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A general framework of a shape optimization problem:

e DCRY,

@ a volume constraint,

@ asource term f,

@ for every subdomain A ¢ D a PDE

EAU: f,

@ the final cost

F(A) = /Dj(x, ua(x), Dua(x)) dx.

The shape optimization problem is
min {F(A) : Ac D, |Al < m}.
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Introduction
A random problem

The new fact is that f is only known up to a random
perturbation, i.e., if (Q, F, P) is a probability space,

f(x,w) = 7(X) + &(x, w).
/§deP o/|ng|2dP() co forae.xeD.
the functional
Fl@)= [ [ [ jtxwivatx.)) o] dP() (1)

with j(x, w; u) is a Caratheodory function and such that for
suitable ¢ > 0and A € L'(D x Q)

J(x,w; u)| < A(x,w) +clulz  Y(x,w,u).
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Our problem.

Our optimal design problem consists in

min F(a)
subject to,
{ —div (a(x)Du(x,w)) = f(x,w) @
u=0o0ndD,
with

a < a(x) < g, /Da(x)dxgm

a does not depend on w
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Definition

We say that a sequence of tensors {An}nen H-converges to the
tensor A, € L>°(D, M™") if, for any f such that f(-,w) € H~'(D)
P-a.e. w € Q, the sequence {up} of solutions of

{—div(An(x)Vun(x,w)) = f(x,w) inD
up = 0 on 9D.

satisfies

Un(,w) = u(-,w) in HY(D), P-a.e. w € Q
AVun(-,w) = AVu(-,w) inlL?(D)Y, P-a.e. w € Q

with u(-,w) solution of the homogenized equation P-a.e. w € Q

—div (A(X)Vu(x,w)) = f(x,w) inD,
u =20 on 0D.
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Relaxation

(0s)  manl(y) / // (X, w, Uy (X, w)) dx} dP(w)
subject to
x € L>*(Q;{0,1}), with A = algx + Bla(1 — x),
—div (A(x)Vu(x,w)) = f(x,w) inD,
u=0 on0D,

P-a.e. w € Q, and to the volume constraint

/ x(x)dx <L,
D
with L € (0, |D)).
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F. Murat, Contre-exemples pour divers probléemes ou le contréle
intervient dans les coefficients, Ann. Mat. Pura Appl., 112
(1977), 49-68.

We denote Gy and é@ the G-closure associated with the
deterministic and random equations.

Proposition
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Relaxed problem.

(Or) men 1(0, A,) / /j (X, w, u(x,w)) dx| dP(w)

subject to
0 € L>°(D;[0,1]), with A, € Gy,
—div (A.(X)Vu(x,w)) = f(x,w) inD, 3)
u=0 ondD,

P-a.e. w € Q, and the volume constraint

/wnmgg
D
with L € (0, |D]).
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(Or) is a relaxation of (O;) in the sense that
@ the infima of both problems coincide
@ there are optimal solutions for the relaxed problem (O;).
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The compliance case

Optimal solutions

We analize the special case when the cost functionals is the
compliance
J(X,w,u) = f(x,w)u

and Pis a d — 1 sum of Dirac masses.
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We analize the special case when the cost functionals is the
compliance
J(X,w,u) = f(x,w)u

and Pis a d — 1 sum of Dirac masses.

In the case of the compliance energy the original optimization
problem (2) admits a solution.
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Numerical Analysis

We propose the numerical analysis of the following problem
D c R? (d=2):

(0)  munl(a) = / / f(x,w) - u(x,w)dx]| dP

subject to,

ae L>(D;[a, B]),
—div (a(x)Vu(x,w)) =f inD,
u=uy ongdD,

/Da(x) dx =1L
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We consider 0 < o < 8, me (a|D|,B|D|) and e < 1, g1 < 1
data of the problem, the structure of the algorithm is as follows.

o Initialization of the density a° € L°°(D; [, 5]);
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Numerical Analysis

We use a gradient descent algorithm.
We consider 0 < o < 8, me (a|D|,B|D|) and e < 1, g1 < 1
data of the problem, the structure of the algorithm is as follows.
e Initialization of the density a° € L>°(D; [a, 5]);
@ for k > 0, iteration until convergence (i.e.,
| (&) — 1,(a¥)| < &4]1,(a0)]) as follows:
e compute the state u  and then the co-state p, both
corresponding to a = &;
e compute the descent direction a,and the multiplier ;
e update the density a* in D:

a+t = a + e(d — a)(B — a3,

with ¢ € R* small enough to ensure the decrease of the
cost function, &+ € L>(D, [a, B]).
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We consider:
@ The domain D = (0,1)2,

By simplicity we choose the random variable ¢ with a discrete
distribution of probability. We consider two different cases for ¢:

and in both cases P({¢ = x}) = P({¢ = —x}) = 3.
We show pictures for compliance minimization.
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@ Two phases o =1 and 8 = 2,
e the volume constraint m = %5% =15
e the source term, f(x,y) = (x — )2+ (v — 2)%.

By simplicity we choose the random variable ¢ with a discrete
distribution of probability. We consider two different cases for ¢:

@ Case 1: {(x) = £xp, where Dy = [1,3]2c D
@ Case 2: {(x) = =xp, where Dy = D\ Dy

and in both cases P({¢ = x}) = P({¢ = —x}) = 3.
We show pictures for compliance minimization.
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