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Evaluation of Gradients

Gradient based shape optimization:
Cost function I and the optimization problem be stated as

α … design parameters

Problem: Find 

subject to flow equation R(W, D) = 0 with

2
Efficient gradient based optimisation using adjoint approach 

A =
∂R

∂W

I = f(α), min
w.r.t. α

I(α)

dI

dα

AT Λ = −bT

dI

dα
=

∂I

∂α
+ ΛT B



M(Wn+1 −Wn) = −R(Wn)

M = (D + L)D−1(D + U)

MT (Λn+1 − Λn) = bT −AT Λn

MT = (D + L)T D−T (D + U)T
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Evaluation of Gradients
Solution methods

General solution method:

LU-SGS:

Adjoint



2011 Benasque, 31 September 2011 

Slide 

Linear Iteration on RAE2822
Effect of Separation 

RAE Case 9

Alpha = 2.80

Mach = 0.73

Re = 6.5x106

RAE Case 10

Alpha = 2.80

Mach = 0.75

Re = 6.2x106
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Linear Iteration on RAE2822
Case 9 and 10 Differences
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Linear Iteration on RAE2822
Non-linear Convergence
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Linear Iteration on RAE2822
Linear Convergence 
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Recursive Projection Method
Idea 

Problem: Iterative method N(●) is unstable.

Observation: Probably not all components of the iteration are unstable.

Idea: 
- Since it’s a linear problem, decompose the solution space into a
 sum of eigenvectors of the iteration operator, M-1A.

-The unstable eigenvectors give a subspace P, apply a Newton method.

-Apply M-1A to the remaining subspace Q, where it is stable.

-Obtain eigenvectors with a power iteration.
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Linear Iteration on RAE2822
Linear Convergence with RPM



2011 Benasque, 31 September 2011 

Slide 

Linear Iteration on RAE2822
Linear Convergence with RPM
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Eigenvalues of the Iteration Operator M-1A
Stable and Unstable
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Eigenvectors of the Iteration Operator M-1A
“Map of the Instability of the Iteration”
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Conclusions & Question Marks

We have experience in solving such equations from the non-linear world.
In practice the solution of the linear equations is more difficult than the non-linear due to 
unstable modes.
Need of stabilization techniques, here RPM

but expensive in terms of computational costs
very difficult to parallelize - therefor industrial applicability is restricted

Questions?
Are their more efficient stabilization techniques for solving linear equations?
Has someone experience for parallelization of RPM?
Applicable stabilization techniques for linear systems?
May their be active stabilization instead of passive methods?
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Test Case
DLR-F6

Re=3x106

Mach=0.75
CL=0.5

TAU calculation
JST convective flux
SAE 1-eq turbulence
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Test Case
Convergence

Convergence of:

Newton iteration (on P).
Iteration on Q.
Total residual.
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Test Case
Convergence

Convergence of:

Newton iteration (on P).
Iteration on Q.
Total residual.
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Dominant Eigenvalues of DLR-F6
With LU-SGS and Multigrid

RPM found subspace
of dimension 14:

8 unstable modes
6 slowly converging
modes
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Recursive Projection Method
Idea

Concern solution of linear system:

fixed-point iterative family:

where

is the iterative matrix of numerical scheme and if A and M are nonsingular then (2)
converges. 

But if eigenvalues of (3) become

it diverges.

xl+1 = F (xl) = Φxl + M−1b (2)

Ax = b A ∈ RN×N , b ∈ RN (1)

Φ = I −M−1A, M...preconditioner (3)

|λ1|, ..., |λn| ≥ 1
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Recursive Projection Method
Idea

define divergent subspace with the eigenvalues from (3):

therefor every vector can be decomposed in a unique way as the sum of

orthogonal projectors onto subspace called P and Q, then define from an orthonormal basis:

with

P = span{e1, ..., em}, Q = P⊥

∀x ∈ RN ; ∃(xp, xq) ∈ P×Q : x = xp + xq

V ∈ RN×m; P = V V T and Q = I − V V T

V V T = 1; QΦP = 0
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Recursive Projection Method
Idea

RPM becomes:

and it is proved by Schroff and Keller that in the limit:

xl+1
q = QF (xl)

xl+1
p = xp + (I − PQP )−1(PF (xl)− xl

p)

xl+1 = xl+1
q + xl+1

p

with x0
p = Px0; x0

q = Qx0
q

lim
l→∞

xl
p + xl

q = A−1b
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Recursive Projection Method
Idea

Construction of the basis V:

Remember that (2) converges when Φ contains only the stable eigenspectrum!
So define Krylov subspace of dimension k generated by v1 and hat A

be a matrix whose columns span the subspace 
With equation:

K is easy computed from successive solutions xq and perform a QR factorization on K

k ∈ N∗

v1 = ∆xl−k+1
q ; ∆xj

q = xj+1
q − xq

Â = QΦQ

K = span{v1, Âv1, ..., Â
k−1v1}

and Kk = (v1, Âv1, ..., Â
k−1v1)

K

xl+1
q = QF (xl) we have Âj∆x0

q = ∆xj
q
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Recursive Projection Method
Idea

If solution procedure fails to converge - chose V

kappa is the krylov acceptance ratio.
Size of V is crucial - preventing of adding stable eigenvalues to V consider orthogonal 
projection for approximating eigenvalues of PΦP
Let (lambda, y) be an eigenpair of

eigenvalues verify:

compute new basis without stable modes.
delta allows selection of stable modes clustered close to the unit circle!

����
Rj,j

Rj+1,j+1

���� > κ, κ > 1

V T ΦV ∈ Rm×m

V T (PΦPx− λx) = 0
x = V y

|λ| ≤ 1− δ with 0 ≤ δ � 1
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Recursive Projection Method
Idea

Implementation of RPM: 

Kk ← (∆xl
q,∆xl+1

q , ...,∆xl−k+1
q ); j ← 0

(QkRk)← QR factorization(Kk)
r ← {ri = |Ri,i| : |Ri, i| ≥ |Ri + 1, i + 1|}; i = 1, ..., k − 1
loop (i = 1; k − 1)

if (ri > κri+1)
j ← i

V ← (V,Qj)


