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Shock capturing schemes for Shallow water flows

Shallow water flow

Shallow water equations (SWE) are obtained
from incompressible Navier-Stokes equati-
ons by depth-averaging and neglecting some
terms:

ht + div(hv) = 0

(hv)t + div(hv ⊗ v +
gh2

2
I2) = −gh∇z

h ≡ water height,
v = (v̄x , v̄y ) ≡ depth-averaged velocity,
g ≡ gravity acceleration,
z ≡ bottom topography.

To simplify, we do the exposition in 1D:

ht + (hv)x = 0

(hv)t + (hv2 +
gh2

2
)x = −ghzx
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Shock capturing schemes for Shallow water flows

Shock capturing schemes

Use notation:

u =

[
h

hv

]
, f (u) =

[
hv

hv2 + gh2

2

]
, s(x , u) =

[
0

−ghzx

]
so that SWE system can be written as: ut + f (u)x = s(x , u) .
Nonlinear hyperbolic system ⇒ solutions can develop discontinuities. ⇒ use
shock capturing schemes:

un+1
i = un

i −∆t
( f̂ n

i+1/2 − f̂ n
i−1/2

∆x
− sn

i

)
,

where sn
i (u(x , t)) ≈ s(xi , u(xi , tn)) and the numerical fluxes

f̂i+1/2 = f̂ (ui−s, . . . , ui+s+1) verify[
f̂ n
i+1/2 − f̂ n

i−1/2

∆x

]
(u(x , t)) ≈ f (u)x(xi , tn), xi = i∆x , tn = n∆t

and appropriate stability conditions (through upwinding and adding
numerical viscosity to comply with entropy conditions).
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Adaptive Mesh Refinement Adaptive schemes

Adaptive schemes

For N = 1/∆ and d dimensions, computational cost is O(Nd+1), storage is
O(Nd ), huge to get small errors.
Numerical errors are not uniformly distributed:

larger errors at discontinuities
smaller errors at smooth regions

An Adaptive Scheme, with a smaller ∆ where higher errors, would be
necessary for d ≥ 2 and high precision needs.
Many approaches, we briefly review the (Structured) Adaptive Mesh
Refinement algorithm, proposed by [Berger and Oliger, 1984] and extended
by many authors (Colella, Quirk, · · · ) to FV schemes.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Time evolution for some grid size ∆ ≡ ∆x and ∆t .
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Want to zoom at Region Of Interest, say by using ∆/2.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

A: use interpolation (zoom), but this causes large errors near shocks.
B: discard results with ∆, start over with ∆/2.
C: track region of interest through time evolution.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Before going to B plan, notice that solution on Ω× [0,∆t ] (hopefully)
depends on solution at Domain of Dependence Ω̃× {0} (by hyperbolicity).
Can compute solution at Ω× {∆t

2 } (assuming ∆/2 at ROI, same CFL)

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 7 / 31



Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

How can new DD of region of interest be computed?
Zooming by (x , t)-interpolation, OK at (supposedly smooth) surrounding
band (coarse → fine interpolation)
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Recursion ⇒ need nested Grid Hierarchy (for interpolation).
Must synchronize data through GH at same (x , t) (fine → coarse project.)
More (shorter) time steps at finer resolutions (local time stepping).
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Adaptive Mesh Refinement Grid hierarchy
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Adaptive Mesh Refinement Grid hierarchy

Grid hierarchy

Grid hierarchy indexed by level l from l = 0 (coarsest) to l = L (finest).
Point value approach: Points in the grid hierarchy: x l

i = i∆0/2l ,
i = 0, . . . , N02l . Since x l+1

2i = x l
i (even indexed points in level l + 1 are

aligned with points in level l), project solution by just copying

Projl+1→l(u
l+1)i = ul+1

2i , i = 0, . . . , N02l .

fine → coarse coarse → fine
Loss of information when projecting and refining.
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Adaptive Mesh Refinement Grid hierarchy

Grid hierarchy

Cell-based approach: Points in the grid hierarchy: x l
i = (i + 1

2 )∆0/2l ,
i = 0, . . . , N02l − 1 (cell centers).
Since 1

2 (x l+1
2i + x l+1

2i+1) = x l
i , project solution by averaging

Projl+1→l(u
l+1)i =

1
2

(ul+1
2i + ul+1

2i+1), i = 0, . . . , N02l − 1.

Cell-interfaces aligned through hierarchy, can copy numerical fluxes ⇒
coarse cell average = average of fine cell averages

fine → coarse coarse → fine
Can be made conservative.
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Adaptive Mesh Refinement Grid hierarchy

AMR algorithm

Nested grids as in 2D example with 2 levels. In a time snapshot we have
data where marked. At level 0 all the data is available.

AMR algorithm ≡ “time evolution” of grid functions (ut0
0 , Gt0

0 ), . . . , (utL
L , GtL

L )

with data utl
l attached to grid points indexed by subsets Gtl

l and associated to
times t0 ≥ t1 ≥ · · · ≥ tL (coarser levels evolve “faster” to provide interpolation
data to finer levels).
Index sets Gtl

l have to evolve in time to track flow features (some cells at
level l are marked by some criterion and are refined to give next level l + 1).
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Well-balanced AMR Well-balanced schemes

Well-balanced schemes

The convergence of the scheme is usually proved (when possible) through
its consistence and stability (this being the harder part).
But, when seeking convergence to a steady state, it is plausible to require
the scheme to preserve steady states.
When the scheme

un+1
i = un

i −∆t
( f̂ n

i+1/2 − f̂ n
i−1/2

∆x
− sn

i

)
does so, that is:

f (u(x))x = s(x , u(x)) =⇒

[
f̂ n
i+1/2 − f̂ n

i−1/2

∆x
− sn

i

]
(u(x)) = 0

then the scheme is termed well-balanced [Greenberg and Leroux, 1996].
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Well-balanced AMR Well-balanced schemes

Well-balanced schemes

Special steady state for SWE, water at rest (h + z =constant, v = 0).
If a scheme preserves this steady state solution, then the scheme is said to
verify the C-property [Bermudez and Vazquez, 1994].
It is not easy to obtain well-balanced schemes: for example, the centered
choice sn

i = s(xi , un
i ) seldom yields a well-balanced scheme, for this would

imply that the finite differencing of the fluxes would be exact (what is not to
be expected):

s(xi , u(xi , tn)) = f (u(x))x(xi , tn) ≡ u solution of PDE

s(xi , u(xi , tn)) =

[
f̂ n
i+1/2 − f̂ n

i−1/2

∆x

]
(u(x)) ≡ well-balancing

Need to synchronize the discretization of f (u)x and s(x , u), i.e., need to do
an upwind discretization of s(x , u).
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Well-balanced AMR Homogeneous discretization for SWE

Homogeneous discretization

We build on [Gascón and Corberán, 2001, Caselles et al., 2009,
Donat and Martínez-Gavara, 2011]: we can re-write PDE in “homogeneous”
form:

ut + f (u)x = s(x , u) ⇔ ut + g[u]x = 0

where the functional g (dependent on f and s) acts on u = u(x , t) as:

g[u](x , t) = f (u(x , t)) + b[u](x , t), b[u](x , t) = −
∫ x

0
s(r , u(r , t)) dr

Notice that u(x) is a (stationary) solution of PDE ⇔ g[u]x = 0.
We can derive upwind numerical methods for non-homogeneous
conservation law from well established techniques for homogeneous
conservation laws.
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Well-balanced AMR Homogeneous discretization for SWE

Homogeneous discretization

[Donat and Martínez-Gavara, 2011] propose a Lax-Wendroff-type
discretization for ut + g[u]x = 0, which is hybridized with a first order
monotone scheme through flux-limiting techniques that can be written in
terms of ∆ĝn

i− 1
2
,∆ĝn

i+ 1
2

as follows:

un+1
i = un

i −
∆t
∆x

(

Gn
i+ 1

2
−Gn

i− 1
2︷ ︸︸ ︷

An
i ∆ĝn

i− 1
2

+ Bn
i ∆ĝn

i+ 1
2
)

where Gi+ 1
2

are numerical fluxes for g[u] and:

gn
i = g[u](xi , tn) = f (u(xi , tn))−

∫ xi

0
s(r , u(r , tn)dr

∆gn
i+ 1

2
= gn

i+1 − gn
i = f (u(xi+1, tn))− f (u(xi , tn))−

∫ xi+1

xi

s(r , u(r , tn)dr︸ ︷︷ ︸
bn

i,i+1

∆gn
i+ 1

2
≈ ∆ĝn

i+ 1
2

:= f (un
i+1)− f (un

i ) + b̂n
i,i+1, for some b̂n

i,i+1 ≈ bn
i,i+1.

For SWE, suitable b̂n
i,i+1 can be defined to get exact C-property.
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∆gn
i+ 1

2
= gn

i+1 − gn
i = f (u(xi+1, tn))− f (u(xi , tn))−

∫ xi+1

xi

s(r , u(r , tn)dr︸ ︷︷ ︸
bn

i,i+1

∆gn
i+ 1

2
≈ ∆ĝn

i+ 1
2

:= f (un
i+1)− f (un

i ) + b̂n
i,i+1, for some b̂n

i,i+1 ≈ bn
i,i+1.

For SWE, suitable b̂n
i,i+1 can be defined to get exact C-property.
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Well-balanced AMR Well-balanced interpolation

Well-balanced AMR

Ingredients of AMR algorithm:
Basic numerical scheme.
Coarse to fine communication (interpolation).
Fine to coarse communication (projection).

If AMR algorithm is to preserve stationary solutions ⇒
each ingredient should preserve them ⇒
need well-balanced interpolation and projection.

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 19 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced AMR

Ingredients of AMR algorithm:
Basic numerical scheme.
Coarse to fine communication (interpolation).
Fine to coarse communication (projection).

If AMR algorithm is to preserve stationary solutions ⇒
each ingredient should preserve them ⇒
need well-balanced interpolation and projection.

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 19 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation: cell approach

In cell-based grid hierarchy, projection is given by hi+ 1
2

= 1
2 (hi + hi+1), where

indexes indicate the point the data is attached to.
If hi = h(xi) correspond to a water at rest solution, does hi+ 1

2
= 1

2 (hi + hi+1)

correspond to point values (at xi+ 1
2
) of the solution?

If it were so, from h(x) = η − z(x) we get

hi+ 1
2

=
1
2

(
h(xi) + h(xi+1)

)
= η − 1

2

(
z(xi) + z(xi+1)

)
hi+ 1

2
= h(xi+ 1

2
) = η − z(xi+ 1

2
),

so z should verify

z(xi) + z(xi+1)

2
= z

(xi + xi+1

2

)
,∀i ,

which does not hold for general z.
Projection OK if hi are cell-averages of stationary solution, but then
underlying scheme should preserve them (which is not clear, because the
well-balancing of an scheme tipically depends on point values).
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Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation: point-value approach

For point value grid hierarchy, the projection from level l + 1 to level l is given
by copying values with even indexes, corresponding to the same
point-values, so this projection is automatically well-balanced.
How can we get a well-balanced interpolation?
If we can re-write f (u)x = s(x , u) as V (x , u)x = 0, then

u(x) is solution of PDE ⇔ V (x , u(x)) is constant.
V (x , u) ≡ equilibrium variables
In case of SWE, the equilibrium variables are:

V (x ,

[
h

hv

]
) =

[
v2

2 + g(h + z(x))
hv

]

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 21 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation: point-value approach

For point value grid hierarchy, the projection from level l + 1 to level l is given
by copying values with even indexes, corresponding to the same
point-values, so this projection is automatically well-balanced.
How can we get a well-balanced interpolation?
If we can re-write f (u)x = s(x , u) as V (x , u)x = 0, then

u(x) is solution of PDE ⇔ V (x , u(x)) is constant.
V (x , u) ≡ equilibrium variables
In case of SWE, the equilibrium variables are:

V (x ,

[
h

hv

]
) =

[
v2

2 + g(h + z(x))
hv

]

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 21 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation: point-value approach

For point value grid hierarchy, the projection from level l + 1 to level l is given
by copying values with even indexes, corresponding to the same
point-values, so this projection is automatically well-balanced.
How can we get a well-balanced interpolation?
If we can re-write f (u)x = s(x , u) as V (x , u)x = 0, then

u(x) is solution of PDE ⇔ V (x , u(x)) is constant.
V (x , u) ≡ equilibrium variables
In case of SWE, the equilibrium variables are:

V (x ,

[
h

hv

]
) =

[
v2

2 + g(h + z(x))
hv

]

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 21 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation: point-value approach

For point value grid hierarchy, the projection from level l + 1 to level l is given
by copying values with even indexes, corresponding to the same
point-values, so this projection is automatically well-balanced.
How can we get a well-balanced interpolation?
If we can re-write f (u)x = s(x , u) as V (x , u)x = 0, then

u(x) is solution of PDE ⇔ V (x , u(x)) is constant.
V (x , u) ≡ equilibrium variables
In case of SWE, the equilibrium variables are:

V (x ,

[
h

hv

]
) =

[
v2

2 + g(h + z(x))
hv

]

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 21 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation: point-value approach

For point value grid hierarchy, the projection from level l + 1 to level l is given
by copying values with even indexes, corresponding to the same
point-values, so this projection is automatically well-balanced.
How can we get a well-balanced interpolation?
If we can re-write f (u)x = s(x , u) as V (x , u)x = 0, then

u(x) is solution of PDE ⇔ V (x , u(x)) is constant.
V (x , u) ≡ equilibrium variables
In case of SWE, the equilibrium variables are:

V (x ,

[
h

hv

]
) =

[
v2

2 + g(h + z(x))
hv

]

Pep Mulet, Benasque 2011 (UV) AMR for shallow water flows 21 / 31



Well-balanced AMR Well-balanced interpolation

Well-balanced interpolation

Given interpolator I((wi); x) (i.e., I((wi), xj) = wj), if V (x , ·) is bijective onto
some relevant range then can define a well-balanced interpolator by

Ĩ((ui); x) = V (x , ·)−1(I((Vi); x)), Vi = V (xi , ui)

(i.e., Ĩ interpolates V variables obtained from u and gets back to u variables)
Since I preserves constants, then Ĩ preserves stationary states:

V (x , u(x)) = K ,∀x ⇒ V (x , Ĩ((u(xi)); x)) = K ,∀x ⇒ Ĩ((u(xi)); x) is a
stationary solution

For SWE, V (x , ·) is not injective, but, if we only want to preserve water at
rest solutions can take

V (x ,

[
η
µ

]
) =

[
η + z(x)

µ

]
, V (x , ·)−1

[
η
µ

]
=

[
η − z(x)

µ

]
(i.e.,interpolate total heights, then subtract bottom height) and get an
interpolation that preserves water at rest solutions.
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Numerical results Numerical results

Tests setup

We use point-value-based grid hierarchy, with well-balanced interpolation
based on linear interpolation.
Refinement criterion: mark cells to refine when interpolation error exceeds
some relative error rtol on the maximum interpolation error at each level.
∆t is adjusted according to the maximum of characteristic speeds to get a
Courant number of 0.4.
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Numerical results Numerical results

Test for stationary solutions

Water at rest solution of total height=12, bottom topography below. Solution
at T = 200.
Have used rtol=10−1 N0 = 50, and eight levels (L = 7, N7 = 6400) to obtain:

4.59% of total integrations (with respect to equivalent finest fixed grid
computation), CPU speedup ≈ 11.5.
Scheme gives approximated solution with water height h such that
||h + z − 12||∞ = 1.06 · 10−14 and ||v ||∞ = 3.36 · 10−14 ⇒ C-property OK
to double precision.
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Numerical results Numerical results

Test for non stationary 1D solutions

Dam break problem with bottom topography. Solution at T = 15:
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Numerical results Numerical results

Test for non stationary 1D solutions

Have used rtol=10−3, N0 = 50, and eight levels (L = 7, N7 = 6400) to obtain:

4.74% of total integrations (with respect to equivalent finest fixed grid
computation), CPU speedup ≈ 14.04.
Scheme gives approximated solution with water height h such that
||hAMR − hfixed || = 1.44 · 10−4, ||vAMR − vfixed || = 1.47 · 10−4
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Numerical results Numerical results

Test for stationary 2D solutions

Water at rest, total height= 1 and bottom:

Have used rtol=10−1, N0 = 25, and 4 levels (L = 3, N3 = 200), T = 0.1 to
obtain: ||h + z − 1||∞ = 1.1102e − 15, ||vx ||∞ = 3.5162e − 15,
||vy ||∞ = 3.8820e − 15 ⇒ C-property OK to double precision.
22.77% of total integrations, cpu speedup=3.96
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Numerical results Numerical results

Test for non stationary 2D solutions

Circular dam break problem. Have used rtol=10−1, N0 = 25, and 5 levels
(L = 4, N4 = 400), T = 0.25

T = 0 T = 0.25
29.22% of total integrations, cpu speedup=3.72
‖hAMR − hfixed‖∞ = 0.009, difference of mass≈ 0.02%.
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Numerical results Numerical results

Test for non stationary 2D solutions

hAMR − hfixed Grid hierarchy (the lighter, the finer)
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Conclusions

Conclusions

We have presented a technique for obtaining well-balanced
point-value-based adaptive mesh refinement schemes for shallow water
equations.
We have seen some of the difficulties for getting a well-balanced cell-based
adaptive mesh refinement schemes for SWE.
We have tested the scheme with Donat&Martinez-Gavara homogenized
SWE solver and we have obtained an adaptive scheme with the exact
C-property.
We are working on extending it to deal with dry zones.
Possibility of getting an adaptive scheme that preserves more stationary
solutions if underlying scheme does so.
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