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Plan of the talk

1. Problem and models

Navier-Stokes equations with mixed boundary conditions

Feedback control with partial information

2. Classical tools from control theory

Coupling between feedback control law and estimation

3. Estimation problems for the Navier-Stokes equations

Detectability of the linearized Navier-Stokes equations for different
measure operators

Equations for the estimator

4. An extended linearized system

Stabilizability and detectability of the extended system

(5. Local feedback stabilization of Navier-Stokes system with
partial information)
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1. Problem and models

•We consider a fluid flow governed by the N.S.E.

• The goal. Given an unstable stationary solution ws, we want to
stabilize the fluid about ws in the case of partial information.

• The partial information is a noisy boundary measurement
(pressure, stress tensor)

•We have is to find an estimator and to couple it with a feedback
control law (corresponding to a boundary control in a Dirichlet B.C.).

The estimator and the control law will be determined for the linearized
model. Next, we want to prove a local stabilization result for the
Navier-Stokes system.
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•What is new ?

Feedback control of the N.S.E. in the case of mixed B.C..

The well posedness of the estimator for boundary pressure
measurements.

The coupling between control and estimation.

For regular domain with Dirichlet B.C., see Barbu, Lasiecka, Triggiani,
Fursikov, Badra, Raymond, Rowley, Sipp....

Some results are avalaible in the engineering literature.

No estimation results for pressure measure at the boundary in the
case of a boundary control.

•What is not yet solved ?

How to determine an estimator of finite dimension ?
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The unstable stationary solution ws of the N.S.E.

−ν∆ws + (ws · ∇)ws +∇ps = 0, in Ω,

div ws = 0 in Ω, ws = us on Γe + Other B.C. on Γ \ Γe.

The stabilization problem with partial observation

Using the obervation yobs(t) = Hw(t) + η(t), find an estimation we of w

and a control u in the form u(t) = K (we(t)− ws),

s.t. |w(t)− ws|L2 −→ 0 as t −→∞,

∂w
∂t
− ν∆w + (w · ∇)w +∇q = 0, div w = 0 in Q,

w = us on Σe = Γe × (0,∞), w = Mu on Σc = Γc × (0,∞),

+ Other B.C. on Σ \ (Σe ∪ Σc), w(0) = w0 = ws + z0 in Ω.
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Set z = w − ws, p = q − ps. The linearized (resp. nonlinear) equation
is

∂z
∂t
− ν∆z + (ws · ∇)z + (z · ∇)ws + (z · ∇)z +∇p = 0,

div z = 0 in Q, z = Mu on Σc ,

+ Other B.C. on Σ \ (Σe ∪ Σc), z(0) = z0 in Ω .

with u(t) = Kze(t), ze is an estimation of z based on the observation

yobs(t) = Hz(t) + η(t),

and
supp M ⊂ Γc .
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The case of the flow around a cylinder with an outflow boundary
condition – 2D domain

C
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Γ
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Boundary conditions

z = us on Γe × (0,∞), z = 0 on ΓD × (0,∞),

z = Mu on ΓC × (0,∞),

ν
∂z
∂n
− pn = 0 or σ(z,p)n = 0 on ΓN × (0,∞),

where σ(z,p) = ν(∇z + (∇z)T )− p I.
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Control of the wake behind an obstacle – Re = usDiam/ν

5 < Re < 50 A fixed pair of vortices

50 < Re < 150 Vortex street
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The complete problem: estimation + feedback control
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Control of a flow in an open cavity 2D domain
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−divσ(ws,ps) + (zs .∇)ws = 0 in Ω

div ws = 0 in Ω

ws = us on Γe

ws = 0 on ΓD

σ(ws,ps)n = 0 on ΓN

ws .n = 0 on ΓS(
σ(ws,ps)n

)
· τ = 0 on ΓS

where
σ(ws,p) = ν

(
∇ws + (∇ws)T

)
− pI.
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Stationary solution of the open cavity – 2D
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3D Domain with a right angle junction

z = 0Hom. Dirichlet

Hom. Neumann

Non Hom. Dirichlet

z = u   e
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2. Classical results from control system

The stabilization problem with full information. Consider a control
system

z ′ = Az + Bu, z(0) = z0.

Assume that (A,B) is stabilizable. Find K ∈ L(Z ,U) such that
A + BK is exponentially stable on Z . One way consists in solving an
Algebraic Riccati Equation of the form

P = P∗ ≥ 0, A∗P + PA− PBR−1B∗P + Q = 0,

with R = R∗ > 0 and Q = Q∗ ≥ 0. When the A.R.E. is well posed a
convenient feedback is

K = −R−1B∗P.

The estimation problem. Consider a noisy model and a noisy
observation

z ′ = Az + f + µ, z(0) = z0 + µ0, yobs(t) = Hz(t) + η(t) ∈ Yo.

Find L ∈ L(Yo,Z ) such that A + LH is exponentially stable. Such a
filtering gain may be determined by solving

Pe = P∗e ≥ 0, APe + PeA∗ − PeH∗R−1
o HPe + Qo = 0.
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We choose L = −PeH∗R−1
o . We determine the control law by solving

the system

z ′e = Aze + BKze + L(Hze − yobs), ze(0) = z0.

Next prove that the original system with the feedback coming from the
estimator

z ′ = Az + BKze + µ, z(0) = z0 + µ0,

is stable.

Theorem. If (et(A+BK ))t≥0 is exponentially stable and if (et(A+LH))t≥0 is
exponentially stable, then the semigroup generated by

A =

[
A BK
−LH A + BK + LH

]
is also exponentially stable on Z × Z .

Indeed, if e = z − ze, we have(
z
e

)′
=

(
A + BK −BK

0 A + LH

)(
z
e

)
+ F

with
F =

(
µ,Lη

)T
.
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3. Rewriting the N.S.E. as a control system

We would like to have a classical of the form

z ′ = Az + Bu + F (z), z(0) = z0, F (0) = F ′(0) = 0.

B = (λ0I − A)DM.

• (A,D(A)) is the Oseen operator and Bu takes into account the non
homogeneous Dirichlet B.C.

•We have to introduce the Leray projector Π and we shall obtain a
system of the form

Πz ′ = AΠz + Bu + F (Πz + (I − Π)DMu), Πz(0) = Πz0,

(I − Π)z = (I − Π)DMu, F (0) = F ′(0) = 0,

B = (λ0I − A)ΠDM.
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The Helmholtz decomposition in the case of mixed D/N
boundary conditions

V 0
n,ΓD

(Ω) =
{

z ∈ L2(Ω; Rd ) | div z = 0, z · n = 0 on ΓD

}
,

L2(Ω; Rd ) = V 0
n,ΓD

(Ω)⊕ grad H1
ΓN

(Ω),

grad H1
ΓN

(Ω) = {p ∈ H1(Ω) | p|ΓN = 0}.

Π : L2(Ω; Rd ) 7−→ V 0
n,ΓD

(Ω).

To define the Stokes operator, we need

V 1
ΓD

(Ω) =
{

y ∈ H1(Ω; Rd ) ∩ V 0
n,ΓD

(Ω) | z = 0 on ΓD

}
,

V 1
ΓD

(Ω) ↪→ V 0
n,ΓD

(Ω) ↪→ V−1
ΓD

(Ω) = (V 1
ΓD

(Ω))′.
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The Helmholtz projector Π

Πf = f −∇p −∇q,

∆p = div f ∈ H−1(Ω), p ∈ H1
0 (Ω),

∆q = 0,
∂q
∂n

= (f −∇p) · n on ΓD, q = 0 on ΓN .
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Characterization of Stokes operator (A0,D(A0)) in the case of
Mixed D/N B.C. with a right angle junction

D(A0) =
{

z ∈ V 1
ΓD

(Ω) |

∃p ∈ L2(Ω) s. t. Div(ν∇z − pI) ∈ L2(Ω; Rd )

and ν
∂z
∂n
− pn = 0 on ΓN

}
,

A0z = Π(ν∆z −∇p) (does not depend on p).

Notice that γτ
∂z
∂n

= 0 on ΓN .

In the 3D case with a right angle junction, we have

D(A0) ⊂ H3/2+ε(Ω; Rd ) for some ε > 0.

(See Maz’ya and Rossmann, 2007.)

The Oseen operator (A,D(A)) is defined by

D(A) = D(A0) and Az = A0z + Π ((ws · ∇)z + (z · ∇)ws) .
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Theorem. The operator (A,D(A)) is the infinitesimal generator of an
analytic semigroup on V 0

n,ΓD
(Ω). Its resolvent is compact.

Proof. (
(λ0I − A)z, z

)
≥ 1

2
‖z‖2

V 1
ΓD

(Ω) ∀z ∈ D(A),

with λ0 > 0 big enough.

Consequence. The spectrum of A is contained in a sector. The
eigenvalues are isolated, pairwise conjugate when they are not real,
and of finite multiplicity.
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Spectrum of A. Re = us Diam/ν = 80 (Cylinder)
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Spectrum of A with Re = 200
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Spectrum of A. Re = us × hcavity/ν = 7500 (Cavity)
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The linearized system with non homogeneous Dirichlet B.C.

∂z
∂t
− ν∆z + (ws · ∇)z + (z · ∇)ws +∇p = 0,

div z = 0 in Q, z = Mu on ΣD,

ν
∂z
∂n
− pn = 0 on ΣN , z(0) = z0 in Ω.

We introduce the lifting operator D, defined by DMu(t) = w(t) with

λ0w(t)− ν∆w(t) + (ws · ∇)w(t) + (w(t) · ∇)ws +∇π(t) = 0,

div w(t) = 0, w(t) = Mu(t) on ΓD, ν
∂w(t)
∂n

− π(t)n = 0 on ΓN .
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We look for z in the form
z = w + y .

Writing the equation for y and with integration by parts, we show that
the system satisfied by z is

Πz ′ = AΠz + (λ0I − A)ΠDMu, Πz(0) = Πz0,

(I − Π)z(t) = (I − Π)DMu(t) = (I − Π)DM(u(t) · n n),

B = (λ0I − A)ΠDM.
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3. Stabilizability of the linearized N.S.E.

Theorem. Assume that the semigroup generated by (A,D(A)) is
analytic on Y , the resolvent of A is compact,
(λ0I − A)α−1B ∈ L(U,Y ), and the spectrum of A obeys

. . . < ReλNu+1 < −ω < ReλNu ≤ ReλNu−1 ≤ . . . ≤ Reλ1.

For 1 ≤ j ≤ Nu, let (φk
j )1≤k≤`j be a basis of Ker(A∗ − λj I).

The pair (A,B) is stabilizable with a decay rate −ω iff, for all
1 ≤ j ≤ Nu, the family

(B∗φk
j )1≤k≤`j

is linearly independent.
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Proof of the stabilizability.

A∗φ = λφ and B∗φ = M
(
ν
∂φ

∂n
+ ws · n φ− ψn

)
= 0,

implies that φ = 0 .

We can invoque the unique continuation results by Fabre-Lebeau.

If

λφ− ν∆φ− (ws · ∇)φ+ (∇ws)Tφ+∇ψ = 0,

div φ = 0 in Ω, φ = 0 on ΓD,

and

ν
∂φ

∂n
+ ws · n φ− ψn = 0 on {x ∈ ΓC | M(x) = 1} ⊂ ΓD,

then
φ = 0 and ψ = 0.
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Moreover, in that case the complexified system is also stabilizable
with controls of the form

u =

Nu∑
j=1

`j∑
k=1

B∗φk
j ,

and the real system is stabilizable with controls of the form

u =

Nu∑
j=1

`j∑
k=1

(ReB∗φk
j + ImB∗φk

j ).

We can find a control of finite dimension, in feedback form, by solving
a Riccati equation of finite dimension.
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3.3. Examples of boundary measure operators for the Stokes or the
Oseen equations

Let us consider the Stokes (Oseen) equations with mixed boundary
conditions

∂z
∂t
− ν∆z+(ws · ∇)z + (z · ∇)ws +∇p = µ, div z = 0 in Q,

z = M u on Σc , z = 0 on ΣD, σ(z,p)n = 0 on ΣN ,

z(0) = z0 + µ0 in Ω.

Some boundary measure operators

H1z(t) = σ(z(t),p(t))n|Γ1 , H2z(t) = p(t)|Γ1 ,

H3z(t) =

∫
Γ1

σ(z(t),p(t))n, H4z(t) =

(∫
Γ1

p(t), · · · ,
∫

ΓN

p(t)

)
,

where Γ1, · · · , ΓN are N intervals of Γo and Γo ⊂ ΓD.
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Notice that the notation

H2z(t) = p(t)|Γ1 ,

is meaningful. Indeed, p(t) is the solution to

∆p(t) = 0 in Ω, p(t) = ν
∂z
∂n
· n on ΓN ,

∂p(t)
∂n

= ν∆z · n − ∂z
∂t
· n on Γ \ ΓN .

The same type of measure operator can be considered for the N.S.E.
Let us set

p(t) = N
(
ν∆z(t) · n − ∂z

∂t
· n
)

and

p(t)|Γ1 = N1

(
ν∆z(t) · n − ∂z

∂t
· n
)
.
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The measure operator may be decomposed as follows

N1

(
ν∆z(t) · n − ∂z

∂t
· n
)

= N1 (ν∆Πz(t) · n) + N1 (ν∆(I − Π)DMu(t) · n − (I − Π)DMu′(t) · n) .

Thus we have

p(t)|Γ1 = HzΠz(t) + Hu u(t) + Hu′ u′(t).

To estimate z, we have to assume that u′ is well defined. In that case
the estimator is of the form

Πz ′e = AΠze + Bu + L(HzΠze + Hu u(t) + Hu′ u′(t)− yobs),

ze(0) = z0,

(I − Π)ze(t) = (I − Π)DMu(t),

where L = −PeH∗z R−1
o and Pe ∈ L(Z ) is the solution of

Pe = P∗e ≥ 0, PeA∗ + APe − PeH∗z R−1
o HzPe + Qo = 0.
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We have to study the stabilizability of the pair (A,Hz).

To determine the control

u(t) = −B∗PΠze,

we have to solve the equation

Πz ′e = AΠze + Bu + L(HzΠze − Hu B∗PΠze − Hu′ B∗PΠz ′e − yobs),

ze(0) = z0.

This equation is not necessarily well posed because the time
derivative z ′e appears on both sides of the equation.

Thus if we want to couple the estimator and the control law, we have
to consider another system in which u will play the role of a new state
variable and u′ is the new control variable. It will be called ’extended
system’.

The same boundary measure operators can be considered for the
L.N.S.E.
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• Detectability of (A + ωI,H1)

We have to show that if ζ is an eigenfunction of A and pζ the
associated pressure, and if

H1ζ = σ(ζ,pζ)n|Γ1 = 0 with e.g. Γ1 = (1,1.1),

then ζ ≡ 0. This is a consequence of the unique continuation
property for the Oseen operator (Fabre and Lebeau, 96).

Then (A + ωI,H1) is detectable. Indeed for each eigenfunction ζ, the
vector σ(ζ,pζ)n|Γ1 is non zero.

• Detectability of (A + ωI,H2)

We have to show that if λj is an unstable eigenvalue, ej belongs to
Ker(A− λj ), pj is the pressure associated with ej and if

H2ej = pj |Γ1 = 0 with e.g. Γ1 = (1,1.1),

then (ej ,pj ) ≡ 0.

33/46



The only detectability result of this type is due to A. Osses and J.-P.
Puel for Dirichlet B.C. with an angle at the boundary of the control
zone.

There is no detectability result in the case of mixed B.C., but it can be
checked numerically.

• Detectability of (A + ωI,H3) and (A + ωI,H4)

If the unstable eigenvalues are simple and if (ej ,pj ) is the
corresponding eigenfunction, then∫

Γ1

pj with Γ1 = (1,1.1),

is non zero. Then (A + ωI,H3) and (A + ωI,H4) are detectable.
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Numerical verification of the detectability condition for the L.N.E.

Stress tensor at the boundary for A – Cavity with Re = 7500
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Stress tensor at the boundary for A – Cavity with Re = 7500
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Stress tensor at the boundary for A – Cavity with Re = 7500
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Stress tensor at the boundary for A – Cavity with Re = 7500
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4. An extended system

If we look for a control u belonging to H1(0,∞; U), we can consider u
as an additional state variable, we can add the equation u′ = v and
we can choose v as the new control variable

z̃ ′ =

(
z
u

)′
=

(
A B
0 0

)(
z
u

)
+

(
0
Iu

)
v ,

(
z(0)
u(0)

)
=

(
z0
u0

)
.

We set

Ã =

(
A B
0 0

)
, B̃ =

(
0
Iu

)
.

We have chosen U is of finite dimension. The operator Ã, with

D(Ã) = {(z,u) ∈ V 0
n,ΓD

(Ω)× U | Az + Bu ∈ V 0
n,ΓD

(Ω)},

is the generator of an analytic semigroup on V 0
n,ΓD

(Ω)× U. And
B̃ ∈ L(U,Z × U) with Z = V 0

n,ΓD
(Ω).

Thus, we have replaced the unbounded operator B by B̃ ∈ L(U, Z̃ ),
with Z̃ = V 0

n,ΓD
(Ω)× U.
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4.1. Stabilizability of the extended system

The adjoints of Ã and B̃ are

Ã∗ =

(
A∗ 0
B∗ 0

)
, B̃∗ = (0 Iu) ,

with

D(Ã∗) = {(φ, γ) ∈ V 0
n,ΓD

(Ω)×U | Aφ ∈ V 0
n,ΓD

(Ω), B∗φ ∈ U} = D(A∗)×U.

Now, we study the stabilisability of the extended system

z̃ ′ = Ãz̃ + B̃v , z̃(0) = z̃0.

Theorem

The system (A,B) is stabilizable by a control u ∈ L2(0,∞; U) iff the
extended system (Ã, B̃) is stabilizable by a control v ∈ L2(0,∞; U).

Consequence. The system (A,B) is stabilizable by a control
u ∈ L2(0,∞; U) iff it is stabilizable by a control u ∈ H1(0,∞; U).
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Idea of the proof. We consider the case when there is no eigenvalue
of A on the imaginary axis. Consider (φ, γ) ∈ D(A∗)× U, an
eigenfunction of Ã∗

A∗φ = λφ, B∗φ = λ γ.

Thus φ is an eigenfunction of A∗, λ ∈ σ(A∗), λ 6= 0 and γ = B∗φ/λ. In
particular the eigenvalues of A∗ and Ã∗ are the same ones.

The pair (A,B) is stabilizable iff, for all unstable eigenvalue λj , the
family

(B∗ek
j )1≤k≤`j

is linearly independent.

The pair (Ã, B̃) is stabilizable iff, for all unstable eigenvalue λj , the
family

(B̃∗ek
j )1≤k≤`j = (γk

j )1≤k≤`j = (B̃∗ek
j /λj )1≤k≤`j

is linearly independent. The equivalence is obvious.
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A Riccati equation for finding a feedback control law for the extended
system.

A control can be found by solving a Riccati equation of the form

P̃ =

(
P11 P12
P21 P22

)
∈ L(Z × U), P̃ = P̃∗ ≥ 0,

P̃Ã + Ã∗P̃ − P̃B̃B̃∗P̃ +

(
Q 0
0 R

)
= 0, Q = C∗C.

4.2. Detectability of the extended system

The model to estimate is

Πz ′ = AΠz + Bu + µ,

u′ = v , Πz(0) = Πz0, u(0) = u0,

(I − Π)z(t) = (I − Π)DMu(t).
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The measure can be expressed as follows

yobs(t) = Hz(t) + η(t) = HΠz(t) + H(I − Π)z(t) + η(t)

= HzΠz(t) + Huu(t) + Hv v(t) + η(t).

Since there is no model error in the equation for u and since v is
assumed to be known, we have to estimate Πz(t) from the noisy
measure

ξobs = yobs − Huu(t)− Hv v(t) = HzΠz(t) + η(t).

Thus, we have to look at the stabilizability of the pair (A,Hz), which
has already been studied.

The filtering gain L = −PeH∗y R−1
o is the same one as for the L.N.S.E.

Later on v will be written in the form

v = −B̃∗P̃(Πze,ue)T = −P21Πze − P22u.
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4.3. Coupling estimation and control for Linearized Navier-Stokes
equations

The coupled system is

Πz ′e = AΠze + Bu + L(HzΠze + Hu u(t) + Hv v(t)− yobs),

u′ = −P21Πze − P22u = v ,

Πze(0) = Πz0, u(0) = u0,

(I − Π)z(t) = (I − Π)D u(t),

Πz ′ = AΠz + Bu + µ,

Πz(0) = Πz0 + µ0, ue(0) = u0.

Theorem. The system

Πz ′e = AΠze + Bu + L(HzΠze + Hu u + Hv v − yobs),

u′ = −B̃∗P̃(Πze,u)T = −P21Πze − P22u = v ,

Πze(0) = Πz0, u(0) = u0,

is well posed. We use that U is of finite dimension.
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Negative result.

If (et(Ã−B̃B̃∗P̃))t≥0 is exponentially stable on Z × U and if (et(A+LH))t≥0
is exponentially stable on Z , then the semigroup generated by

A =

 A B 0
0 −P22 −P21
0 LHu − LHv P22 A + LH


is not necessarily exponentially stable.

Indeed, we have z
u
e

′ =

 A B 0
0 −P22 −P21
0 0 A + LH

 z
u
e

+ F

with

F =

 µ
0
Lη

 .
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Remedy. The difficulty comes from the fact that the observation
involves the control u and its derivative u′. Because of that the
estimator does not take u into account.

If we want to construct an estimator for (Πz,u), we have to extend the
system as follows

Πz ′ = AΠz + Bu, Πz(0) = Πz0,

u′ = Λuu+v , u(0) = u0,

v ′ = Λv v+ξ, v(0) = 0,

and to construct an estimator for (Πz,u, v). ξ is a new control
variable.

The stabilizability for the extended system may be verified as before.

For the detectability, the measure operator is now H̃ = (Hz Hu Hv ).
We can choose Λu and Λv to conclude.

Thank you for your attention
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