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A general framework of a shape optimization problem:
D ⊂ IRd ,
a volume constraint,
a source term f ,
for every subdomain A ⊂ D a PDE

EAu = f ,

the final cost

F (A) =

∫
D

j
(
x ,uA(x),DuA(x)

)
dx .

The shape optimization problem is

m«ın
{

F (A) : A ⊂ D, |A| ≤ m
}
.
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The new fact is that f is only known up to a random
perturbation, i.e., if (Ω,F ,P) is a probability space,

f (x , ω) = f̄ (x) + ξ(x , ω).∫
Ω
ξ(x , ω) dP(ω) = 0,

∫
Ω
|ξ(x , ω)|2 dP(ω) <∞ for a.e. x ∈ D.

the functional

F (a) =

∫
Ω

[ ∫
D

j
(
x , ω; ua(x , ω)

)
dx
]

dP(ω) (1)

with j(x , ω; u) is a Caratheodory function and such that for
suitable c > 0 and Λ ∈ L1(D × Ω)

|j(x , ω; u)| ≤ Λ(x , ω) + c|u|2 ∀(x , ω, u).
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Our problem.

Our optimal design problem consists in

min F (a)

subject to, {
−div

(
a(x)Du(x , ω)

)
= f (x , ω)

u = 0 on ∂D,
(2)

with
α ≤ a(x) ≤ β,

∫
D

a(x) dx ≤ m

a does not depend on ω
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Definition
We say that a sequence of tensors {An}n∈N H-converges to the
tensor A∗ ∈ L∞(D,Mn×n) if, for any f such that f (·, ω) ∈ H−1(D)
P-a.e. ω ∈ Ω, the sequence {un} of solutions of{

−div
(
An(x)∇un(x , ω)

)
= f (x , ω) in D

un = 0 on ∂D.

satisfies{
un(·, ω) ⇀ u(·, ω) in H1

0 (D), P-a.e. ω ∈ Ω
An∇un(·, ω) ⇀ A∗∇u(·, ω) in L2(D)d , P-a.e. ω ∈ Ω

with u(·, ω) solution of the homogenized equation P-a.e. ω ∈ Ω{
−div

(
A∗(x)∇u(x , ω)

)
= f (x , ω) in D,

u = 0 on ∂D.
G. Buttazzo & F. Maestre
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(Oc) m«ın I(χ) =

∫
Ω

[ ∫
D

j(x , ω,uχ(x , ω)) dx
]

dP(ω)

subject to

χ ∈ L∞(Ω; {0,1}), with A = αIdχ+ βId (1− χ),
−div

(
A(x)∇u(x , ω)

)
= f (x , ω) in D,

u = 0 on ∂D,

P-a.e. ω ∈ Ω, and to the volume constraint∫
D
χ(x) dx ≤ L,

with L ∈ (0, |D|).

G. Buttazzo & F. Maestre
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F. Murat, Contre-exemples pour divers problèmes où le contrôle
intervient dans les coefficients, Ann. Mat. Pura Appl., 112
(1977), 49-68.

We denote Gθ and G̃θ the G-closure associated with the
deterministic and random equations.

Proposition

Gθ = G̃θ

G. Buttazzo & F. Maestre



The optimization problem
The state equation

Optimal solutions
Numerical Analysis

The homogenization method
Relaxation

F. Murat, Contre-exemples pour divers problèmes où le contrôle
intervient dans les coefficients, Ann. Mat. Pura Appl., 112
(1977), 49-68.

We denote Gθ and G̃θ the G-closure associated with the
deterministic and random equations.

Proposition

Gθ = G̃θ

G. Buttazzo & F. Maestre



The optimization problem
The state equation

Optimal solutions
Numerical Analysis

The homogenization method
Relaxation

F. Murat, Contre-exemples pour divers problèmes où le contrôle
intervient dans les coefficients, Ann. Mat. Pura Appl., 112
(1977), 49-68.

We denote Gθ and G̃θ the G-closure associated with the
deterministic and random equations.

Proposition

Gθ = G̃θ

G. Buttazzo & F. Maestre



The optimization problem
The state equation

Optimal solutions
Numerical Analysis

The homogenization method
Relaxation

Relaxed problem.

(Or ) m«ın I(θ,A∗) =

∫
Ω

[ ∫
D

j(x , ω, u(x , ω)) dx
]

dP(ω)

subject to

θ ∈ L∞(D; [0,1]), with A∗ ∈ Gθ,
−div

(
A∗(x)∇u(x , ω)

)
= f (x , ω) in D,

u = 0 on ∂D,
(3)

P-a.e. ω ∈ Ω, and the volume constraint∫
D
θ(x) dx ≤ L,

with L ∈ (0, |D|).
G. Buttazzo & F. Maestre
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Theorem
(Or ) is a relaxation of (Oc) in the sense that

1 the infima of both problems coincide
2 there are optimal solutions for the relaxed problem (Or ).
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We analize the special case when the cost functionals is the
compliance

j(x , ω, u) = f (x , ω)u

and P is a d − 1 sum of Dirac masses.

Theorem

In the case of the compliance energy the original optimization
problem (2) admits a solution.
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Numerical Analysis

We propose the numerical analysis of the following problem
D ⊂ IR2 (d=2):

(O) m«ın I(a) =

∫
Ω

[ ∫
D

f (x , ω) · u(x , ω)dx
]

dP

subject to,

a ∈ L∞(D; [α, β]),
−div

(
a(x)∇u(x , ω)

)
= f in D,

u = u0 on ∂D,∫
D

a(x) dx = L

G. Buttazzo & F. Maestre
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We use a gradient descent algorithm.
We consider 0 < α ≤ β, m ∈ (α|D|, β|D|) and ε < 1, ε1 � 1
data of the problem, the structure of the algorithm is as follows.

Initialization of the density a0 ∈ L∞(D; [α, β]);
for k ≥ 0, iteration until convergence (i.e.,
|Iγ(ak+1)− Iγ(ak )| ≤ ε1|Iγ(a0)|) as follows:

compute the state uak and then the co-state pak , both
corresponding to a = ak ;
compute the descent direction ã,and the multiplier γ;
update the density ak in D:

ak+1 = ak + ε(ak − α)(β − ak )ãk ,

with ε ∈ IR+ small enough to ensure the decrease of the
cost function, ak+1 ∈ L∞(D, [α, β]).

G. Buttazzo & F. Maestre
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update the density ak in D:

ak+1 = ak + ε(ak − α)(β − ak )ãk ,
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We consider:
The domain D = (0,1)2,

Two phases α = 1 and β = 2,
the volume constraint m = α+β

2 = 1,5

the source term, f (x , y) = (x − 1
2)2 + (y − 1

2)2.
By simplicity we choose the random variable ξ with a discrete
distribution of probability. We consider two different cases for ξ:

Case 1: ξ(x) = ±χD0 where D0 = [1
4 ,

3
4 ]2 ⊂ D

Case 2: ξ(x) = ±χD1 where D1 = D \ D0

and in both cases P({ξ = χ}) = P({ξ = −χ}) = 1
2 .

We show pictures for compliance minimization.

G. Buttazzo & F. Maestre
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Figura: Left: Optimal distribution for the Compliance minimization.
Right: Energy.
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Left: Case 1, Right: Case 2.
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