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Controllability of finite-dimensional control systems:
compatible vector fields

M compact manifold

q̇ = f (q, u), u ∈ U ⊂ Rm, q ∈ M

A vector field g is compatible with F = {f (·, u) | u ∈ U} if

AF∪{g}(q) ⊂ AF (q) ∀q ∈ M.

1 Dilation: f ∈ F and λ > 0 ⇒ λf compatible with F
2 Convexification

3 Closure

4 Poisson stability

5 Lie brackets when −f (·, u) ∈ F for every u ∈ U

If AF (q) = M and LieqF = TqM for all q ∈ M then the system is
controllable.
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Convexification and closure: convergence of flows

Zτ non-autonomous vector field. We write −→exp
∫ t1
t0

Zτdτ : M → M
for the flow at time t1 of the Cauchy problem

q̇(τ) = Zτ (q(τ)), q(t0) = I. C.

Lemma

Let uj(·), j ∈ N, be a bounded sequence in L∞([0, t1],U) and Zτ
be a non-autonomous vector field on M. If∫ t

0
f (·, uj(τ))dτ →

∫ t

0
Zτdτ, j →∞,

then
−→exp

∫ t

0
f (·, uj(τ))dτ → −→exp

∫ t

0
Zτdτ, j →∞,

both convergences being uniform with respect to
(t, q) ∈ [0, t1]×M with all derivatives in q.



Bilinear Schrödinger equation

Consider the approximate controllability of

ψ̇ = Aψ + uBψ, u ∈ (0, δ), ‖ψ‖ = 1,

where A and B are skew-Hermitian and A has discrete spectrum.
By dilation, we can equivalently consider

ψ̇ = uAψ + Bψ, u ∈ (1/δ,∞)

Letting w(t) =
∫ t
0 v(τ)dτ and y(t) = e−w(t)Aψ(t) we get

ẏ = e−wABewAy

In the basis of eigenvectors of A the (j , k)-th element of
e−wABewA is bj ,ke i(λk−λj )w , where (iλk)k∈N is the spectrum of A.



Bilinear Schrödinger equation

Consider the approximate controllability of

ψ̇ = Aψ + uBψ, u ∈ (0, δ), ‖ψ‖ = 1,

where A and B are skew-Hermitian and A has discrete spectrum.
By dilation, we can equivalently consider

ψ̇ = uAψ + Bψ, u ∈ (1/δ,∞)

Letting w(t) =
∫ t
0 v(τ)dτ and y(t) = e−w(t)Aψ(t) we get
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Convexification

Let n be such that Πny(0) is close to y(0).
Let N > n and MN(w) = (bj ,ke i(λk−λj )w )N

j ,k=1.
If |λk − λj | 6= |λm − λl | for {k , j} 6= {m, l} and 1 ≤ k , j ≤ n, then

Ej ,k = ν

(
ej ,kbj ,k + ek,jbk,j 0n×(N−n)

0(N−n)×n ?

)
∈ conv({MN(w) | w})

with ν independent of n,N.

The curves y(n)(t) = (y1(t), . . . , yn(t))T and

y(n,N)(t) = (yn+1(t), . . . , yN(t))T satisfy(
ẏ(n)(t)

ẏ(n,N)(t)

)
= MN(t)

(
y(n)(t)

y(n,N)(t)

)
+

(
H(t)
I (t)

)
with ‖H‖∞ arbitrarily small (for N large) and ‖I‖∞ ≤ C (N).
Let MN(t) converge in the integral sense to Ej ,k . If bj ,k 6= 0, we
can approximately perform an arbitrary probability transfer
between the j-th and k-th components letting the other first n
components unchanged.
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Approximate controllability result (with U. Boscain, M.
Caponigro, T. Chambrion)

If there are enough pairs (j , k) such that

|λk − λj | 6= |λm − λl | for {k , j} 6= {m, l}
bj ,k 6= 0

then the system is approximately controllable.

To compute how many such (j , k) are enough we consider finite
dimensional systems, whose controllability is proved using
compatible vector fields obtained by Poisson stability and Lie
brackets.


