On random optimal design problems for elliptic problems

G. Buttazzo¹ & F. Maestre²

¹Dipartimento di Matematica Università di Pisa

²Departmento de Ecuaciones Diferenciales y Análisis Numérico Universidad de Sevilla

> Partial Differential Equations Benasque 2011

> > ヘロト ヘ戸ト ヘヨト ヘヨト

Random Optimal Design

- Introduction
- A random problem
- 2 The state equation
 - The homogenization method
 - Relaxation
- Optimal solutions
 - The compliance case
- 4 Numerical Analysis
 - Algorithm
 - Simulations

(日)

ъ

Introduction A random problem

イロト イポト イヨト イヨト

Optimal design problems with perturbations

The optimization problem Introduction A random problem ۲ The compliance case Algorithm

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

• the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) dx.$$

イロト イポト イヨト イヨト

The shape optimization problem is

mưn $ig\{ F({m A}) \; : \; {m A} \subset {m D}, \; |{m A}| \leq m ig\}$

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

• the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) dx.$$

イロト イポト イヨト イヨト

The shape optimization problem is

mưn $ig\{ F(oldsymbol{A}) \; : \; oldsymbol{A} \subset D, \; |oldsymbol{A}| \leq m ig\}$

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

• the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) dx.$$

< ロ > < 同 > < 回 > < 回 >

The shape optimization problem is

mưn $ig\{ F(oldsymbol{A}) \; : \; oldsymbol{A} \subset D, \; |oldsymbol{A}| \leq m ig\}$

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

• the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) \, dx.$$

· < 프 > < 프 >

The shape optimization problem is

man $ig\{ F(oldsymbol{A}) \; : \; oldsymbol{A} \subset D, \; |oldsymbol{A}| \leq m ig\}$

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) dx.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The shape optimization problem is

man $ig\{ F(oldsymbol{A}) \; : \; oldsymbol{A} \subset D, \; |oldsymbol{A}| \leq m ig\}$

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) dx.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The shape optimization problem is

man $ig\{ F(oldsymbol{A}) \; : \; oldsymbol{A} \subset D, \; |oldsymbol{A}| \leq m ig\}$

Introduction A random problem

Classical design problems.

A general framework of a shape optimization problem:

- $D \subset \mathbb{R}^d$,
- a volume constraint,
- a source term f,
- for every subdomain $A \subset D$ a PDE

$$E_A u = f$$
,

the final cost

$$F(A) = \int_D j(x, u_A(x), Du_A(x)) dx.$$

The shape optimization problem is

$$\mathsf{m}_{\mathsf{k}}\mathsf{n}\left\{F(A) : A \subset D, |A| \leq m\right\}.$$

Introduction A random problem

イロト イポト イヨト イヨト

Optimal design problems with perturbations

The optimization problem Introduction A random problem The compliance case Algorithm

Introduction A random problem

The new fact is that *f* is only known up to a random perturbation, i.e., if (Ω, \mathcal{F}, P) is a probability space,

$$f(\mathbf{x},\omega) = \overline{f}(\mathbf{x}) + \xi(\mathbf{x},\omega).$$

$$\int_{\Omega} \xi(x,\omega) \, dP(\omega) = 0, \ \int_{\Omega} |\xi(x,\omega)|^2 \, dP(\omega) < \infty \qquad \text{for a.e. } x \in D.$$

the functional

$$F(a) = \int_{\Omega} \left[\int_{D} j(x,\omega; u_a(x,\omega)) \, dx \right] dP(\omega) \tag{1}$$

イロト イポト イヨト イヨト

with $j(x, \omega; u)$ is a Caratheodory function and such that for suitable c > 0 and $\Lambda \in L^1(D \times \Omega)$

$$|j(x,\omega;u)| \leq \Lambda(x,\omega) + c|u|^2 \quad \forall (x,\omega,u).$$

Introduction A random problem

The new fact is that *f* is only known up to a random perturbation, i.e., if (Ω, \mathcal{F}, P) is a probability space,

$$f(\mathbf{x},\omega) = \overline{f}(\mathbf{x}) + \xi(\mathbf{x},\omega).$$

$$\int_{\Omega} \xi(x,\omega) \, dP(\omega) = 0, \ \int_{\Omega} |\xi(x,\omega)|^2 \, dP(\omega) < \infty \qquad \text{for a.e. } x \in D.$$

the functional

$$F(a) = \int_{\Omega} \left[\int_{D} j(x,\omega; u_{a}(x,\omega)) \, dx \right] dP(\omega) \tag{1}$$

イロト イポト イヨト イヨト

with $j(x, \omega; u)$ is a Caratheodory function and such that for suitable c > 0 and $\Lambda \in L^1(D \times \Omega)$

$$|j(x,\omega;u)| \leq \Lambda(x,\omega) + c|u|^2 \quad \forall (x,\omega,u).$$

The optimization problem The state equation Optimal solutions

Introduction A random problem

Our problem.

Our optimal design problem consists in

min *F*(*a*)

subject to,

$$\begin{cases} -\operatorname{div}\left(a(x)Du(x,\omega)\right) = f(x,\omega)\\ u = 0 \text{ on } \partial D, \end{cases}$$
(2)

ヘロン 人間 とくほど くほとう

ъ

with

$$\alpha \leq a(x) \leq \beta, \qquad \int_D a(x) \, dx \leq m$$

a does not depend on ω

Introduction A random problem

Our problem.

Our optimal design problem consists in

min F(a)

subject to,

$$\begin{cases} -\operatorname{div} (a(x)Du(x,\omega)) = f(x,\omega) \\ u = 0 \text{ on } \partial D, \end{cases}$$
(2)

◆□ > ◆□ > ◆豆 > ◆豆 > -

ъ

with

$$\alpha \leq a(x) \leq \beta, \qquad \int_D a(x) \, dx \leq m$$

a does not depend on ω

Introduction A random problem

Our problem.

Our optimal design problem consists in

min F(a)

subject to,

$$\begin{cases} -\operatorname{div} (a(x)Du(x,\omega)) = f(x,\omega) \\ u = 0 \text{ on } \partial D, \end{cases}$$
(2)

イロン 不同 とくほう イヨン

3

with

$$\alpha \leq a(x) \leq \beta, \qquad \int_D a(x) \, dx \leq m$$

a does not depend on ω

Introduction A random problem

Previous works.

Deterministic problems

- Tartar, L. Remarks on optimal design problems, in Calculus of Variations, Homogenizacion and Continuum Mechasnics, (G. Buttazzo, G. Bouchitte and P. Suquet, eds.), World Scientific, Singapore, (1994) 279-296.
- Pedregal, P. Optimal Design in Two-Dimensional Conductivity for a General Cost Depending on the Field, Arch. Rational Mech. Anal. 182 (2006) 367-385.
- Random problems
 - Alvarez F. and Carrasco M., Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29 (2005), 470-476.

イロト イポト イヨト イヨト

Introduction A random problem

Previous works.

Deterministic problems

- Tartar, L. Remarks on optimal design problems, in Calculus of Variations, Homogenizacion and Continuum Mechasnics, (G. Buttazzo, G. Bouchitte and P. Suquet, eds.), World Scientific, Singapore, (1994) 279-296.
- Pedregal, P. Optimal Design in Two-Dimensional Conductivity for a General Cost Depending on the Field, Arch. Rational Mech. Anal. 182 (2006) 367-385.
- Random problems
 - Alvarez F. and Carrasco M., Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29 (2005), 470-476.

ヘロト ヘ戸ト ヘヨト ヘヨト

Introduction A random problem

Previous works.

Deterministic problems

- Tartar, L. Remarks on optimal design problems, in Calculus of Variations, Homogenizacion and Continuum Mechasnics, (G. Buttazzo, G. Bouchitte and P. Suquet, eds.), World Scientific, Singapore, (1994) 279-296.
- Pedregal, P. Optimal Design in Two-Dimensional Conductivity for a General Cost Depending on the Field, Arch. Rational Mech. Anal. 182 (2006) 367-385.
- Random problems
 - Alvarez F. and Carrasco M., Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29 (2005), 470-476.

ヘロト 人間 ト ヘヨト ヘヨト

Introduction A random problem

Previous works.

Deterministic problems

- Tartar, L. Remarks on optimal design problems, in Calculus of Variations, Homogenizacion and Continuum Mechasnics, (G. Buttazzo, G. Bouchitte and P. Suquet, eds.), World Scientific, Singapore, (1994) 279-296.
- Pedregal, P. Optimal Design in Two-Dimensional Conductivity for a General Cost Depending on the Field, Arch. Rational Mech. Anal. 182 (2006) 367-385.

Random problems

Alvarez F. and Carrasco M., *Minimization of the expected compliance as an alternative approach to multiload truss optimization*, Struct. Multidiscip. Optim., **29** (2005), 470-476.

Introduction A random problem

Previous works.

Deterministic problems

- Tartar, L. Remarks on optimal design problems, in Calculus of Variations, Homogenizacion and Continuum Mechasnics, (G. Buttazzo, G. Bouchitte and P. Suquet, eds.), World Scientific, Singapore, (1994) 279-296.
- Pedregal, P. Optimal Design in Two-Dimensional Conductivity for a General Cost Depending on the Field, Arch. Rational Mech. Anal. 182 (2006) 367-385.
- Random problems
 - Alvarez F. and Carrasco M., *Minimization of the expected compliance as an alternative approach to multiload truss optimization*, Struct. Multidiscip. Optim., **29** (2005), 470-476.

The homogenization method Relaxation

イロト イポト イヨト イヨト

Optimal design problems with perturbations

- Introduction A random problem ۲ 2 The state equation The homogenization method The compliance case Algorithm
 - Simulations

The homogenization method Relaxation

Definition

We say that a sequence of tensors $\{A_n\}_{n \in \mathbb{N}}$ H-converges to the tensor $A_* \in L^{\infty}(D, M^{n \times n})$ if, for any f such that $f(\cdot, \omega) \in H^{-1}(D)$ P-a.e. $\omega \in \Omega$, the sequence $\{u_n\}$ of solutions of

$$\begin{cases} -\operatorname{div} \left(A_n(x) \nabla u_n(x,\omega) \right) &= f(x,\omega) & \text{in } D \\ u_n &= 0 & \text{on } \partial D. \end{cases}$$

satisfies

$$\left(\begin{array}{cc} u_n(\cdot,\omega) \rightharpoonup u(\cdot,\omega) & \text{in } H^1_0(D), \quad P\text{-}a.e. \ \omega \in \Omega \\ A_n \nabla u_n(\cdot,\omega) \rightharpoonup A_* \nabla u(\cdot,\omega) & \text{in } L^2(D)^d, \quad P\text{-}a.e. \ \omega \in \Omega \end{array} \right)$$

with $u(\cdot,\omega)$ solution of the homogenized equation P-a.e. $\omega \in \Omega$

$$\begin{bmatrix} -\operatorname{div} (A_*(x)\nabla u(x,\omega)) &= f(x,\omega) & \text{in } D, \\ u &= 0 & \text{on } \partial D \end{bmatrix}$$

The homogenization method Relaxation

イロト イポト イヨト イヨト

Optimal design problems with perturbations

Introduction A random problem The state equation 2 The homogenization method Relaxation The compliance case ۲ Algorithm

The homogenization method Relaxation

ヘロト 人間 とくほとくほとう

$$(O_c) \qquad \text{max} I(\chi) = \int_{\Omega} \left[\int_{D} j(x, \omega, u_{\chi}(x, \omega)) \, dx \right] dP(\omega)$$

subject to

$$\chi \in L^{\infty}(\Omega; \{0, 1\}), \text{ with } A = \alpha I_d \chi + \beta I_d(1 - \chi), \\ -\operatorname{div} (A(x) \nabla u(x, \omega)) = f(x, \omega) \quad \text{in } D, \\ u = 0 \quad \text{on } \partial D,$$

P-a.e. $\omega \in \Omega$, and to the volume constraint

$$\int_D \chi(x) \, dx \leq L,$$

with $L \in (0, |D|)$.

The homogenization method Relaxation

イロト イポト イヨト イヨト

F. Murat, *Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients*, Ann. Mat. Pura Appl., **112** (1977), 49-68.

We denote G_{θ} and \widetilde{G}_{θ} the *G*-closure associated with the deterministic and random equations.

Proposition $G_{ heta} = ilde{G}_{ heta}$

G. Buttazzo & F. Maestre

The homogenization method Relaxation

イロト イポト イヨト イヨト

F. Murat, *Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients*, Ann. Mat. Pura Appl., **112** (1977), 49-68.

We denote G_{θ} and \widetilde{G}_{θ} the *G*-closure associated with the deterministic and random equations.

The homogenization method Relaxation

イロン イボン イヨン イヨン

æ

F. Murat, *Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients*, Ann. Mat. Pura Appl., **112** (1977), 49-68.

We denote G_{θ} and \widetilde{G}_{θ} the *G*-closure associated with the deterministic and random equations.

Proposition $G_ heta = \widetilde{G}_ heta$

The homogenization method Relaxation

Relaxed problem.

$$(O_r) \qquad \mathsf{man} \ I(\theta, A_*) = \int_{\Omega} \left[\int_{D} j(x, \omega, u(x, \omega)) \, dx \right] dP(\omega)$$

subject to

$$\begin{array}{l} \theta \in L^{\infty}(D; [0, 1]), \text{ with } A_* \in G_{\theta}, \\ -\operatorname{div} \left(A_*(x) \nabla u(x, \omega) \right) = f(x, \omega) \quad \text{in } D, \\ u = 0 \quad \text{on } \partial D, \end{array}$$
(3)

イロン 不得 とくほ とくほとう

3

P-a.e. $\omega \in \Omega$, and the volume constraint

$$\int_D \theta(x)\,dx \leq L,$$

with $L \in (0, |D|)$.

The homogenization method Relaxation

イロン 不得 とくほ とくほとう

ъ

Theorem

(O_r) is a relaxation of (O_c) in the sense that

the infima of both problems coincide

) there are optimal solutions for the relaxed problem (O_r).

The homogenization method Relaxation

イロン イボン イヨン イヨン

ъ

Theorem

 (O_r) is a relaxation of (O_c) in the sense that

the infima of both problems coincide

there are optimal solutions for the relaxed problem (O_r) .

The homogenization method Relaxation

イロン イボン イヨン イヨン

ъ

Theorem

 (O_r) is a relaxation of (O_c) in the sense that

- the infima of both problems coincide
- Ithere are optimal solutions for the relaxed problem (Or).

The compliance case

イロト イポト イヨト イヨト

Optimal design problems with perturbations

- Introduction A random problem **Optimal solutions** 3 The compliance case
 - Algorithm
 - Simulations

The compliance case

イロト 不得 とくほ とくほとう

ъ

We analize the special case when the cost functionals is the *compliance*

$$i(x,\omega,u)=f(x,\omega)u$$

and *P* is a d - 1 sum of Dirac masses.

J

Theorem

In the case of the compliance energy the original optimization problem (2) admits a solution.

イロト イポト イヨト イヨト

3

We analize the special case when the cost functionals is the *compliance*

$$j(\mathbf{x},\omega,\mathbf{u})=f(\mathbf{x},\omega)\mathbf{u}$$

and *P* is a d - 1 sum of Dirac masses.

Theorem

In the case of the compliance energy the original optimization problem (2) admits a solution.

Algorithm Simulations

Numerical Analysis

We propose the numerical analysis of the following problem $D \subset \mathbb{R}^2$ (d=2):

(O) matrix
$$I(a) = \int_{\Omega} \left[\int_{D} f(x,\omega) \cdot u(x,\omega) dx \right] dP$$

subject to,

$$a \in L^{\infty}(D; [\alpha, \beta]),$$

- div $(a(x)\nabla u(x, \omega)) = f$ in D ,
 $u = u_0$ on ∂D ,
 $\int_D a(x) dx = L$

イロン 不得 とくほ とくほとう

ъ

Algorithm Simulations

イロト イポト イヨト イヨト

Optimal design problems with perturbations

- Introduction A random problem ۲ The compliance case ۲ Numerical Analysis
 - Algorithm
 - Simulations

Algorithm Simulations

We use a gradient descent algorithm. We consider $0 < \alpha \le \beta$, $m \in (\alpha |D|, \beta |D|)$ and $\varepsilon < 1$, $\varepsilon_1 \ll 1$ data of the problem, the structure of the algorithm is as follows.

- Initialization of the density $a^0 \in L^{\infty}(D; [\alpha, \beta]);$
- for $k \ge 0$, iteration until convergence (i.e., $|I_{\gamma}(a^{k+1}) I_{\gamma}(a^{k})| \le \varepsilon_1 |I_{\gamma}(a^0)|$) as follows:
 - compute the state u_{ak} and then the co-state p_{ak}, both corresponding to a = a^k;
 - compute the descent direction ã,and the multiplier γ;
 - update the density a^k in D:

$$a^{k+1} = a^k + \varepsilon (a^k - \alpha)(\beta - a^k)\tilde{a}^k,$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Algorithm Simulations

We use a gradient descent algorithm. We consider $0 < \alpha \leq \beta$, $m \in (\alpha |D|, \beta |D|)$ and $\varepsilon < 1$, $\varepsilon_1 \ll 1$ data of the problem, the structure of the algorithm is as follows.

- Initialization of the density $a^0 \in L^{\infty}(D; [\alpha, \beta]);$
- for $k \ge 0$, iteration until convergence (i.e., $|I_{\gamma}(a^{k+1}) I_{\gamma}(a^{k})| \le \varepsilon_1 |I_{\gamma}(a^0)|$) as follows:
 - compute the state u_{a^k} and then the co-state p_{a^k} , both corresponding to $a = a^k$;
 - compute the descent direction \tilde{a} , and the multiplier γ ;
 - update the density a^k in D:

$$\mathbf{a}^{k+1} = \mathbf{a}^k + \varepsilon (\mathbf{a}^k - \alpha)(\beta - \mathbf{a}^k)\tilde{\mathbf{a}}^k,$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Algorithm Simulations

We use a gradient descent algorithm. We consider $0 < \alpha \leq \beta$, $m \in (\alpha |D|, \beta |D|)$ and $\varepsilon < 1$, $\varepsilon_1 \ll 1$ data of the problem, the structure of the algorithm is as follows.

- Initialization of the density $a^0 \in L^{\infty}(D; [\alpha, \beta]);$
- for $k \ge 0$, iteration until convergence (i.e., $|I_{\gamma}(a^{k+1}) I_{\gamma}(a^k)| \le \varepsilon_1 |I_{\gamma}(a^0)|$) as follows:

• compute the state u_{a^k} and then the co-state p_{a^k} , both corresponding to $a = a^k$;

compute the descent direction ã,and the multiplier γ;
update the density a^k in D:

$$a^{k+1} = a^k + \varepsilon (a^k - \alpha)(\beta - a^k)\tilde{a}^k,$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Algorithm Simulations

We use a gradient descent algorithm. We consider $0 < \alpha \leq \beta$, $m \in (\alpha |D|, \beta |D|)$ and $\varepsilon < 1$, $\varepsilon_1 \ll 1$ data of the problem, the structure of the algorithm is as follows.

- Initialization of the density $a^0 \in L^{\infty}(D; [\alpha, \beta]);$
- for $k \ge 0$, iteration until convergence (i.e., $|I_{\gamma}(a^{k+1}) I_{\gamma}(a^k)| \le \varepsilon_1 |I_{\gamma}(a^0)|$) as follows:
 - compute the state u_{a^k} and then the co-state p_{a^k} , both corresponding to $a = a^k$;
 - compute the descent direction \tilde{a} , and the multiplier γ ;
 - update the density a^k in D:

$$a^{k+1} = a^k + \varepsilon (a^k - \alpha)(\beta - a^k)\tilde{a}^k,$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Algorithm

We use a gradient descent algorithm. We consider $0 < \alpha < \beta$, $m \in (\alpha |D|, \beta |D|)$ and $\varepsilon < 1, \varepsilon_1 \ll 1$ data of the problem, the structure of the algorithm is as follows.

- Initialization of the density $a^0 \in L^{\infty}(D; [\alpha, \beta])$;
- for k > 0, iteration until convergence (i.e., $|I_{\gamma}(a^{k+1}) - I_{\gamma}(a^{k})| \leq \varepsilon_1 |I_{\gamma}(a^0)|$ as follows:
 - compute the state u_{a^k} and then the co-state p_{a^k} , both corresponding to $a = a^k$;
 - compute the descent direction \tilde{a} , and the multiplier γ ;
 - update the density a^k in D:

$$\boldsymbol{a}^{k+1} = \boldsymbol{a}^k + \varepsilon (\boldsymbol{a}^k - \alpha)(\beta - \boldsymbol{a}^k)\tilde{\boldsymbol{a}}^k,$$

<ロ> (四) (四) (三) (三) (三)

Algorithm Simulations

イロト イポト イヨト イヨト

Optimal design problems with perturbations

- Introduction A random problem ۲ The compliance case ۲ Numerical Analysis Algorithm
 - Simulations

Algorithm Simulations

We consider:

- The domain $D = (0, 1)^2$,
- Two phases $\alpha = 1$ and $\beta = 2$,
- the volume constraint $m = \frac{\alpha + \beta}{2} = 1,5$
- the source term, $f(x, y) = (x \frac{1}{2})^2 + (y \frac{1}{2})^2$.

By simplicity we choose the random variable ξ with a discrete distribution of probability. We consider two different cases for ξ :

イロト イポト イヨト イヨト 三日

- **Case 1:** $\xi(x) = \pm \chi_{D_0}$ where $D_0 = [\frac{1}{4}, \frac{3}{4}]^2 \subset D$
- Case 2: $\xi(x) = \pm \chi_{D_1}$ where $D_1 = D \setminus D_0$

Algorithm Simulations

We consider:

- The domain $D = (0, 1)^2$,
- Two phases $\alpha = 1$ and $\beta = 2$,
- the volume constraint $m = \frac{\alpha + \beta}{2} = 1,5$
- the source term, $f(x, y) = (x \frac{1}{2})^2 + (y \frac{1}{2})^2$.

By simplicity we choose the random variable ξ with a discrete distribution of probability. We consider two different cases for ξ :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- **Case 1:** $\xi(x) = \pm \chi_{D_0}$ where $D_0 = [\frac{1}{4}, \frac{3}{4}]^2 \subset D$
- Case 2: $\xi(x) = \pm \chi_{D_1}$ where $D_1 = D \setminus D_0$

We consider:

- The domain $D = (0, 1)^2$,
- Two phases $\alpha = 1$ and $\beta = 2$,
- the volume constraint $m = \frac{\alpha + \beta}{2} = 1,5$
- the source term, $f(x, y) = (x \frac{1}{2})^2 + (y \frac{1}{2})^2$.

By simplicity we choose the random variable ξ with a discrete distribution of probability. We consider two different cases for ξ :

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- **Case 1:** $\xi(x) = \pm \chi_{D_0}$ where $D_0 = [\frac{1}{4}, \frac{3}{4}]^2 \subset D$
- Case 2: $\xi(x) = \pm \chi_{D_1}$ where $D_1 = D \setminus D_0$

We consider:

- The domain $D = (0, 1)^2$,
- Two phases $\alpha = 1$ and $\beta = 2$,
- the volume constraint $m = \frac{\alpha + \beta}{2} = 1,5$
- the source term, $f(x, y) = (x \frac{1}{2})^2 + (y \frac{1}{2})^2$.

By simplicity we choose the random variable ξ with a discrete distribution of probability. We consider two different cases for ξ :

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• **Case 1:** $\xi(x) = \pm \chi_{D_0}$ where $D_0 = [\frac{1}{4}, \frac{3}{4}]^2 \subset D$

• Case 2: $\xi(x) = \pm \chi_{D_1}$ where $D_1 = D \setminus D_0$

We consider:

- The domain $D = (0, 1)^2$,
- Two phases $\alpha = 1$ and $\beta = 2$,
- the volume constraint $m = \frac{\alpha + \beta}{2} = 1,5$
- the source term, $f(x, y) = (x \frac{1}{2})^2 + (y \frac{1}{2})^2$.

By simplicity we choose the random variable ξ with a discrete distribution of probability. We consider two different cases for ξ :

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• Case 1: $\xi(x) = \pm \chi_{D_0}$ where $D_0 = [\frac{1}{4}, \frac{3}{4}]^2 \subset D$

• Case 2: $\xi(x) = \pm \chi_{D_1}$ where $D_1 = D \setminus D_0$

We consider:

- The domain $D = (0, 1)^2$,
- Two phases $\alpha = 1$ and $\beta = 2$,
- the volume constraint $m = \frac{\alpha + \beta}{2} = 1,5$
- the source term, $f(x, y) = (x \frac{1}{2})^2 + (y \frac{1}{2})^2$.

By simplicity we choose the random variable ξ with a discrete distribution of probability. We consider two different cases for ξ :

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• Case 1: $\xi(x) = \pm \chi_{D_0}$ where $D_0 = [\frac{1}{4}, \frac{3}{4}]^2 \subset D$

• Case 2: $\xi(x) = \pm \chi_{D_1}$ where $D_1 = D \setminus D_0$

Algorithm Simulations

Algorithm Simulations

Algorithm Simulations

THANK YOU

FOR YOUR

イロン 不同 とくほう イヨン

3

G. Buttazzo & F. Maestre