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OUTLINE

• Introduction: resonances and their relevance to studying disordered systems.

• The effective nonhermitian hamiltonian, outgoing waves.

• Averaging over disorder - the SUSY Method (hermitian case) 

• Averaging over non-hermitian operators - the Method of Hermitization.

• The SUSY method applied to the hermitized disordered effective hamiltonian. 
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A CLOSED DISORDERED SYSTEM 

Hij H = H†

closed system: real energy eigenvalues        ,Eα eigenstates ψα

Hψα = Eαψα

ψα(x)

(inverse Lyapunov exponent)              , or extended  throughout the system ξ(Eα)

In 1d & 2d localized  for all energies (albeit in 2d localization length can be extremely huge, bigger 
than the size of any conceivable system). In 3d there is a genuine transition (the Anderson transition) 
between localized states (between the band and mobility edges) and extended states (in the middle 

of the energy band).

3

either localized (typically exponentially) with localization length
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CONNECT THE SYSTEM TO THE 
OUTER WORLD:

4

A particle, initially trapped in the system, may escape out 
through the lead. This phenomenon corresponds to a 

quasi-stationary state - a resonance.  
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• The original eigenstate       of the closed system, with 
energy        , has become a resonance, with complex energy 

• The stronger the original state            “feels” the opening of 
the system (say, at           ), the greater probability of the 
particle to escape. 

• Thus, expect eigenstates, whose amplitudes near the 
opening,           , are large, to develop large resonance 
widths       , and vice versa.          

ψα

Eα

zα = Ẽα −
i

2
Γα

ψα(r)

r = 0

∣∣ψα(0)
∣∣

Γα

5

Friday, June 24, 2011



• strongly localized states in the original system => narrow resonances

• extended states => large resonance widths

•     is reminiscent of Thouless’ criterion for localization (in closed systems) - check sensitivity to the 
boundary conditions: change b.c. slightly, then                             .  Let      = mean level spacing.  
Then, if we have                 ,  the state is localized. 

• sensitivity of the imaginary part of the complex energy eigenvalue to b.c. and its consequent 
interpretation are reminiscent of a similar phenomenon in the Hatano-Nelson model.

Γ
Eα → Eα + δEα ∆

6

∣∣∣∣
δEα

∆

∣∣∣∣! 1
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∆ ∼ L−dE1− d
2 L

could this analogy with standard localization theory pushed  further?

where is the system’s size, and d is dimensionality

conjecture:

1.Strong disorder ( strongly localized states): Γ ∼ |ψ(0)|2 ∼ e−
L
ξ

thus 
Γ
∆
∼ Ld e−

L
ξ(E) E

d
2−1

2. Diffusive regime: Γ ∼ D

L2 diffusion coefficientD

Γ
∆
∼ (L

√
E)d−2 · D

3. Scaling regime (near the Anderson transition): Γ ∼ D ∼ L−d

Γ
D scale invariant

,
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In order to answer all these questions, we need to compute the 
averaged density of resonances (DOR):

ρ(E,Γ) = 〈
∑

α

δ(E − Eα)δ(Γ − Γα)〉

z = E − i

2
Γ is the complex energy

This is a one-point correlator (as opposed to the 
2-point function                    typically studied in the hermitian case).  

Again, a situation very similar to what one studies in 
the Hatano-Nelson model.

〈GretGadv〉
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Description of open quantum systems in terms of effective nonhermitian hamiltonians has a long history: 
Feshbach; Wiedenmueller, Zirnbauer & Verbaarschot, Rotter et al., Fyodorov and Sommers, Datta and 

more. These (save for Datta’s book) are largely based on manipulating the S-matrix of the system, 
depending on how many scattering channles are opened and connect the system to the outer world. This, 

of course depends on energy. Hence,             is inevitably energy dependent.   

9

Heff

Resonance complex energies  could be thought of as the complex 
eigenvalues of a nonhermitian effective hamiltonian        .The outer 
world is eliminated and one reformulates the problem entirely in 
terms of the degrees of freedom of the original system and its 
coupling to the outer world. The DOR is thus the density of 

eigenvalues of this nonhermitian hamiltonian.   

Heff

The Effective Hamiltonian

Let us now derive the effective nonhermitian hamiltonian:
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RESONANCES AS STATIONARY OUTGOING WAVE 

SOLUTIONS OF THE SCHRODINGER EQUATION
• Work in the continuum directly. 

• Solve the Schrodinger Equation              

inside the system, subjected to the 
boundary condition that the wave outside 
the system be a freely propagating outgoing 
wave. 

• This determines the value of the wave 
function right outside the system’s 
boundary. Once this is done we can forget 
about the environment, cut it out, and 
restrict the Hamiltonian to the domain of 
the system.  

• We shall further assume a tunneling barrier 
at the system’s boundary. 

system

boundary

outgoing waveHψ = Eψ

perfectly conducting environment
 (free propagation)

10
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• This boundary condition clearly renders the Hamiltonian non-

hermitian: the particle tunnels out of the system. 

• This is known also as Sievert’s boundary condition. 

• This is how Gamow originally explained nuclear alpha decay. 

• It is completely equivalent to the description of resonances as 
poles of the S-matrix in the un-physical sheet. 

11
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EXAMPLE: THE EFFECTIVE RESONANCE 
HAMILTONIAN IN 1D IN THE CONTINUUM

The disordered system lives in the segment [0,L]. The right end at x=L is closed (Dirichlet 
boundary condition). The particle can tunnel out of the system through a tunneling barrier 
located at x=0, and escape into a perfect lead stretching along the negative axis, in which 

it propagates freely to the left.  
                                 
                                                                   

ψ(L) = 0

ψ(x) = ψ(0) e−ikx , E =
!2k2

2m
,Rek > 0

The hamiltonian inside the system is

The last term is the tunneling barrier.  We impose Dirichlet b.c. at the closed end:

Free propagation to the left in the lead:

ψ′(0−) = −ikψ(0)

Hsystem =
p2

2m
+ V (x) + gδ(x) , 0 ≤ x ≤ L , g > 0

Thus, just outside the system, into the lead, 

12

The derivative has to jump across the tunneling barrier. One finds a Robin-type complex 
and energy dependent boundary condition:

ψ′(0+) + (ik + λ)ψ(0) = 0 , λ = −2mg

!2
< 0
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 Clearly, we can now eliminate the lead altogether, and solve the Schrodinger Equation 

(
p2

2m
+ V (x)

)
ψ(x) =

!2k2

2m
ψ(x) only inside the system 0<x<L,

subjected to the boundary condition ψ′(0+) + (ik + λ)ψ(0) = 0

where of course, Rek > 0 and λ < 0

(and to the Dirichlet b.c. at the other end).

The Schrodinger operator together with the complex 
energy-dependent boundary condition define the 

nonhermitian effective hamiltonian         for resonances in 
this simple system.

Heff
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As an easy exercise, to see what’s going on, just work out the case V=0
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• The LHS of the boundary condition                                            is really the spectral 
determinant of the problem:

• It depends on the energy through k.

• Integrate the Schrodinger equation with initial conditions                                       to the 
left, into the system. Call the solution              .

• Then impose the boundary condition at x=0, which is the spectral condition on k.         

LET US MAKE A FEW COMMENTS:

ψ(x; k)

ψ′(0+) + (ik + λ)ψ(0)

ψ(L) = 0 , ψ′(L) = 1

14
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THIS 1D MODEL CAN BE EASILY GENERALIZED TO 
HIGHER DIMENSIONS:

For example, consider a 3d infinite slab of disordered material, 
located between 0<z<L. The system is closed at the plane z=L, 

and is connected to the outside world through a tunneling 
barrier, which is the entire plane z=0. The outside world is a 

perfect conductor, where the particle propagates freely.   

z
0 L

eik⊥·r⊥−ikzzoutgoing wave

complex resonance energy

ζ =
!2k2

2m

closed side (Dirichlet b.c.)

Rekz > 0 ,k⊥ is real

15
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Obtain the boundary condition 

q2 =
2mζ

!2
− k2

⊥

[∂zψ + (λ + iq sign Im(q))ψ]|z=0+ = 0

where

The Schrodinger hamiltonian inside the slab 0<z<L, together 
with the resonance b.c. at z=0 (and the Dirichlet b.c. at z=L) 
comprise the desired effective hamiltonian for this system. 

Note that the resonance b.c. is independent of the direction     , 
reflecting rotational symmetry (of the outside world) about the 

z-axis. 

k̂⊥
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As another example, consider disordered system in the 
shape of a sphere of radius R, centered at the origin. The 

sphere’s surface is a tunneling barrier. An electron initially 
in the disordered ball can tunnel through the barrier, and 

escape to freedom.

Due to spherical symmetry, resonances may be decomposed into 
definite angular momentum states      .  Let us consider such a 

resonance with complex energy             .  The resonance b.c. at the 
sphere at r=R is

ψlm

[
∂rψlm −

(
λ + Q

h′
l(u)

hl(u)

)
ψlm

]

|r=R−

Hankel function

u=QR

ζ =
!2Q2

2m
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HOW TO OBTAIN THE  
RESONANCE B.C. IN GENERAL?

It is possible to derive a master formula (M. Zirnbauer)

Let          be the system’s boundary, coordinated by  ∂Ω ξ

G(+) (r, r′; ζ) the exact Green’s function of the system, 
with outgoing wave b.c., at complex energy 

G(+)
D (r, r′; ζ) the exact outgoing wave Green’s function of the system, 

with Dirichlet b.c. at  ∂Ω

18

Friday, June 24, 2011



r.

 r’ .

∂Ω system

observation point

environment

ξn̂

19

Friday, June 24, 2011



MASTER FORMULA:

an observation point 
outside the system a source point inside 

the system

a boundary point

proved by considering the Schrodinger equations obeyed by the two Green’s functions involved, 
multiplying each equation by the other function and subtracting, obtaining a vanishing divergence, and 

invoking Gauss’ theorem with respect to an appropriate boundary, using Dirichlet b.c. of the 
appropriate Green’s function. 

This is an integro-differential equation, relating the outgoing wave Green’s function of the system at an 
external point, to its boundary value. The desired resonance b.c. is obtained by letting    approach the 

boundary from outside and expanding the LHS in distance from the boundary.  For simple geometries, 
the resulting expression degenerates into a Robin-like b.c.  

r

G(+)(r, r′; ζ) = − !2

2m

∫

∂Ω
d2ξ

(
n̂ξ ·∇ξG

(+)
D (ξ, r; ζ)

)
G(+)(ξ, r′; ζ)

20
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AVERAGED DENSITY OF RESONANCES

• For a given realization of disorder, the resonance spectrum is a set of points in the complex energy 
plane                    (on the unphysical sheet). 

• We shall actually work with the complex momentum variable k, in which case resonances live in 
the  4th quadrant. 

• They are poles of the resolvent 

• For a large system, these resonances will occupy a dense, two-dimensional region in the complex 
plane, rendering the resolvent nonanalytic in that region. 

• Since the system is disordered, we are interested in averaging the  density of resonances (DOR) 
over disorder. 

ζ =
!2k2

2m

G(ζ, ζ∗) = Tr
1

ζ −Heff

21
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NUMERICAL RESULTS: SMALL      /STRONG DISORDERη

FIG. 4: Scatter plot for the case of strong disorder. The coupling strength η is taken to be 0.64. 1000 realizations for the
matrix of size N = 1000 have been taken for W = 1.0.

Next we consider the case (ii) where ξ > N . In Fig. 7 we show the scatter plot (!{E} vs "{E}) for weak disorder
where W = 0.25, η = 0.81, N = 500 and the number realizations is 100. In Figs. 8 and 9, we show results for different
values of W and N so that ξ(0)/N = 3.2. We have again chosen the uniform disorder with widths W = 0.5, 0.5/

√
2

and 0.25 for N = 125, 250 and 500 respectively. In Fig. 8 we show the average position of level vs percentage of levels
below it for η = 0.81. As shown in the figure, these curves nearly overlap when "{E} is scaled by N . Fig. 9 is the
repetition of Fig. 8 for η = 1.0.

22

Example - the resonance spectrum of a disordered chain
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THE SUPERSYMMETRIC METHOD

23

Efetov, Brezin (here I follow Verbaarschot)

Hermitian hamiltonian      , real eigenvalues      

Quantity of interest:

H λi

F (z, w) =
det(z −H)
det(w −H)

=
∏

i

(z − λi)
(w − λi)

A. Hermitian Case:

F (z, z) = 1
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G(z) is the resolvent  of  H

density of states:

ρ(x) =
∑

i

δ(x− λi) =
1
π

Im G(x− i0)

24

then G(z) = lim
w→z

∂

∂z
F (z, w) =

∑

i

1
z − λi

= tr
1

z −H

Basic identity:
∂

∂z
F (z, w) = F (z, w) tr

1
z −H
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F (z, w) =
det(z −H)
det(w −H)

generated by gaussian integration over bosonic (commuting) variables

generated by gaussian integration over Grassmann (anticommuting)  variables

25
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bosonic integration

φi, φ
∗
i i = 1, · · · , Nbosonic variables 

∫ ∏

i

d2φi

π
exp

[
iφ†(z −H)φ

]
=

iN

det(z −H)
, Imz > 0

∫ ∏

i

d2φi

π
exp

[
−iφ†(z −H)φ

]
=

(−i)N

det(z −H)
, Imz < 0

integrals exists because  H is hermitian 

Expect trouble if H is nonhermitian with complex eigenvalues !

26
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Berezin integration over Grassmann variables

ψi, ψ
∗
i

{ψi, ψ
∗
j } = {ψi, ψj} = 0

∫
dψdψ∗





1

ψ

ψ∗

ψψ∗





=





0

0

0

1
π





normalization is chosen such that

∫
dφdφ∗dψdψ∗ e−M(φ∗φ+ψ∗ψ) = 1

ReM > 0

27

bosonic

fermionic 
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A LITTLE BIT OF GRASSMANNOLOGY

f(ψ∗, ψ) = a + ψ∗b + cψ + dψ∗ψ

eψ∗Mψ = 1 + ψ∗Mψ

∫
dψdψ∗f(ψ∗, ψ)δ(2)(ψ) = f(0, 0) = a

δ(2)(ψ) = πψ!ψ

28
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IT FOLLOWS THAT 

∫ ∏

i

[dψidψ∗
i ] exp

[
±iψ†(z −H)ψ

]
= (

∓i

π
)N det(z −H)

hence

∫ ∏

i

[dψidψ∗
i d2φi] exp

[
±iψ†(z −H)ψ ± iφ†(w −H)φ

]
=

det(z −H)
det(w −H)

29
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NONHERMITIAN HAMILTONIAN - DIVERGING BOSONIC INTEGRALS !

for example
∫

d2φeiφ∗(z−z0)φ

won’t converge if Im(z − z0) > 0

thus, 
∫ ∏

i

d2φi eiφ†(z−H)φ

would not make any sense once  

z > inf Im σ(H)

30
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CONTRARY TO THIS, 

f(z, z0; η) =
∫

d2ud2d exp
[
i(u∗, d∗)

(
η z − z0

(z − z0)∗ η

) (
u
d

)]
=

−π2

η2 − |z − z0|2

exists for all values of z, provided Im η ! 0

in particular f(z, z0; 0) =
π2

|z − z0|2

31
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WE ARE THUS LED TO APPLY THE
 METHOD OF HERMITIZATION:

• by this method we reduce the problem of finding the eigenvalues of a nonhermitian operator to 
the more familiar problem of diagonalizing a hermitian one. 

• have to double the vector space

• eigenvalues of the hermitian operator are essentially the singular values of the original nonhermitian 
operator. 

32
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given the nonhermitian operator H, we are led to consider 
the hermitian one 

H =
(

0 z −H
(z −H)† 0

)

anti-commutes with        : 

this operator has chiral structure. 

the chiral matrix Γ5 =
(

1 0
0 − 1

)
= 1⊗ σ3

H {H,Γ5} = 0

33
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thus, if     is an eigenvector of     with eigenvalue     ,  

H

λα

Hξα = λαξα

then        is an eigenvector with eigenvalue          Γ5ξα −λα

in other words, nonzero eigenvalues of    come in pairs       
±λα

det ′
(

0 z −H
(z −H)† 0

)
=

∏

λα>0

(−λ2
α) = (−1)N det ′[(z −H)†(z −H)]

thus

H

lower block of          is an eigenvalue of                          with eigenvalue       etc            (z −H)†(z −H)ξα λ2
α

34
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thus, we shall use the Supersmmetric Method to generate 
the ratio of determinants   

Z(0) =
det ′

(
0 z −H
(z −H)† 0

)

det ′
(

0 w −H
(w −H)† 0

) =
|det ′(z −H)|2

|det ′(w −H)|2

≡ |F (z, w)|2

35
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now, by analiticity with respect to z,  

∂z|F (z, w)|2 = |F (z, w)|2 ∂zF (z, w)
F (z, w)

and in the limit, 

as before. 

At all stages of the calculation, all integrals are well 
defined and converge. 

36

lim
w→z

∂z|F (z, w)|2 = Tr
1

z −H
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a doublet of complex bosonic fields:
(

u(r)
d(r)

)

    is acted upon by           . Hence this field is subjected to the resonance b.c. 
at the open boundary  

d(r) Heff

    is acted upon by           . Hence this field is subjected to the complex conjugated resonance 
b.c.  at the open boundary  

u(r) H†
eff

with these b.c.’s on the fields, 

is a self-adjoint operator in the volume of the system Ω

37

H =
(

0 w −Heff

(w −Heff )† 0

)
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a doublet of complex fermionic fields:

    is acted upon by           . Hence this field is subjected to the resonance b.c. 
at the open boundary  

Heff

    is acted upon by           . Hence this field is subjected to the complex conjugated resonance 
b.c.  at the open boundary  

H†
eff

with these b.c.’s on the fields, 

H =
(

0 z −Heff

(z −Heff )† 0

)

is a self-adjoint operator in the volume of the system Ω

38

similarly, (
α(r)
β(r)

)

α(r)

β(r)
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SUPERSYMMETRIC ACTION

L = (u∗(r), d∗(r))
(

η w −Heff

(w −Heff )† η

) (
u(r)
d(r)

)
+

(α∗(r), β∗(r))
(

η z −Heff

(z −Heff )† η

) (
α(r)
β(r)

)

39

action S =
∫

Ω
Ldr

fermion-boson symmetry is precise when z=w. We shall always assume a smal z-w, which will 
slightly 

break SUSY (like a weak magnetic field in the Ising model) 
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lump all fields into a single superfield: Φ(r) =





u(r)
d(r)
α(r)
β(r)





ζ =
z + w

2
,∆ =

z − w

2define

L = Φ†
[(

η ζ −Heff

(ζ −Heff )† η

)
⊗ 12 −

(
0 ∆
∆∗ 0

)
⊗ σ3

]
Φ

then

the 2x2 matrices act on the fermion-boson blocks

they are diagonal, and therefore do not mix F and B

the last term, clearly breaks B-F symmetry when  ∆ != 0
(i.e.,           , ).   is therefore the small ``magnetic field” alluded to abovew != z

40
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Finally, 

Z(η) =
∫

rbc,Ω
DΦDΦ†eiS

41

The desired (yet-to-be averaged) resolvent is obtained as 

Tr
1

z −Heff
= lim

η→+i0
lim
w→z

∂zZ(η)

Friday, June 24, 2011



•yet to average over Gaussian disorder potential V(r)

• this will produce quartic superfield self interaction. 

• to cope with these, introduce supermatrix auxiliary 
fields, and use Hubbard-Stratonovich (complete 
squares) to disentangle the quartic term.

•superfields then appear quadratically in the action, 
and are integrated over, to produce an effective 
action for the supermatrix fields. These are then 
analysed under certain approximations...

42
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APPENDICES
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Thus, in order to solve for the resonance spectrum of our model, all we 
require is the        element of the Green’s function of the original 

closed system! It is the Green’s function of a hermitian hamiltonian, and 
therefore well-studied. 

G11

44

Let       and     be, respectively,  the zeros and poles of       . k0
α

kp
β

F (k)

F (k) is an analytic function of      . k

Thus, F ′(k)
F (k)

=
∑

α

1
k − k0

α

−
∑

β

1
k − kp

β

From the identity
∂

∂k∗
1

k − q
= πδ(2)(k − q)

(Gauss’  Law in 2d electrostatics) we thus find

purely real

1
π

∂

∂k∗
F ′(k)
F (k)

=
∑

α

δ(2)(k − k0
α)−

∑

β

δ(2)(k − kp
β)
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averaging this equation with its complex conjugate, we finally obtain 
that

ρ(k, k∗) =
1
2π

∂2

∂k∂k∗
log |F (k)|2 =

∑

α

δ(2)(k − k0
α)−

∑

β

δ(2)(k − kp
β)

the poles leave only on the real axis, so going off it and into the 4th 
quadrant in the complex k-plane, this formula gives us the DOR.

45
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THE CONTINUUM LIMIT OF THE CHAIN

The Schrodinger equation (z −Heff )!ψ = 0

can be obtained by applying the variational principle to a certain 
complex action 

δS

δ "ψ†
= (z −Heff )"ψ = 0

S =
N∑

n=1

a



−ζ|ψn|2 −D
δn,1

a



ψ∗
1
ψ2 − ψ1

a
+

(
t′

t

)2
eika − 1

a
|ψ1|2







−D
N∑

n=2

aψ∗
n
δ2ψn

a2

δ2ψn = ψn+1 − 2ψn + ψn−1

D = ta2 , ζ = z + 2t = 4t sin2

(
ka

2

)

Dirichlet b.c. ψ0 = ψN+1 = 0

symmetric second difference

lattice spacing

46
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continuum limit: 
a→ 0 , t→∞
ψn = ψ(na)→ ψ(x)

δ2ψn

a2
→ ∂2

xψ(x)

ψ2 − ψ1

a
→ ψ′(a+)

δn,1

a
→ δ(x− a)

D = ta2 → !2

2m
= finite

ζ → Dk2

∑

n

a→
∫

dx

(
t′

t

)2

→ eλa

k, λ = finite

47

Dirichlet b.c. : ψ0 = 0, ψN+1 = 0→ ψ(0) = ψ(L) = 0 . L = Na
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Complex continuum action:

S =
L∫

0+

dx
[
−ζ|ψ(x)|2 −Dψ∗(x)∂2

xψ(x)−Dδ(x− a)
(
ψ∗(x)∂xψ(x) + (λ + ik)|ψ(x)|2

)]

S =
L∫

0+

dx ψ∗(x)(Hcont
eff − ζ)ψ(x)

read off the continuum effective hamiltonian

Hcont
eff = Dp2 −Dδ(x− a)(ip + λ + ik)

strictily defined with Dirichlet b.c. on [0,L], but don’t really care about the Dbc at x=0. The delta 
function coefficient is huge. It enforces the complex Robin b.c. at x=a, and then just use 

continuity of the wave function, and let it fall to 0 at x=0 as a straight line. 

nonhermitian, energy dependent. all interesting stuff happens at the 
opening.

48
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THE END
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