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1. Motivation and statement of the problem

Data: Q C RY bounded,open, x >0, Fi,Fy: QxR xRY — R,
f e L>*(Q), A, B positive matrices

Control problem Find wg € U such that

in the coefficients: (P) ,
where j(wo) B wmelzfll j(w)

e Set of controls:

U={wCQ:wmeasurable, |w| <k}

e Cost functional:

J(w) = / Fi (:c,uw,Vuw)dx—l—/ Fs (2, uy, Vuy,) dx
W Q\w

with u,, defined by
e € HY(Q), —div((Axw + Bxonw) Vuw) —f inQ

Optimal design of composite materials (mixing materials A and B).



Find wg € U such that
PI (o) = min 7 (@)

Existence of solution: Direct Method in the Calculus of Variations

If w, € U is a minimizing sequence, i.e. J(w,) — inzf/{ J(w), then
weE

Xew —= 8 in L®(Q), Axa, + Bxaww, — M € L®(Q)N*N

U,

—yin Hy(Q),with —div(MVu)=f inQ
however
B w e U such that 0 =y, and M = Ay, + Bxo\w

(lack of compactness of the set of controls!)

/Fi(x,uwn,Vuwn)dx % /Fi(x,u, Vu)dx

(lack of continuity in Hj-weak of the cost functional!)

Control problem (P) has not a solution in general (F.Murat).



A relaxation of (P):
Find (6g, My) € U such that

(P) J (0o, Mg) = min J(0, M)
where (6,M)cU

e Set of relaxed controls
U = {(0, M) : Jw, € U such that x,, —> 8 in L2(€Q),

AXw, + Bxaye, — M € L®(Q)N*V]
e Relaxed cost functional

J(0,M) = / H(z,ug nr, Vg ar, MVug ar, 0) dx
Q

where ug ps is defined by
uo.r € HL(Q), —div(MVUH,M> —f inQ
(J.Casado-Diaz, J.Couce-Calvo,J.D.Martin-Gomez for the definition of H)

Remark: The function H is known explicitely only in few cases!
(L.Tartar; Y.Grabovsky; R.Lipton; P.Pedregal...)



We want to solve numerically the control problem (P):

For h > 0, find wy, € U such that
J(wh) — irelzf;{j(w) —» 0 ash — 0

and provide convergence rates.

We have two (main) strategies for discretization:

e Discretize directly the original problem (P).

e Discretize the relaxed formulation (P).

Our goal: To study and compare both strategies.
To compute a “good” two-phase material,

is it worth working hard to obtain the relaxed problem for its dis-
cretization?

or on the contrary,
is it preferable to deal with a discretization of the original problem?



2. The one-dimensional design problem
(J.Casado-Diaz, C.Castro, MLL, E.Zuazua)

Dates: Q = (0,1), a,8, K >0, feL>*(0,1), F; € WH>°((0,1) x R x R)

Find wg € U such that
J(wo) = min J(w)

Control problem
in the coefficients:

(P)

where

e Set of controls:
U={wC(0,1) : wmeasurable, |w| <k}

e Cost functional;

d w d w
j(w):/Fl x,uw,i d.:c—I—/ s x,uw,i dx
W dx (0,1)\w dzx

with u,, defined by

du“’) — f in (0,1)

d
w, € Hy(0,1), ——((axw + B = xw)) ==



Theorem [Relaxation]

A relaxation of (P) is given by: 5 Find 6y € U such that
PV F(86) = min 7 (6)

where oeu

e Set of relaxed controls

1
U = {6 : 6 ¢ L>0,1;0,1]) with / Odr < Kk}
0

e Relaxed cost functional

1
Ao dug Ao dug
GF — — 1 — 6)F: — — d
/O ( 1(%,?1;9, a dﬂ?>—|—( ) 2(%,?1;9, /6 dﬂf)) L

with ug defined by

d du :
ug € H(0,1), —ﬁ(/\gd—;) — £ in (0,1)

1-6\"" -
where A\g = (— + %) , V0 € U (harmonic mean)
o




To solve numerically the control problem we have two (main) strategies
for discretization:

e Discretize directly the original problem (P).

~

e Discretize the relaxed formulation (P).

Next we now approximate both optimal design problems, the original
and the relaxed one, but we do it in a stratified manner, in two levels:

Level 1: Discrete set of controls but continuous ODE.

Level 2: Discrete set of controls and also discrete approximation
of ODE (full discretization).



For r > 0, we consider a partition Q" = {yx},7, of [0, 1], with

r =
1<k<m,

Discretization of (P), Level 1:

J(wp) = min J(w)

weUur

Find wg € U" such that
(P7)

where

U'={wel : 3T C{l...,m;} such
that w = Uge s (Yr—1,Yx) }

Ay,
j(w):/wFl (x,uw,;—x> dx

dt,
—|—/ Fy (x,uw, L) dx
(0,1)\w dz

with u, € H(0,1) satisfying

d du,,

o ((Oéxw + B(1 — xw)) %> =f

in (0,1)

max (Yk — Yk—1) -

~

Discretization of (P), Level 1:

Find 65 € U" such that
P A .5
PN 705 = min 50
ocur
where

U = {9 c U : O constant
in every (Yx—1,Yk) }

1
~ )\9 dUQ
6) = OF ——
76) = [ (671 (200,252
Ao du
+(1 — ) F5 (:c, Ug, Eed—sve> )dx
with ug € H3(0,1) satisfying

—%(A9%> — f in (0,1)



Theorem 1 [Discretization of (P), Level 1]
Problem (P") has a solution for every r > 0, and we have

0 < min J(w) — inf J(w) < Crz.
wel” weld

Moreover, if for some integer ¢ > 1, we have that f belongs to W*1(0, 1)

and F;(z, s, &) is independent of s and belong to C’fo’i([O, 1] x R), then we
have

0 < min J(w) — irelzf;[j(w) < Creo.

weUur

~

Theorem 2 [Discretization of (P), Level 1]

Problem (P7) has a solution for every r > 0, and we have

0 < min J () — inf J(w) = o(r).
ocUr wel

Moreover, if problem (P) has a solution 6y in BV (0,1), then

0 < min J(0) — inf J(w) < Cr2.
ocur weld




Remarks:

e The convergence rate for (P") is better than the one for (P").

N

For (P"): 0 < min J(w)— inf J(w) < Cr

wWEUT weU
For (]5”'"): 0 < min j(@) — inf J(w) = o(r)
ocur weld

e Problem (P7) is simpler to solve because the set of controls U is
convex, and for example we can apply descent methods.

U™ = {w C (0,1) : |w| < &,dJ C{l...,m,} such that w = Uke](yk—l,yk)}

1
1" — {9 c LOO(O, 1; [0, 1]) . / O0dx < Kk, 6 constant in every (yk_l,yk:)}
0



~

Discretizations of problems (P) and (P): Level 2

Disctretization of the state and the cost: Finite Element Approximation

For h > 0, we take a partition Q" = {x;}"", of [0,1], with

h = max (CC@' — xi—l)

and we define 1<i<ny,

W ={v e C([0,1]) : v is affine on every (w;_1,2;)}

For 6 € U, constant in every (xi_1,2;), we define @y € W" by

1 ~ 1

dii d

/Agﬂ—”d:p:/ fode, Yoe Wh
0 d.ﬁU d.ﬁU 0

1 ~ ~
A Ao du Ao du
h . A dug . Mg dug
0= [ (oF 20U (1 g Ao dilg )\
j ( ) /0 ( 1 (l’,UQ, o dl'>—|_( ) 2 (x,UQ, ﬁ dw)) X
X

Forw € U, withw = Ujey(zi—1,2;), J C{1...,nu}, we denote u,, = U,

and define g .
jh(w> :/Fl %aw’_w dl’—|—/ F2 x,aw,—w dx
w dx (0,1)\w dx

and



Disctretization of the set of controls:

For r > 0, we take a partition Q"

= {yr} 1, of [0,1], with Q" € Q" and

r= max (Yr — Yr—1)-

and we define

1<k<m,

U" = {w C (0,1) : |w| < k,3dJ C{l...,m,} such that w = Uke](yk_l,yk)}

1
1T — {9 c LOO(O, 1; [O, 1]) . / O0dx < k, 6 constant in every (yk—laykz)}
0

Full discretization of (P):
We take Q" = QM = {z;}"

Find wf € U" such that
h
(F') JMwh) = min J"(w)

eyn

A

Full discretization of (P):
We take Q" — {ye}r € Q" — {z:}™
with » = Vh

Find 6y € U" such that
J"(8o) = min J"(6)

ocur

(P)



Theorem [Full discretization of (P)]

Problem (P) has a solution for every h > 0. Morover, every solution
wo satisfies

0 < J(wp) — inf J(w) < Ch=.

weld

Moreover, if for some nonnegative integer ¢, we have that f belongs to
W1(0,1) and F(z, s, €) is independent of s and belong to C}7! ([0, 1] xR),
then we have

0 < J(wo) — inf T(w) < Chw.

”~

Theorem [Full discretization of (P)]

Problem (P!) has a solution for every h > 0. Moreover, if we assume
that exists an optimal control of bounded variation for (P), then every

Ao solution of (P") satisfies

0 < J(bo) —ixelgj(w) < Ch.




Remarks:

e In the full discretization of the unrelaxed formulation, the
PDE and the control are discretized in a same fine grid of
size h.

e The full discretization of the relaxed problem, constitutes a
bigrid strategy: The PDE is discretized in the fine grid of size
h while the control is discretized in the coarser one of size V.
And it gives a faster convergence with a lower computacional
cost!

e Previous results demonstrate that relaxation may be as im-
portant for calculation as it is for existence.



Postprocessing of relaxed controls:

A difficulty: Solutions of (P") are not physical solutions (they are not
characteristics!)

Proposition. Given

_ Yk _.yk_l, Vke{l,...,m.},

we define w C (0,1) as
me  J
W = U U(yk—l + (1 = 1)sp, Yp—1 + (1 — 1+ tx)sg).
k=1i=1
Then, we have

J0)— T (w)| < Cr?.




3. The N-dimensional design problem
(J.Casado-Diaz, J.Couce-Calvo, MLL, J.D.Martin-Gémez)

Data: Q C RY bounded,open, x >0, f € L>(Q),

A, B positive matrices, 3(B — A)~! (for simplicity),
F :RY — R satisfying

F(&) — F(&)| < CL+ &+ &) 16— &| V&, & eRY.

Control problem Find wg € U such that

in the coefficients: (P) ,
where j(wo) B wmelzfll j(w)

e Set of controls:
U={w CQ:wmeasurable, |w| <&k}

e Cost functional:
J(w) :/F(Vuw)dx
with u, defined by v

u, € HL(Q), —div((AXw + Bxonw) ww) —f inQ



A relaxation of (P):
Find (g, My) € U such that

P 5 : 5
P) Y F(6o, My) = min  F(6, M)
where 0,M)eld

e Set of relaxed controls
U = {(6, M) : Jw,, € U such that x,,, — 0 in L™=(Q),

AXw, + BXa\w, o Me LOO(Q)NXN}
e Relaxed cost functional

j(@,M):/H(VUQ,M,MVUQ,M,H)CZ:C
O

where ug ps is defined by

wo s € HL(Q), —div(MVUQ,M) — f 0



About the relaxed set of controls:

U =1{(0,M) : Fw, €U such that x,, — 0 in L=(Q),
AXe, + BXanw, — M € L=(Q)V<N}

The following theorem characterizes the set U
Definition: For p € [0, 1], we define K(p) by
K(p) ={M e RY*Y : Iy, = pin L>®(Q), Axw, + Bxo\w, RS M}

Theorem: Given (6, M) € L>=(£;[0,1]) x L>®(Q)N*N | we have

(0, M) cU & fgé’dxgliand
M(z) € K(0(x)) a.e. x € Q.

Consequence:

U=1{(6,M)ec L®(Q[0,1]) x L=(Q)N*N / Odx <k, M € K(0)}



About the relaxed set of controls:

U= {(0,M)c L®(Q;[0,1]) x L(Q)N*N /Qedx <k, M e€K(9)}

The sets K(p), p € [0,1], are explicitely known only when (L.Tartar;
K.A.Lurie, A.V.Cherkaev)

A=al, B=5I

To deal with (P) we only need to know the sets , V¢ € RY. Indeed
we can reformulate (P) as

gnm/HVu o, 0)dz
Y 6 L9 [0,1)), / Odx < k, uc H(Q)
Q
| —diveo=f in(, o€ a.e. x € (), o0 measurable.

Theorem: For every p € [0,1] an & € RY, we have
p)={n€RY : (1-p)(B—-A)"'AB - A)~ (B —n) - (BE—1n)

+p(B —A)7'B(B—A) Y (n—A&) - (n— A) < p(1 —p)n-&}.



About the relaxed cost functional:

j(é’,M):‘/H(Vung,MVung,H)da:
Q
where

H(¢n,p) = fsugHa(ﬁ,n,p), V(& n,p) € RY x RY x [0, 1].
>

with Hs : RY x RY x [0,1] — R, § > 0, given by
Hs(&m.p) = inf{/ F(E+ Vw)dy :
Y
—div ((Axz + Bxy\z))( +Vw) =0 in RY, w e H{(Y),
|/ ((AXZ + BXY\Z))(f + Vw) dy — 77| < 9,
Y

Z C Y measurable, |Z| = p}, Vo > 0.

In general we do not have an explicit representation of H!
(L.Tartar; Y.Grabovsky; R.Lipton; P.Pedregal... )



Some properties of H:
e Dom(H) ={(&n,p) € RY xRN x[0,1] : H({,n,p) < +00}
= {(&n,p) e RY xRN x [0,1] : n € K(p)¢}

e The value of H on the boundary of Dom(H) is given by

H(enp) =pF (8- 07 (P ) w0 -pr (B- a7 (R5),

V(&,m,p) € 0Dom(H), p # 0,1,

H(E, AE, 1) = H(E, BE,0) = F(§), VEeRY.

. liminf/H(Vun,an,Qn) d(L‘Z/H(V’LL,O‘,Q)dZC,
Q Q

V (U, 0n,0,) such that  w, — u in H&(Q)

0, = 0in L>=(Q), o0, —0in L*(Q)Y, dive, — divein H 1 (Q).



f

Find (89, Mo) € U such that

J (00, Mo) = min _J(6, M)
(0,M)eU

(P)
where \

U ={(6, M) e L®(Q]0,1]) x Lo(Q)N*N . / Adx < k, M € K(0)}

J(6, M) = / H (Vg ar, MVug ar, 8) da
Q

wo.nr € HL(Q), —div(Mvue,M) —f inQ

~

How compute the solutions of (P) when H is not known explicitely?

We have an explicit formula for H(&,n, p) when (&, n,p) € 0Dom(H).
On the other hand, under additional conditions we have that if (6, M)

is a solution of (P), then (Vug ar, MVug p1,6) € dDom(H).
We develop numeric strategies based on the approximation of H by a

larger function H or a lower function H, which coincide with H on some
subset of 0Dom(H).



Analogously to the one-dimensinal case, we use two grids, one for the
set of controls and other for the state equation:

Discretization of U:
For every h > 0, we consider a partition of {2 given by T} ; measurable,
1 <35 <mnyp, such that

Nnh
Q= Tjn, [Tjnl >0, diam(T} 1) < b, |TjnNTen| =0, j # k.
j=1

Then we define

ih — {(97 M) e U - 6, M are constant in every Tj,h}



Discretization of the PDE:
For every h > 0, we consider a closed subspace V;, C H3(Q) satisfying

. . : - 1
i) Jim min fon —vllmye) =0, Vv e Hy(2)

i) lim min flop —wrpllmye) =0, Ve € CZ(Q),
Ywy, € V3, bounded in H&(Q)

1) liﬁnigf/H(Vuh,ah,Qh)d:BZ/H(Vu,a,@) dx,
—0 Jo Q

Y(up,on,0r) € Vi, x L2(Q)N x L>®(Q) such that
(up —uin Hy(Q), 6, =60in L>=(Q), o5 — o in L*(Q)Y,
\ 1

lim max / (o, — o) - Vo, dx = 0.
[ —=0vpeVp\{0} H”Uh”Hg(Q) Q

Then, for every (0, M) € Uy, we define ug, A by
ug 1 € Vi, / MYVup - Vo' de = (f,o"), W' eV,
9



Are properties 7), 77) and ii2) too restrictive?

o Vi, = Hy(Q), Vh > 0, satisfies 1), 11), iii).
The choice V;, = Hj(Q) implies to solve exactly the state equation
(i.e., continuous PDE!).

e If V}, is the usual finite elements, then it satisfies i), i7).

e In examples where H is known, every closed subspace V},
satisfies iit).



Take H : RN x R¥ x [0,1] — R lower semicontinuous, with

{ H(&m,p) > H(En,p), in (RY xRY x [0,1])

H(E, AE, 1) = H(, BE,0) = H(E, AE, 1) = H(E, BE,0) = F(€)
and consider the discrete control problem

{ Find (6q, My) € ah such that
—h

(Pe)Y Jn(6o, Mp) = min_ Jy(6, M)
(0,M)eU,

h = {(9, M) € U - 6, M are constant in every Tj,h}

T"O,M) = [ H(Vug p, MVug 3, 0) do
Q

ug 1r € Va, ) MVuf - Vo' da = /Q foltdz, Yo' eV,



Theorem: Problem (?h) has a solution (6, Mp). Besides, denoting

Up = ug A» for a subsequence we have

(up, — win H(Q)
My Vuy, — o in L*(Q)"N

L 0, =6 in L>=(Q)

The functions u, o, @ satisfy there exists M € L>°(Q)¥*N such that
o = MVu and )
(6, M) is a solution of (P).

Moreover

}ILIH%) H(Vuh,MhVUh,eh dx—/H VU MV’LL H)d
—YJQ

Remark: There is an analogous result replacing H by a lower approxi-
mation H.



Example 1:

H(E,A¢,1) = H(E, BE,0) = F(€)
H(&,7m,p) = +o0o otherwise
Example 2:
H(&n,p) = pF ((B — A)‘l(ng_ 77)) +

- (B (5, Ve n.p) € 0Dom()

H(&,n,p) = +o00 otherwise

Remark: The choice of H given in Example 1 proves the convergence

of the dicretization of the original problem, whereas the choice H = H
proves the convergence of the dicretization of the relaxed one.



Open problems:

e Convergence rates for the N-dimensional case.

e Smoothness properties for the optimal controls (even for the
one-dimensional case!).

e Lixplicit representation of H.



Numerical experiments

1) @=(0,1)%, A=al, B=I with0<a < §,

(
in / F(Vu)da
0,1

—div ((axw + BX(0.12\w)Vu) = f in (0,1)7,
Cu=01in0(0,1)%, [(0,1)*\w| <=&.

(P) <

Case 1:
F(Vu) = |Vul|* = H is explicitely known

Case 2:
F(Vu) = |0, u|* + 20]0,,u|* = H is not explicitely known



Case 1: F(Vu) =|Vu|?

=20, K =0.3, f = X{|2—(0.5,0.5)|>0.25}



Case 2: F(Vu) = |0,,ul? + 20|0,,u|?

0.9 0.9 (7.

0.8 0.8

0.7 0.7

06 3 r & L dos 06
05 : 4 o Hos 05 H05
0.4 E L : H0.4 0.4 H0.4
03 - " 1 03
02 ’ 7 - 02
01 - 01

0 0

0 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 0 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9

a=1, =2, k=04, f=1 a=1, =20, k=03, | = X{]2—(0.5,0.5)|>0.25}
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