Improved Sobolev inequalities using nonlinear flows

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

August 31, 2011

Benasque Partial differential equations, optimal design and numerics (2011, Aug 28 – Sep 09)

イロト イポト イヨト イヨト

A question by H. Brezis and E. Lieb

[Brezis, Lieb (1985)] Is there a natural way to bound

$$S_d \| \nabla u \|_{L^2(\mathbb{R}^d)}^2 - \| u \|_{L^{2^*}(\mathbb{R}^d)}^2$$

from below in terms of the "distance" off from the set of optimal [Aubin-Talenti] functions when $d \ge 3$?

• [Bianchi-Egnell (1990)] There is a positive constant α such that

$$\mathsf{S}_{d} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \|u\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \geq \alpha \inf_{\varphi \in \mathcal{M}} \|\nabla u - \nabla \varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

• [Cianchi, Fusco, Maggi, Pratelli (2009)] (also a version for $\|\nabla u\|_{L^{p}(\mathbb{R}^{d})}^{p}$) There are constants α and κ such that

$$\mathsf{S}_d \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \ge (1 + \kappa \,\lambda(u)^\alpha) \,\|u\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2$$

where
$$\lambda(u) = \inf_{\varphi \in \mathcal{M}} \left\{ \frac{\|u-\varphi\|_{L^{2^*}(\mathbb{R}^d)}^{2^*}}{\|u\|_{L^{2^*}(\mathbb{R}^d)}^{2^*}} : \|u\|_{L^{2^*}(\mathbb{R}^d)}^{2^*} = \|\varphi\|_{L^{2^*}(\mathbb{R}^d)}^{2^*} \right\}$$

A – Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

- (同) - (日) - (日)

Outline

Outline

- A result motivated by [Carrillo, Carlen and Loss]
- Sobolev and HLS inequalities can be related using a nonlinear flow *compatible with Legendre's duality*
- The asymptotic behaviour close to the *vanishing time* is determined by a solution with *separation of variables* based on the Aubin-Talenti solution
- The entropy H (to be defined) is negative, concave, and we can relate H(0) with H'(0) by integrating estimates on (0, T), which provides a first improvement of Sobolev's inequality if $d \ge 5$

イロト イポト イヨト イヨト

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$\|u\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \leq \mathsf{S}_d \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \quad \forall \ u \in \mathcal{D}^{1,2}(\mathbb{R}^d) \tag{1}$$

and the Hardy-Littlewood-Sobolev inequality

$$\mathsf{S}_{d} \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} \geq \int_{\mathbb{R}^{d}} v \, (-\Delta)^{-1} v \, dx \quad \forall \, v \in \mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d}) \tag{2}$$

are dual of each other. Here S_d is the Aubin-Talenti constant and $2^*=\frac{2\,d}{d-2}$

・ロト ・回ト ・ヨト ・ヨト

Using a nonlinear flow to relate Sobolev and HLS

Consider the *fast diffusion* equation

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0 , \quad x \in \mathbb{R}^d$$
(3)

If we define $H(t) := H_d[v(t, \cdot)]$, with

$$\mathsf{H}_{d}[v] := \int_{\mathbb{R}^{d}} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_{d} \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2}$$

then we observe that

$$\frac{1}{2}\mathsf{H}' = -\int_{\mathbb{R}^d} \mathsf{v}^{m+1} \, d\mathsf{x} + \mathsf{S}_d \left(\int_{\mathbb{R}^d} \mathsf{v}^{\frac{2d}{d+2}} \, d\mathsf{x}\right)^{\frac{2}{d}} \int_{\mathbb{R}^d} \nabla \mathsf{v}^m \cdot \nabla \mathsf{v}^{\frac{d-2}{d+2}} \, d\mathsf{x}$$

where $v = v(t, \cdot)$ is a solution of (3). With the choice $m = \frac{d-2}{d+2}$, we find that $m + 1 = \frac{2d}{d+2}$

イロト イポト イヨト イヨト

A first statement

Proposition

[J.D.] Assume that $d \ge 3$ and $m = \frac{d-2}{d+2}$. If v is a solution of (3) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \left[\int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right] \\ &= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left[\mathsf{S}_d \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^2 \right] \ge 0 \end{aligned}$$

The HLS inequality amounts to $H \le 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$ Notice that $u = v^m$ is an optimal function for (1) if v is optimal for (2)

Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain optimal integral remainder terms which improve on the usual Sobolev inequality (1), but only when $d \ge 5$ for integrability reasons

Theorem

[J.D.] Assume that $d \ge 5$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $C \le (1 + \frac{2}{d}) (1 - e^{-d/2}) S_d$ such that

$$\begin{aligned} \mathsf{S}_{d} \|w^{q}\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} &- \int_{\mathbb{R}^{d}} w^{q} (-\Delta)^{-1} w^{q} dx \\ &\leq \mathcal{C} \|w\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[\|\nabla w\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \|w\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \right] \end{aligned}$$

for any $w \in \mathcal{D}^{1,2}(\mathbb{R}^d)$

イロト イポト イヨト イヨト

Solutions with separation of variables

Consider the solution vanishing at t = T:

$$\overline{v}_{\mathcal{T}}(t,x) = c \left(\mathcal{T}-t\right)^{lpha} \left(\mathcal{F}(x)\right)^{rac{d+2}{d-2}} \quad orall \left(t,x
ight) \in (0,\mathcal{T}) imes \mathbb{R}^{d}$$

where $\alpha = (d+2)/4$, $c^{1-m} = 4 m d$, $m = \frac{d-2}{d+2}$, p = d/(d-2) and F is the Aubin-Talenti solution of

$$-\Delta F = d \left(d - 2 \right) F^{\left(d + 2 \right) / \left(d - 2 \right)}$$

Let $\|v\|_* := \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d+2} |v(x)|$

Lemma

[M. delPino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodríguez] For any solution v of (3) with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d)$, $v_0 > 0$, there exists T > 0, $\lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$\lim_{t \to T_{-}} (T - t)^{-\frac{1}{1 - m}} \|v(t, \cdot) / \overline{v}(t, \cdot) - 1\|_{*} = 0$$

with $\overline{v}(t,x) = \lambda^{(d+2)/2} \overline{v}_T(t,(x-x_0)/\lambda)$

Improved inequality: proof (1/2)

$$\mathsf{J}(t):=\int_{\mathbb{R}^d} \mathsf{v}(t,x)^{m+1} \; dx \; \mathrm{satisfies}$$

$$\mathsf{J}'=-(m+1)\,\|
abla \mathsf{v}^m\|^2_{\mathrm{L}^2(\mathbb{R}^d)}\leq -rac{m+1}{\mathsf{S}_d}\,\mathsf{J}^{1-rac{2}{d}}$$

If $d \geq 5$, then we also have

$$J'' = 2 m (m+1) \int_{\mathbb{R}^d} v^{m-1} (\Delta v^m)^2 \, dx \ge 0$$

Such an estimate makes sense if $v = \overline{v}_{T}$. This is also true for any solution v as can be seen by rewriting the problem on \mathbb{S}^d : integrability conditions for v are exactly the same as for \overline{v}_{T}

Notice that

$$\frac{\mathsf{J}'}{\mathsf{J}} \le -\frac{m+1}{\mathsf{S}_d} \mathsf{J}^{-\frac{2}{d}} \le -\kappa \quad \text{with} \quad \kappa \ T = \frac{2 \ d}{d+2} \frac{T}{\mathsf{S}_d} \left(\int_{\mathbb{R}^d} \mathsf{v}_0^{m+1} \ d\mathsf{x} \right)^{-\frac{2}{d}} \le \frac{d}{2}$$

Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

$$\begin{aligned} \|\nabla v^{m}\|_{L^{2}(\mathbb{R}^{d})}^{4} &= \left(\int_{\mathbb{R}^{d}} v^{(m-1)/2} \Delta v^{m} \cdot v^{(m+1)/2} dx\right)^{2} \\ &\leq \int_{\mathbb{R}^{d}} v^{m-1} (\Delta v^{m})^{2} dx \int_{\mathbb{R}^{d}} v^{m+1} dx \end{aligned}$$

so that $Q(t) := \|\nabla v^m(t, \cdot)\|_{L^2(\mathbb{R}^d)}^2 \left(\int_{\mathbb{R}^d} v^{m+1}(t, x) dx\right)^{-(d-2)/d}$ is monotone decreasing, and

$$\begin{aligned} \mathsf{H}' &= 2 \mathsf{J} \left(\mathsf{S}_d \mathsf{Q} - 1 \right), \quad \mathsf{H}'' &= \frac{\mathsf{J}'}{\mathsf{J}} \mathsf{H}' + 2 \mathsf{J} \mathsf{S}_d \mathsf{Q}' \leq \frac{\mathsf{J}'}{\mathsf{J}} \mathsf{H}' \leq 0 \\ \mathsf{H}'' &\leq -\kappa \mathsf{H}' \quad \text{with} \quad \kappa = \frac{2 d}{d+2} \frac{1}{\mathsf{S}_d} \left(\int_{\mathbb{R}^d} v_0^{m+1} dx \right)^{-2/d} \end{aligned}$$

By writing that $-H(0) = H(T) - H(0) \le H'(0) (1 - e^{-\kappa T})/\kappa$ and using the estimate $\kappa T \le d/2$, the proof is completed

4 D N 4 B N 4 B N 4 B N

d = 2: Onofri's and log HLS inequalities

$$H_{2}[v] := \int_{\mathbb{R}^{2}} (v - \mu) (-\Delta)^{-1} (v - \mu) \, dx - \frac{1}{4 \pi} \int_{\mathbb{R}^{2}} v \, \log \left(\frac{v}{\mu} \right) \, dx$$

With $\mu(x) := \frac{1}{\pi} (1 + |x|^2)^{-2}$. Assume that v is a positive solution of

$$rac{\partial v}{\partial t} = \Delta \log \left(rac{v}{\mu}
ight) \quad t > 0 \;, \quad x \in \mathbb{R}^2$$

Proposition

If $v = \mu e^{u/2}$ is a solution with nonnegative initial datum v_0 in $L^1(\mathbb{R}^2)$ such that $\int_{\mathbb{R}^2} v_0 dx = 1$, $v_0 \log v_0 \in L^1(\mathbb{R}^2)$ and $v_0 \log \mu \in L^1(\mathbb{R}^2)$, then

$$\begin{aligned} \frac{d}{dt}\mathsf{H}_2[v(t,\cdot)] &= \frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx - \int_{\mathbb{R}^2} \left(e^{\frac{u}{2}} - 1\right) u \, d\mu \\ &\geq \frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \int_{\mathbb{R}^2} u \, d\mu - \log\left(\int_{\mathbb{R}^2} e^u \, d\mu\right) \ge 0 \end{aligned}$$

Improved Sobolev inequalities

Fast diffusion equations

- entropy methods
- linearization of the entropy
- improved Gagliardo-Nirenberg inequalities

(a)

B1 – Fast diffusion equations: entropy methods

(日) (同) (三) (三)

Existence, classical results

$$u_t = \Delta u^m \quad x \in \mathbb{R}^d, \ t > 0$$

Self-similar (Barenblatt) function: $\mathcal{U}(t) = O(t^{-d/(2-d(1-m))})$ as $t \to +\infty$ [Friedmann, Kamin, 1980] $\|u(t, \cdot) - \mathcal{U}(t, \cdot)\|_{L^{\infty}} = o(t^{-d/(2-d(1-m))})$

Time-dependent rescaling, Free energy

• Time-dependent rescaling: Take $u(\tau, y) = R^{-d}(t) v(t, y/R(\tau))$ where

$$\frac{\partial R}{\partial \tau} = R^{d(1-m)-1} , \quad R(0) = 1 , \quad t = \log R$$

 \blacksquare The function v solves a Fokker-Planck type equation

$$\frac{\partial v}{\partial t} = \Delta v^m + \nabla \cdot (x v) , \quad v_{|\tau=0} = u_0$$

• [Ralston, Newman, 1984] Lyapunov functional: Generalized entropy or Free energy

$$\Sigma[v] := \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) dx - \Sigma_0$$

Entropy production is measured by the **Generalized Fisher** information

$$\frac{d}{dt}\Sigma[v] = -I[v], \quad I[v] := \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx$$

Relative entropy and entropy production

 \blacksquare Stationary solution: choose C such that $\|v_\infty\|_{L^1} = \|u\|_{L^1} = M > 0$

$$v_{\infty}(x) := \left(C + \frac{1-m}{2m}|x|^2\right)_+^{-1/(1-m)}$$

Relative entropy: Fix Σ_0 so that $\Sigma[v_{\infty}] = 0$. The entropy can be put in an *m*-homogeneous form: for $m \neq 1$,

$$\Sigma[v] = \int_{\mathbb{R}^d} \psi\left(\frac{v}{v_{\infty}}\right) v_{\infty}^m dx$$
 with $\psi(t) = \frac{t^m - 1 - m(t-1)}{m-1}$

Entropy – entropy production inequality

Theorem

$$d \geq 3$$
, $m \in [rac{d-1}{d}, +\infty)$, $m > rac{1}{2}$, $m \neq 1$

 $I[v] \geq 2\Sigma[v]$

Corollary

A solution v with initial data $u_0 \in L^1_+(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d)$, $u_0^m \in L^1(\mathbb{R}^d)$ satisfies $\sum [v(t, \cdot)] \leq \sum [u_0] e^{-2t}$

J. Dolbeault

Improved Sobolev inequalities

An equivalent formulation: Gagliardo-Nirenberg inequalities

$$\begin{split} \Sigma[v] &= \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) dx - \Sigma_0 \leq \frac{1}{2} \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx = \frac{1}{2} I[v] \\ \text{Rewrite it with } p &= \frac{1}{2m-1}, \ v = w^{2p}, \ v^m = w^{p+1} \text{ as} \\ \frac{1}{2} \left(\frac{2m}{2m-1} \right)^2 \int_{\mathbb{R}^d} |\nabla w|^2 dx + \left(\frac{1}{1-m} - d \right) \int_{\mathbb{R}^d} |w|^{1+p} dx - K \geq 0 \\ \bullet \text{ for some } \gamma, \ K &= K_0 \left(\int_{\mathbb{R}^d} v \, dx = \int_{\mathbb{R}^d} w^{2p} \, dx \right)^{\gamma} \\ \bullet \ w &= w_\infty = v_\infty^{1/2p} \text{ is optimal} \end{split}$$

Theorem

[Del Pino, J.D.] With
$$1 (fast diffusion case) and $d \ge 3$$$

$$\begin{split} \|w\|_{L^{2p}(\mathbb{R}^d)} &\leq A \|\nabla w\|_{L^2(\mathbb{R}^d)}^{\theta} \|w\|_{L^{p+1}(\mathbb{R}^d)}^{1-\theta} \\ A &= \left(\frac{y(p-1)^2}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{d}{2})}\right)^{\frac{\theta}{d}} , \quad \theta = \frac{d(p-1)}{p(d+2-(d-2)p)} , \quad y = \frac{p+1}{p-1} \end{split}$$

...the Bakry-Emery method

Consider the generalized Fisher information

$$I[v] := \int_{\mathbb{R}^d} v |Z|^2 dx$$
 with $Z := \frac{\nabla v^m}{v} + x$

and compute

$$\frac{d}{dt} I[v(t,\cdot)] + 2 I[v(t,\cdot)] = -2 (m-1) \int_{\mathbb{R}^d} u^m (\operatorname{div} Z)^2 dx - 2 \sum_{i,j=1}^d \int_{\mathbb{R}^d} u^m (\partial_i Z^j)^2 dx$$

• the Fisher information decays exponentially:

$$I[v(t,\cdot)] \leq I[u_0] e^{-2t}$$

- $\lim_{t\to\infty} I[v(t,\cdot)] = 0$ and $\lim_{t\to\infty} \Sigma[v(t,\cdot)] = 0$
- $\frac{d}{dt} \left(I[v(t,\cdot)] 2\Sigma[v(t,\cdot)] \right) \leq 0 \text{ means } I[v] \geq 2\Sigma[v]$

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Carrillo, Vázquez]

Fast diffusion: finite mass regime

Inequalities...

... existence of solutions of $u_t = \Delta u^m$

B2 – Fast diffusion equations: the infinite mass regimeLinearization of the entropy

Extension to the infinite mass regime, finite time vanishing

- If $m > m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in $L^1(\mathbb{R}^d)$ and the Barenblatt self-similar solution has finite mass.
- For $m \leq m_c$, the Barenblatt self-similar solution has infinite mass

Extension to $m \leq m_c$? Work in relative variables !

Entropy methods and linearization: intermediate asymptotics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez]

$$\frac{\partial u}{\partial \tau} = -\nabla \cdot (u \,\nabla u^{m-1}) = \frac{1-m}{m} \,\Delta u^m \tag{4}$$

m_c < m < 1, T = +∞: intermediate asymptotics, τ → +∞ R(τ) := (T + τ)^{1/d(m-m_c)}
0 < m < m_c, T < +∞: vanishing in finite time lim_{τ ≥ T} u(τ, y) = 0 R(τ) := (T - τ)^{-1/d(m_c-m)}

Self-similar *Barenblatt type solutions* exists for any m Rescaling: time-dependent change of variables

$$t := \frac{1-m}{2} \log \left(\frac{R(\tau)}{R(0)}\right) \quad \text{and} \quad x := \sqrt{\frac{1}{2d |m-m_c|}} \frac{y}{R(\tau)}$$

Generalized Barenblatt profiles: $V_D(x) := \left(D + |x|^2\right)^{\frac{1}{m-1}}$

Sharp rates of convergence

Assumptions on the initial datum v_0

(H1) $V_{D_0} \le v_0 \le V_{D_1}$ for some $D_0 > D_1 > 0$ (H2) if $d \ge 3$ and $m \le m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$

Theorem

[Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_* := \frac{d-4}{d-2}$, the entropy decays according to

$$\mathcal{E}[v(t,\cdot)] \leq C e^{-2(1-m)\Lambda_{lpha,d}t} \quad \forall t \geq 0$$

where $\Lambda_{\alpha,d} > 0$ is the best constant in the Hardy–Poincaré inequality

$$egin{aligned} & \Lambda_{lpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{lpha-1} \leq \int_{\mathbb{R}^d} |
abla f|^2 \, d\mu_{lpha} & orall f \in H^1(d\mu_{lpha}) \end{aligned}$$
 with $lpha := 1/(m-1) < 0$, $d\mu_{lpha} := h_{lpha} \, dx$, $h_{lpha}(x) := (1+|x|^2)^{lpha}$

Plots (d = 5)

J. Dolbeault

Improved Sobolev inequalities

Improved asymptotic rates

[Bonforte, J.D., Grillo, Vázquez] Assume that $m \in (m_1, 1), d \ge 3$. Under Assumption (H1), if v is a solution of the fast diffusion equation with initial datum v_0 such that $\int_{\mathbb{R}^d} x v_0 dx = 0$, then the asymptotic convergence holds with an improved rate corresponding to the improved spectral gap.

Higher order matching asymptotics

[J.D., G. Toscani] For some $m \in (m_c, 1)$ with $m_c := (d-2)/d$, we consider on \mathbb{R}^d the fast diffusion equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left(u \, \nabla u^{m-1} \right) = 0$$

The strategy is easy to understand using a time-dependent rescaling and the relative entropy formalism. Define the function ν such that

$$u(\tau, y + x_0) = R^{-d} v(t, x) , \quad R = R(\tau) , \quad t = \frac{1}{2} \log R , \quad x = \frac{y}{R}$$

Then \boldsymbol{v} has to be a solution of

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \left[\mathbf{v} \left(\sigma^{\frac{d}{2}(m-m_c)} \nabla \mathbf{v}^{m-1} - 2 \, \mathbf{x} \right) \right] = 0 \quad t > 0 \ , \quad \mathbf{x} \in \mathbb{R}^d$$

with (as long as we make no assumption on R)

$$2\,\sigma^{-\frac{d}{2}(m-m_c)} = R^{1-d\,(1-m)}\,\frac{dR}{d\tau}$$

Refined relative entropy

Consider the family of the Barenblatt profiles

$$B_{\sigma}(x) := \sigma^{-\frac{d}{2}} \left(C_M + \frac{1}{\sigma} |x|^2 \right)^{\frac{1}{m-1}} \quad \forall x \in \mathbb{R}^d$$
(5)

Note that σ is a function of t: as long as $\frac{d\sigma}{dt} \neq 0$, the Barenblatt profile B_{σ} is not a solution but we may still consider the relative entropy

$$\mathcal{F}_{\sigma}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - B_{\sigma}^m - m B_{\sigma}^{m-1} \left(v - B_{\sigma} \right) \right] dx$$

Let us briefly sketch the strategy of our method before giving all details

The time derivative of this relative entropy is

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = \underbrace{\frac{d\sigma}{dt}\left(\frac{d}{d\sigma}\mathcal{F}_{\sigma}[v]\right)_{|\sigma=\sigma(t)}}_{\text{choose it}=0} + \frac{m}{m-1} \int_{\mathbb{R}^d} \left(v^{m-1} - B^{m-1}_{\sigma(t)}\right) \frac{\partial v}{\partial t} dx$$

$$\Leftrightarrow \text{Minimize } \mathcal{F}_{\sigma}[v] \text{ w.r.t. } \sigma \iff \int_{\mathbb{R}^d} |x|^2 B_{\sigma} dx = \int_{\mathbb{R}^d} |x|^2 v dx$$

The entropy / entropy production estimate

According to the definition of B_{σ} , we know that $2 x = \sigma^{\frac{d}{2}(m-m_c)} \nabla B_{\sigma}^{m-1}$ Using the new change of variables, we know that

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -\frac{m\,\sigma(t)^{\frac{d}{2}(m-m_c)}}{1-m}\int_{\mathbb{R}^d} v\left|\nabla\left[v^{m-1} - B^{m-1}_{\sigma(t)}\right]\right|^2\,dx$$

Let $w := v/B_{\sigma}$ and observe that the relative entropy can be written as

$$\mathcal{F}_{\sigma}[v] = \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] B_{\sigma}^m \, dx$$

(Repeating) define the relative Fisher information by

$$\mathcal{I}_{\sigma}[v] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[\left(w^{m-1} - 1 \right) B_{\sigma}^{m-1} \right] \right|^2 B_{\sigma} w \, dx$$

so that $\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -m(1-m)\sigma(t)\mathcal{I}_{\sigma(t)}[v(t,\cdot)] \quad \forall t > 0$

When linearizing, one more mode is killed and $\sigma(t)$ scales out

Improved rates of convergence

Theorem (J.D., G. Toscani)

Let
$$m \in (\widetilde{m}_{1}, 1), d \geq 2, v_{0} \in L_{+}^{1}(\mathbb{R}^{d})$$
 such that $v_{0}^{m}, |y|^{2} v_{0} \in L^{1}(\mathbb{R}^{d})$
 $\mathcal{E}[v(t, \cdot)] \leq C e^{-2\gamma(m)t} \quad \forall t \geq 0$
where
 $\gamma(m) = \begin{cases} \frac{((d-2)m-(d-4))^{2}}{4(1-m)} & \text{if } m \in (\widetilde{m}_{1}, \widetilde{m}_{2}] \\ 4(d+2)m-4d & \text{if } m \in [\widetilde{m}_{2}, m_{2}] \\ 4 & \text{if } m \in [m_{2}, 1) \end{cases}$

J. Dolbeault Improved Sobolev inequalities

イロト イポト イヨト イヨト

Spectral gaps and best constants

B3 – Gagliardo-Nirenberg and Sobolev inequalities : improvements

Gagliardo-Nirenberg and Sobolev inequalities : further improvements

- A brief summary of the strategy for further improvements
 - In the basin of attraction of Barenblatt functions: improving the asymptotic rates of convergence for any m

$$rac{\partial v}{\partial t} +
abla \cdot \left(v \,
abla v^{m-1}
ight) = 0 \quad t > 0 \;, \quad x \in \mathbb{R}^d$$

with $m \in (\frac{d-1}{d}, 1), d \geq 3$

- The $\frac{1}{2}$ factor in the entropy entropy production inequality can be explained by *spectral gap* considerations
- $\bullet\,$ This factor can be improved for well prepared initial data, if $m>\frac{d-1}{d}$
- [J.D., G. Toscani] **Global improvements** can be obtained using rescalings which depend on the second moment, even for $m = \frac{d-1}{d}$

イロト 不良 トイヨト イヨト

Best matching Barenblatt profiles

Consider the fast diffusion equation

$$\frac{\partial u}{\partial t} + \nabla \cdot \left[u \left(\sigma^{\frac{d}{2}(m-m_c)} \nabla u^{m-1} - 2x \right) \right] = 0 \quad t > 0 , \quad x \in \mathbb{R}^d$$

with a nonlocal, time-dependent diffusion coefficient

$$\sigma(t) = rac{1}{K_M} \int_{\mathbb{R}^d} |x|^2 \, u(x,t) \, dx \;, \quad K_M := \int_{\mathbb{R}^d} |x|^2 \, B_1(x) \, dx$$

where

$$B_{\lambda}(x) := \lambda^{-rac{d}{2}} \left(C_M + rac{1}{\lambda} |x|^2
ight)^{rac{1}{m-1}} \quad orall x \in \mathbb{R}^d$$

and define the relative entropy

$$\mathcal{F}_{\lambda}[u] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[u^m - B_{\lambda}^m - m B_{\lambda}^{m-1} \left(u - B_{\lambda} \right) \right] \, dx$$

イロト 不良 トイヨト イヨト

Three ingredients for global improvements

•
$$\inf_{\lambda>0} \mathcal{F}_{\lambda}[u(x,t)] = \mathcal{F}_{\sigma(t)}[u(x,t)]$$
 so that

$$\frac{d}{dt} \mathcal{F}_{\sigma(t)}[u(x,t)] = -\mathcal{J}_{\sigma(t)}[u(\cdot,t)]$$

where the relative Fisher information is

$$\mathcal{J}_{\lambda}[u] := \lambda^{\frac{d}{2}(m-m_c)} \frac{m}{1-m} \int_{\mathbb{R}^d} u \left| \nabla u^{m-1} - \nabla B_{\lambda}^{m-1} \right|^2 dx$$

2 In the *Bakry-Emery method*, there is an additional (good) term

$$4\left[1+2C_{m,d}\frac{\mathcal{F}_{\sigma(t)}[u(\cdot,t)]}{M^{\gamma}\sigma_{0}^{\frac{d}{2}(1-m)}}\right]\frac{d}{dt}\left(\mathcal{F}_{\sigma(t)}[u(\cdot,t)]\right)\geq\frac{d}{dt}\left(\mathcal{J}_{\sigma(t)}[u(\cdot,t)]\right)$$

Some Csiszár-Kullback inequality is also improved

$$\mathcal{F}_{\sigma}[u] \geq \frac{m}{8 \int_{\mathbb{R}^d} B_1^m dx} C_M^2 \|u - B_{\sigma}\|_{\mathrm{L}^1(\mathbb{R}^d)}^2$$

improved decay for the relative entropy

Figure: Upper bounds on the decay of the relative entropy: $t \mapsto f(t) e^{4t}/f(0)$. (a): estimate given by the entropy-entropy production method (b): exact solution of a simplified equation. (c): numerical solution (found by a shooting method)

An improved Sobolev inequality: the setting

Sobolev's inequality on $\mathbb{R}^d,\,d\geq 3$ can be written as

$$\int_{\mathbb{R}^d} |\nabla f|^2 \, dx - \mathsf{S}_d \left(\int_{\mathbb{R}^d} |f|^{\frac{2d}{d-2}} \, dx \right)^{\frac{d-2}{d}} \ge 0 \quad \forall \ f \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

and optimal functions take the form

$$f_{M,y,\sigma}(x) = \frac{1}{\sigma^{\frac{d}{2}} \left(C_M + \frac{|x-y|^2}{\sigma}\right)^{d-2}} \quad \forall x \in \mathbb{R}^d$$

where C_M is uniquely determined in terms of M by the condition that $\int_{\mathbb{R}^d} f_{M,y,\sigma}^{\frac{2d}{d-2}} dx = M$ and $(M, y, \sigma) \in \mathcal{M}_d := (0, \infty) \times \mathbb{R}^d \times (0, \infty)$. Define the manifold of the optimal functions as

$$\mathfrak{M}_d := \big\{ f_{M,y,\sigma} : (M,y,\sigma) \in \mathcal{M}_d \big\}$$

and consider the *relative entropy* functional

$$\mathcal{R}[f] := \inf_{g \in \mathfrak{M}_d} \int_{\mathbb{R}^d} \left[g^{-\frac{2}{d-2}} \left(|f|^{\frac{2d}{d-2}} - g^{\frac{2d}{d-2}} \right) - \frac{d}{d-1} \left(|f|^{2\frac{d-1}{d-2}} - g^{2\frac{d-1}{d-2}} \right) \right] dx$$

An improved Sobolev inequality: the result (1/2)

Theorem

[J.D., G. Toscani] Let $d \geq 3$. For any $f \in \mathcal{D}^{1,2}(\mathbb{R}^d)$, we have

$$\int_{\mathbb{R}^d} |\nabla f|^2 \, dx - \mathsf{S}_d \left(\int_{\mathbb{R}^d} |f|^{\frac{2d}{d-2}} \, dx \right)^{\frac{d-2}{d}} \ge \frac{\mathsf{C}_d \, \mathcal{R}[f]^2}{\||x|^2 \, f^{\frac{2d}{d-2}}\|_{\mathrm{L}^1(\mathbb{R}^d)}}$$

The functional $\mathcal{R}[f]$ is a measure of the distance of f to \mathfrak{M}_d and because of the **Csiszár-Kullback inequality**, we get

$$\frac{\mathcal{R}[f]}{\||x|^2 f^{\frac{2d}{d-2}}\|_{\mathrm{L}^1(\mathbb{R}^d)}^{1/2}} \ge \frac{\mathsf{C}_{\mathrm{CK}}}{\|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^{\frac{3d+2}{d-2}}} \inf_{g \in \mathfrak{M}_d} \||f|^{\frac{2d}{d-2}} - g^{\frac{2d}{d-2}}\|_{\mathrm{L}^1(\mathbb{R}^d)}^2$$

with explicit expressions for C_d and C_{CK}

イロト イポト イヨト イヨト

An improved Sobolev inequality: the result (2/2)

Corollary

[J.D., G. Toscani] Let $d \geq 3$. For any $f \in \mathcal{D}^{1,2}(\mathbb{R}^d)$, we have

$$\int_{\mathbb{R}^{d}} |\nabla f|^{2} dx - S_{d} \left(\int_{\mathbb{R}^{d}} |f|^{\frac{2d}{d-2}} dx \right)^{\frac{d-2}{d}} \geq \frac{\mathfrak{C}_{d}}{\|f\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2\frac{3d+2}{d}}} \inf_{g \in \mathfrak{M}_{d}} \||f|^{\frac{2d}{d-2}} - g^{\frac{2d}{d-2}}\|_{L^{1}(\mathbb{R}^{d})}^{4}$$

- The expression of \mathfrak{C}_d is also explicit
- A similar result holds for Gagliardo-Nirenberg inequalities with $p \in (1, \frac{d}{d-2})$

イロト イポト イヨト イヨト

Thank you for your attention !

イロト イヨト イヨト イヨト

э