
\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu.
\]

If \(H(t) = t^2 \) : standard elliptic regularity!
If \(H^*(t) = t^p \) : \(p \)–Laplacian!

How about the degenerate case \(H(t) = t + \frac{1}{p} t^p \)?

- Can we expect \(u \in W^{2, \infty} \)? NOT
- Can we expect something on \(\nabla H^*(\nabla u) \)? YES
- Less than Lipschitz could be enough? YES

We can use DiPerna-Lions theory. We need \(w \in W^{1,1} \) and \(\nabla \cdot w \in L^\infty \), i.e. we need to prove that \(\overline{v} \) is Sobolev and bounded.
Regularity needs

Everything would be fine if $w = \frac{\bar{v}}{\mu_t}$ was Lipschitz continuous. We can add assumptions on μ, ν : let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \bar{v}? We have $\bar{v} = \nabla H^*(\nabla u)$ with

$$\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu.$$

If $H(t) = t^2$: standard elliptic regularity!
If $H^*(t) = t^p$: $p-$Laplacian!
How about the degenerate case $H(t) = t + \frac{1}{p}t^p$?

- can we expect $u \in W^{2,\infty}$? NOT
- can we expect something on $\nabla H^*(\nabla u)$? YES
- Less than Lipschitz could be enough? YES

We can use DiPerna-Lions theory. We need $w \in W^{1,1}$ and $\nabla \cdot w \in L^\infty$, i.e. we need to prove that \bar{v} is Sobolev and bounded.
Regularity needs

Everything would be fine if \(w = \frac{\nabla v}{\mu_t} \) was Lipschitz continuous. We can add assumptions on \(\mu, \nu \) : let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \(\nabla v \)? We have \(\nabla v = \nabla H^* (\nabla u) \) with

\[
\nabla \cdot \nabla H^* (\nabla u) = \mu - \nu.
\]

If \(H(t) = t^2 \): standard elliptic regularity!

If \(H^*(t) = t^p \): \(p \)-Laplacian!

How about the degenerate case \(H(t) = t + \frac{1}{p} t^p \)?

- can we expect \(u \in W^{2,\infty} \)? NOT
- can we expect something on \(\nabla H^* (\nabla u) \)? YES
- Less than Lipschitz could be enough? YES

We can use DiPerna-Lions theory. We need \(w \in W^{1,1} \) and \(\nabla \cdot w \in L^\infty \), i.e. we need to prove that \(\nabla v \) is Sobolev and bounded.
Regularity needs

Everything would be fine if \(w = \frac{\bar{v}}{\mu_t} \) was Lipschitz continuous. We can add assumptions on \(\mu, \nu \) : let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \(\bar{v} \)? We have \(\bar{v} = \nabla H^*(\nabla u) \) with

\[
\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu.
\]

If \(H(t) = t^2 \) : standard elliptic regularity!
If \(H^*(t) = t^p \) : \(p \)-Laplacian!
How about the degenerate case \(H(t) = t + \frac{1}{p} t^p \)?

- Can we expect \(u \in W^{2,\infty} \)? NOT
- Can we expect something on \(\nabla H^*(\nabla u) \)? YES
- Less than Lipschitz could be enough? YES

We can use DiPerna-Lions theory. We need \(w \in W^{1,1} \) and \(\nabla \cdot w \in L^\infty \), i.e. we need to prove that \(\bar{v} \) is Sobolev and bounded.
Regularity needs

Everything would be fine if $w = \bar{v}/\mu t$ was Lipschitz continuous. We can add assumptions on μ, ν: let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \bar{v}? We have $\bar{v} = \nabla H^*(\nabla u)$ with

$$\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu.$$

If $H(t) = t^2$: standard elliptic regularity!
If $H^*(t) = t^p$: $p-$Laplacian!
How about the degenerate case $H(t) = t + \frac{1}{p} t^p$?

- can we expect $u \in W^{2,\infty}$? NOT
- can we expect something on $\nabla H^*(\nabla u)$? YES
- Less than Lipschitz could be enough? YES

We can use DiPerna-Lions theory. We need $w \in W^{1,1}$ and $\nabla \cdot w \in L^\infty$, i.e. we need to prove that \bar{v} is Sobolev and bounded.
Regularity needs

Everything would be fine if \(w = \frac{\overline{v}}{\mu_t} \) was Lipschitz continuous. We can add assumptions on \(\mu, \nu \): let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \(\overline{v} \)? We have \(\overline{v} = \nabla H^*(\nabla u) \) with

\[
\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu.
\]

If \(H(t) = t^2 \): standard elliptic regularity!
If \(H^*(t) = t^p \): \(p \)-Laplacian!

How about the degenerate case \(H(t) = t + \frac{1}{p} t^p \)?

- can we expect \(u \in W^{2,\infty} \)? NOT
- can we expect something on \(\nabla H^*(\nabla u) \)? YES
- Less than Lipschitz could be enough? YES

We can use **DiPerna-Lions theory**. We need \(w \in W^{1,1} \) and \(\nabla \cdot w \in L^\infty \), i.e. we need to prove that \(\overline{v} \) is Sobolev and bounded.
Regularity needs

Everything would be fine if \(w = \nabla / \mu_t \) was Lipschitz continuous. We can add assumptions on \(\mu, \nu \): let us suppose them to be a.c. with Lipschitz densities bounded away from 0.

But what about \(\overline{v} \)? We have \(\overline{v} = \nabla H^*(\nabla u) \) with

\[
\nabla \cdot \nabla H^*(\nabla u) = \mu - \nu.
\]

If \(H(t) = t^2 \): **standard elliptic regularity**!

If \(H^*(t) = t^p \): \(p \)-Laplacian!

How about the degenerate case \(H(t) = t + \frac{1}{p} t^p \)?

- can we expect \(u \in W^{2, \infty} \)? NOT
- can we expect something on \(\nabla H^*(\nabla u) \)? YES
- Less than Lipschitz could be enough? YES

We can use **DiPerna-Lions theory**. We need \(w \in W^{1, 1} \) and \(\nabla \cdot w \in L^\infty \), i.e. we need to prove that \(\overline{v} \) is Sobolev and bounded.
Here it is: Sobolevness and boundedness

Take $p \geq 2$ and consider the very degenerate elliptic equation

$$\nabla \cdot F_{p-1}(\nabla u) = f$$

where $F_r(z) = (|z| - 1)^r + \frac{z}{|z|}$. Suppose $f \in W^{1,p'}$:

1. $F_{p/2}(\nabla u) \in W^{1,2}$.
2. $|\nabla u| \in L^\infty$ (here $f \in L^{d+\varepsilon}$ is enough).
3. $F_{p-1}(\nabla u) \in W^{1,2}$.

Tools: for 1) adapt the incremental ratio method for the $p-$Laplacian, for 2) use suitable test functions based on $(|\nabla u| - 2)_+$.

Strange assumptions on the datum f. Usually to get $\nabla u \in W^{1,p}$ one needs $f \in L^p$, not $f \in W^{1,p}$. Actually we can arrive up to $f \in BV \cap L^{d+\varepsilon}$ but not better, we need at least some differentiability! This is due to the degeneracy, which always asks for more regularity (also on $\partial \Omega$).

Here it is : Sobolevness and boundedness

Take $p \geq 2$ and consider the very degenerate elliptic equation

$$\nabla \cdot F_{p-1}(\nabla u) = f$$

where $F_r(z) = (|z| - 1)^r + \frac{z}{|z|}$. Suppose $f \in W^{1,p'}$: then

1. $F_{p/2}(\nabla u) \in W^{1,2}$.
2. $|\nabla u| \in L^\infty$ (here $f \in L^{d+\epsilon}$ is enough).
3. $F_{p-1}(\nabla u) \in W^{1,2}$.

Tools : for 1) adapt the incremental ratio method for the $p-$Laplacian, for 2) use suitable test functions based on $(|\nabla u| - 2)_+$.

Strange assumptions on the datum f. Usually to get $\nabla u \in W^{1,p}$ one needs $f \in L^p$, not $f \in W^{1,p}$. Actually we can arrive up to $f \in BV \cap L^{d+\epsilon}$ but not better, we need at least some differentiability ! This is due to the degeneracy, which always asks for more regularity (also on $\partial \Omega$).

Here it is: Sobolevness and boundedness

Take $p \geq 2$ and consider the very degenerate elliptic equation

$$\nabla \cdot F_{p-1}(\nabla u) = f$$

where $F_r(z) = (|z| - 1)^r + \frac{z}{|z|}$. Suppose $f \in W^{1,p'}$:

1. $F_{p/2}(\nabla u) \in W^{1,2}$.
2. $|\nabla u| \in L^\infty$ (here $f \in L^{d+\epsilon}$ is enough).
3. $F_{p-1}(\nabla u) \in W^{1,2}$.

Tools: for 1) adapt the incremental ratio method for the p-Laplacian, for 2) use suitable test functions based on $(|\nabla u| - 2)_+$.

Strange assumptions on the datum f. Usually to get $\nabla u \in W^{1,p}$ one needs $f \in L^p$, not $f \in W^{1,p}$. Actually we can arrive up to $f \in BV \cap L^{d+\epsilon}$ but not better, we need at least some differentiability! This is due to the degeneracy, which always asks for more regularity (also on $\partial \Omega$).

Here it is: Sobolevness and boundedness

Take $p \geq 2$ and consider the very degenerate elliptic equation

$$\nabla \cdot F_{p-1}(\nabla u) = f$$

where $F_r(z) = (|z| - 1)^r + \frac{z}{|z|}$. Suppose $f \in W^{1,p'}$: then

1. $F_{p/2}(\nabla u) \in W^{1,2}$.
2. $|\nabla u| \in L^\infty$ (here $f \in L^{d+\varepsilon}$ is enough).
3. $F_{p-1}(\nabla u) \in W^{1,2}$.

Tools: for 1) adapt the incremental ratio method for the $p-$Laplacian, for 2) use suitable test functions based on $(|\nabla u| - 2)_+$.

Strange assumptions on the datum f. Usually to get $\nabla u \in W^{1,p}$ one needs $f \in L^p$, not $f \in W^{1,p}$. Actually we can arrive up to $f \in BV \cap L^{d+\varepsilon}$ but not better, we need at least some differentiability! This is due to the degeneracy, which always asks for more regularity (also on $\partial \Omega$).

Here it is : Sobolevness and boundedness

Take $p \geq 2$ and consider the very degenerate elliptic equation

$$\nabla \cdot F_{p-1}(\nabla u) = f$$

where $F_r(z) = (|z| - 1)^r + \frac{z}{|z|}$. Suppose $f \in W^{1,p'}$: then

1. $F_{p/2}(\nabla u) \in W^{1,2}$.
2. $|\nabla u| \in L^\infty$ (here $f \in L^{d+\varepsilon}$ is enough).
3. $F_{p-1}(\nabla u) \in W^{1,2}$.

Tools : for 1) adapt the incremental ratio method for the $p-$Laplacian, for 2) use suitable test functions based on $(|\nabla u| - 2)_+$.

Strange assumptions on the datum f. Usually to get $\nabla u \in W^{1,p}$ one needs $f \in L^p$, not $f \in W^{1,p}$. Actually we can arrive up to $f \in BV \cap L^{d+\varepsilon}$ but not better, we need at least some differentiability! This is due to the degeneracy, which always asks for more regularity (also on $\partial \Omega$).

More on regularity

Continuity in dimension two

Solve

\[\nabla \cdot F(\nabla u) = f \]

with \(F = \nabla \mathcal{H}^*, \ D^2 \mathcal{H}^*(z) \geq c_\delta I_d, \ c_\delta > 0, \) for all \(z \notin B_{1+\delta}, \ f \in L^{2+\varepsilon}, \ d = 2: \) suppose also \(F(\nabla u) \in W^{1,2} \cap L^\infty. \) Then \(g(\nabla u) \in C^0 \) for every \(g \in C^0(\mathbb{R}^2) \) with \(g = 0 \) sur \(B_1. \)

Strategy : consider first \(\nu_{e,\delta} = (\nabla u \cdot e - (1 + \delta)\,)_+ \) which solves a better equation, and prove continuity for it (actually the true assumption should be \(\nu_{e,\delta} \in W^{1,2} \) rather than \(F(\nabla u) \in W^{1,2}. \) \(C^0 \) estimates are uniform in \(e, \) but degenerate as \(\delta \to 0. \) Yet, as \(\delta \to 0 \) we have uniform convergence, and continuity is preserved. The modulus of continuity is very poor (for \(\delta > 0 \) it is logarithmic).

More on regularity

Continuity in dimension two

Solve

\[\nabla \cdot F(\nabla u) = f \]

with \(F = \nabla H^*, D^2 H^*(z) \geq c_\delta I_d, c_\delta > 0 \), for all \(z \notin B_{1+\delta} \), \(f \in L^{2+\varepsilon} \), \(d = 2 \): suppose also \(F(\nabla u) \in W^{1,2} \cap L^\infty \). Then \(g(\nabla u) \in C^0 \) for every \(g \in C^0(\mathbb{R}^2) \) with \(g = 0 \) sur \(B_1 \).

Strategy: consider first \(\nu_{e,\delta} = (\nabla u \cdot e - (1 + \delta))^+ \) which solves a better equation, and prove continuity for it (actually the true assumption should be \(\nu_{e,\delta} \in W^{1,2} \) rather than \(F(\nabla u) \in W^{1,2} \)). \(C^0 \) estimates are uniform in \(e \), but degenerate as \(\delta \to 0 \). Yet, as \(\delta \to 0 \) we have uniform convergence, and continuity is preserved. The modulus of continuity is very poor (for \(\delta > 0 \) it is logarithmic).

Regularity : some perspectives

Anisotropy
The continuous congestion model leading to these PDEs is not the homogenization limit of network on grids. Instead, non-isotropic functions H appear. Apart from modeling (traffic intensities depending on directions, not only on i_Q) and homogenization (random networks) questions one could study more general functions \mathcal{H}. Even for the easiest case

$$\mathcal{H}(v) = |v_1|^p + |v_2|^p + \cdots + |v_d|^p \quad (p > 2)$$

regularity results are not obvious, nor all known. (L. Brasco, G. Carlier)

The singular case
We only considered the degenerate case $p > 2$. What about continuity of $F_{p-1}(\nabla u)$ for $p < 2$? the idea is that $\nu_{e,\delta}$ could be easy to deal with, and then use the uniform limit as $\delta \to 0$. (L. Brasco, V. Julin)

Better continuity results
It seems that $C^{1,\alpha}$ techniques for the $p-$Laplacian could be used to prove $C^{0,\alpha}$ for $F_{p-1}(\nabla u)$. If it worked, it would improve the continuity result we have, and be valid in any dimension! (L. Caffarelli, A. Figalli)
Regularity: some perspectives

Anisotropy
The continuous congestion model leading to these PDEs is not the homogenization limit of network on grids. Instead, non-isotropic functions H appear. Apart from modeling (traffic intensities depending on directions, not only on i_Q) and homogenization (random networks) questions one could study more general functions H. Even for the easiest case

$$H(v) = |v_1|^p + |v_2|^p + \cdots + |v_d|^p \quad (p > 2)$$

regularity results are not obvious, nor all known. (L. Brasco, G. Carlier)

The singular case
We only considered the degenerate case $p > 2$. What about continuity of $F_{p-1}(\nabla u)$ for $p < 2$? the idea is that $v_{e,\delta}$ could be easy to deal with, and then use the uniform limit as $\delta \to 0$. (L. Brasco, V. Julin)

Better continuity results
It seems that $C^{1,\alpha}$ techniques for the $p-$Laplacian could be used to prove $C^{0,\alpha}$ for $F_{p-1}(\nabla u)$. If it worked, it would improve the continuity result we have, and be valid in any dimension! (L. Caffarelli, A. Figalli)
Regularity: some perspectives

Anisotropy
The continuous congestion model leading to these PDEs is not the homogenization limit of network on grids. Instead, non-isotropic functions H appear. Apart from modeling (traffic intensities depending on directions, not only on i_Q) and homogenization (random networks) questions one could study more general functions H. Even for the easiest case

$$H(v) = |v_1|^p + |v_2|^p + \cdots + |v_d|^p \quad (p > 2)$$

regularity results are not obvious, nor all known. (L. Brasco, G. Carlier)

The singular case
We only considered the degenerate case $p > 2$. What about continuity of $F_{p-1}(\nabla u)$ for $p < 2$? the idea is that $v_{e, \delta}$ could be easy to deal with, and then use the uniform limit as $\delta \to 0$. (L. Brasco, V. Julin)

Better continuity results
It seems that $C^{1, \alpha}$ techniques for the $p-$Laplacian could be used to prove $C^{0, \alpha}$ for $F_{p-1}(\nabla u)$. If it worked, it would improve the continuity result we have, and be valid in any dimension! (L. Caffarelli, A. Figalli)
Regularity: some perspectives

Anisotropy
The continuous congestion model leading to these PDEs is not the homogenization limit of network on grids. Instead, non-isotropic functions H appear. Apart from modeling (traffic intensities depending on directions, not only on i_Q) and homogenization (random networks) questions one could study more general functions \mathcal{H}. Even for the easiest case

$$\mathcal{H}(v) = |v_1|^p + |v_2|^p + \cdots + |v_d|^p \quad (p > 2)$$

regularity results are not obvious, nor all known. (L. Brasco, G. Carlier)

The singular case
We only considered the degenerate case $p > 2$. What about continuity of $F_{p-1}(\nabla u)$ for $p < 2$? The idea is that $v_{e,\delta}$ could be easy to deal with, and then use the uniform limit as $\delta \to 0$. (L. Brasco, V. Julin)

Better continuity results
It seems that $C^{1,\alpha}$ techniques for the $p-$Laplacian could be used to prove $C^{0,\alpha}$ for $F_{p-1}(\nabla u)$. If it worked, it would improve the continuity result we have, and be valid in any dimension! (L. Caffarelli, A. Figalli)
Transport density (but it does not really work)

Go back to \(\min \int |\nabla \cdot v| : \nabla \cdot v = \mu - \nu \). The measure \(m = |\nabla v| = i_Q \) (for the optimal field \(\nabla v \)) is usually called transport density. It solves with the Kantorovitch potential \(u \) the Monge-Kantorovitch system of PDEs

\[
\nabla \cdot (m \nabla u) = \mu - \nu; \quad |\nabla u| \leq 1; \quad |\nabla u| = 1 \text{ a.e. on } m > 0.
\]

Several regularity questions have been analyzed on the transport density \(m \), such as \(\mu, \nu \in L^p \Rightarrow m \in L^p \). But \(C^0 \) and differentiability are open.

A strategy : approximate through

\[
\min \int |v| + \frac{\varepsilon}{2} |v|^2 : \nabla \cdot v = \mu - \nu
\]

We have \(H(t) = t + \frac{\varepsilon}{2} t^2, H^*(t) = \frac{1}{2\varepsilon} (t - 1)^2_+ \). Study, as \(\varepsilon \to 0 \), the PDE

\[
\nabla F_1(\nabla u) = \varepsilon f
\]

Problem : the non linearity of the operator does not allow easy estimates.

Transport density (but it does not really work)

Go back to \(\min \int |\mathbf{v}| : \nabla \cdot \mathbf{v} = \mu - \nu \). The measure \(m = |\mathbf{v}| = i_Q \) (for the optimal field \(\mathbf{v} \)) is usually called transport density. It solves with the Kantorovitch potential \(u \) the Monge-Kantorovitch system of PDEs

\[
\nabla \cdot (m \nabla u) = \mu - \nu; \quad |\nabla u| \leq 1; \quad |\nabla u| = 1 \; \text{a.e. on} \; m > 0.
\]

Several regularity questions have been analyzed on the transport density \(m \), such as \(\mu, \nu \in L^p \Rightarrow m \in L^p \). But \(C^0 \) and differentiability are open.

A strategy: approximate through

\[
\min \int |\mathbf{v}| + \frac{\varepsilon}{2} |\mathbf{v}|^2 : \nabla \cdot \mathbf{v} = \mu - \nu
\]

We have \(H(t) = t + \frac{\varepsilon}{2} t^2, \; H^*(t) = \frac{1}{2\varepsilon} (t - 1)^2 \). Study, as \(\varepsilon \to 0 \), the PDE

\[
\nabla F_1(\nabla u) = \varepsilon f
\]

Problem: the non linearity of the operator does not allow easy estimates.

Transport density (but it does not really work)

Go back to \(\min \int |v| : \nabla \cdot v = \mu - \nu \). The measure \(m = |\nabla v| = i_Q \) (for the optimal field \(\nabla v \)) is usually called transport density. It solves with the Kantorovitch potential \(u \) the Monge-Kantorovitch system of PDEs

\[
\nabla \cdot (m \nabla u) = \mu - \nu; \quad |\nabla u| \leq 1; \quad |\nabla u| = 1 \text{ a.e. on } m > 0.
\]

Several regularity questions have been analyzed on the transport density \(m \), such as \(\mu, \nu \in L^p \Rightarrow m \in L^p \). But \(C^0 \) and differentiability are open.

A strategy: approximate through

\[
\min \int |v| + \frac{\varepsilon}{2} |v|^2 : \nabla \cdot v = \mu - \nu
\]

We have \(H(t) = t + \frac{\varepsilon}{2} t^2 \), \(H^*(t) = \frac{1}{2\varepsilon} (t - 1)^2 \). Study, as \(\varepsilon \to 0 \), the PDE

\[
\nabla F_1(\nabla u) = \varepsilon f
\]

Problem: the non linearity of the operator does not allow easy estimates.

Filippo Santambrogio

Very degenerate elliptic equations: applications and regularity
Transport density (but it does not really work)

Go back to \(\min \int |v| : \nabla \cdot v = \mu - \nu \). The measure \(m = |\nabla v| = iQ \) (for the optimal field \(\nabla v \)) is usually called *transport density*. It solves with the Kantorovitch potential \(u \) the *Monge-Kantorovitch system* of PDEs

\[
\nabla \cdot (m \nabla u) = \mu - \nu; \quad |\nabla u| \leq 1; \quad |\nabla u| = 1 \text{ a.e. on } m > 0.
\]

Several regularity questions have been analyzed on the transport density \(m \), such as \(\mu, \nu \in L^p \Rightarrow m \in L^p \). But \(C^0 \) and differentiability are open.

A strategy: approximate through

\[
\min \int |v| + \epsilon |v|^2 : \nabla \cdot v = \mu - \nu
\]

We have \(H(t) = t + \frac{\epsilon}{2} t^2, H^*(t) = \frac{1}{2\epsilon} (t - 1)^2_+ \). Study, as \(\epsilon \to 0 \), the PDE

\[
\nabla F_1(\nabla u) = \epsilon f
\]

Problem: the non linearity of the operator does not allow easy estimates.

THE END . . .

...thanks for your attention